Mercurial > repos > cstrittmatter > test_galtrakr_eurl_vtec_wgs_pt_23
diff scripts/ReMatCh/rematch.py @ 0:8be2feb96994
"planemo upload commit cb65588391944306ff3cb32a23e1c28f65122014"
author | cstrittmatter |
---|---|
date | Fri, 11 Mar 2022 15:50:35 -0500 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/scripts/ReMatCh/rematch.py Fri Mar 11 15:50:35 2022 -0500 @@ -0,0 +1,746 @@ +#!/usr/bin/env python3 + +# -*- coding: utf-8 -*- + +""" +rematch.py - Reads mapping against target sequences, checking mapping +and consensus sequences production +<https://github.com/B-UMMI/ReMatCh/> + +Copyright (C) 2019 Miguel Machado <mpmachado@medicina.ulisboa.pt> + +Last modified: August 08, 2019 + +This program is free software: you can redistribute it and/or modify +it under the terms of the GNU General Public License as published by +the Free Software Foundation, either version 3 of the License, or +(at your option) any later version. + +This program is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +You should have received a copy of the GNU General Public License +along with this program. If not, see <http://www.gnu.org/licenses/>. +""" + +import os +import sys +import time +import argparse + +try: + from __init__ import __version__ + + import modules.utils as utils + import modules.seqFromWebTaxon as seq_from_web_taxon + import modules.download as download + import modules.rematch_module as rematch_module + import modules.checkMLST as check_mlst +except ImportError: + from ReMatCh.__init__ import __version__ + + from ReMatCh.modules import utils as utils + from ReMatCh.modules import seqFromWebTaxon as seq_from_web_taxon + from ReMatCh.modules import download as download + from ReMatCh.modules import rematch_module as rematch_module + from ReMatCh.modules import checkMLST as check_mlst + + +def search_fastq_files(directory): + files_extensions = ['.fastq.gz', '.fq.gz'] + pair_end_files_separation = [['_R1_001.f', '_R2_001.f'], ['_1.f', '_2.f']] + + list_ids = {} + directories = [d for d in os.listdir(directory) if + not d.startswith('.') and os.path.isdir(os.path.join(directory, d, ''))] + for directory_found in directories: + if directory_found != 'pubmlst': + directory_path = os.path.join(directory, directory_found, '') + + fastq_found = [] + files = [f for f in os.listdir(directory_path) if + not f.startswith('.') and os.path.isfile(os.path.join(directory_path, f))] + for file_found in files: + if file_found.endswith(tuple(files_extensions)): + fastq_found.append(file_found) + + if len(fastq_found) == 1: + list_ids[directory_found] = [os.path.join(directory_path, f) for f in fastq_found] + elif len(fastq_found) >= 2: + file_pair = [] + + # Search pairs + for pe_separation in pair_end_files_separation: + for fastq in fastq_found: + if pe_separation[0] in fastq or pe_separation[1] in fastq: + file_pair.append(fastq) + + if len(file_pair) == 2: + break + else: + file_pair = [] + + # Search single + if len(file_pair) == 0: + for pe_separation in pair_end_files_separation: + for fastq in fastq_found: + if pe_separation[0] not in fastq or pe_separation[1] not in fastq: + file_pair.append(fastq) + + if len(file_pair) >= 1: + file_pair = file_pair[0] + + if len(file_pair) >= 1: + list_ids[directory_found] = [os.path.join(directory_path, f) for f in file_pair] + + return list_ids + + +def get_list_ids_from_file(file_list_ids): + list_ids = [] + + with open(file_list_ids, 'rtU') as lines: + for line in lines: + line = line.rstrip('\r\n') + if len(line) > 0: + list_ids.append(line) + + if len(list_ids) == 0: + sys.exit('No runIDs were found in ' + file_list_ids) + + return list_ids + + +def get_taxon_run_ids(taxon_name, outputfile): + seq_from_web_taxon.run_seq_from_web_taxon(taxon_name, outputfile, True, True, True, False) + + run_ids = [] + with open(outputfile, 'rtU') as reader: + for line in reader: + line = line.rstrip('\r\n') + if len(line) > 0: + if not line.startswith('#'): + line = line.split('\t') + run_ids.append(line[0]) + + return run_ids + + +def get_list_ids(workdir, file_list_ids, taxon_name): + searched_fastq_files = False + list_ids = [] + if file_list_ids is None and taxon_name is None: + list_ids = search_fastq_files(workdir) + searched_fastq_files = True + elif file_list_ids is not None: + list_ids = get_list_ids_from_file(os.path.abspath(file_list_ids)) + elif taxon_name is not None and file_list_ids is None: + list_ids = get_taxon_run_ids(taxon_name, os.path.join(workdir, 'IDs_list.seqFromWebTaxon.tab')) + + if len(list_ids) == 0: + sys.exit('No IDs were found') + return list_ids, searched_fastq_files + + +def format_gene_info(gene_specific_info, minimum_gene_coverage, minimum_gene_identity, reported_data_type, summary, + sample, genes_present): + info = None + if gene_specific_info['gene_coverage'] >= minimum_gene_coverage and \ + gene_specific_info['gene_identity'] >= minimum_gene_identity: + if summary and sample not in genes_present: + genes_present[sample] = {} + + if gene_specific_info['gene_number_positions_multiple_alleles'] == 0: + s = str(gene_specific_info[reported_data_type]) + info = str(s) + if summary: + genes_present[sample][gene_specific_info['header']] = str(s) + else: + s = 'multiAlleles_' + str(gene_specific_info[reported_data_type]) + info = str(s) + if summary: + genes_present[sample][gene_specific_info['header']] = str(s) + else: + info = 'absent_' + str(gene_specific_info[reported_data_type]) + + return info, genes_present + + +def write_data_by_gene(gene_list_reference, minimum_gene_coverage, sample, data_by_gene, outdir, time_str, run_times, + minimum_gene_identity, reported_data_type, summary, genes_present): + combined_report = \ + os.path.join(outdir, + 'combined_report.data_by_gene.' + run_times + '.' + reported_data_type + '.' + time_str + '.tab') + + if reported_data_type == 'coverage_depth': + reported_data_type = 'gene_mean_read_coverage' + elif reported_data_type == 'sequence_coverage': + reported_data_type = 'gene_coverage' + + combined_report_exist = os.path.isfile(combined_report) + with open(combined_report, 'at') as writer: + seq_list = sorted(gene_list_reference.keys()) + if not combined_report_exist: + writer.write('#sample' + '\t' + '\t'.join([gene_list_reference[seq] for seq in seq_list]) + '\n') + + results = {} + headers = [] + for i in data_by_gene: + results[data_by_gene[i]['header']], genes_present = format_gene_info(data_by_gene[i], minimum_gene_coverage, + minimum_gene_identity, + reported_data_type, summary, sample, + genes_present) + headers.append(data_by_gene[i]['header']) + + if len(headers) != gene_list_reference: + for gene in gene_list_reference: + if gene not in headers: + results[gene] = 'NA' + + writer.write(sample + '\t' + '\t'.join([results[seq] for seq in seq_list]) + '\n') + + return genes_present + + +def write_sample_report(sample, outdir, time_str, file_size, run_successfully_fastq, run_successfully_rematch_first, + run_successfully_rematch_second, time_taken_fastq, time_taken_rematch_first, + time_taken_rematch_second, time_taken_sample, sequencing_information, sample_data_general_first, + sample_data_general_second, fastq_used): + sample_report = os.path.join(outdir, 'sample_report.' + time_str + '.tab') + report_exist = os.path.isfile(sample_report) + + header_general = ['sample', 'sample_run_successfully', 'sample_run_time', 'files_size', 'download_run_successfully', + 'download_run_time', 'rematch_run_successfully_first', 'rematch_run_time_first', + 'rematch_run_successfully_second', 'rematch_run_time_second'] + header_data_general = ['number_absent_genes', 'number_genes_multiple_alleles', 'mean_sample_coverage'] + header_sequencing = ['run_accession', 'instrument_platform', 'instrument_model', 'library_layout', 'library_source', + 'extra_run_accession', 'nominal_length', 'read_count', 'base_count', 'date_download'] + + with open(sample_report, 'at') as writer: + if not report_exist: + writer.write('#' + '\t'.join(header_general) + '\t' + '_first\t'.join(header_data_general) + '_first\t' + + '_second\t'.join(header_data_general) + '_second\t' + '\t'.join(header_sequencing) + '\t' + + 'fastq_used' + '\n') + + writer.write('\t'.join([sample, + str(all([run_successfully_fastq is not False, + run_successfully_rematch_first is not False, + run_successfully_rematch_second is not False])), + str(time_taken_sample), + str(file_size), + str(run_successfully_fastq), + str(time_taken_fastq), + str(run_successfully_rematch_first), + str(time_taken_rematch_first), + str(run_successfully_rematch_second), + str(time_taken_rematch_second)]) + + '\t' + '\t'.join([str(sample_data_general_first[i]) for i in header_data_general]) + + '\t' + '\t'.join([str(sample_data_general_second[i]) for i in header_data_general]) + + '\t' + '\t'.join([str(sequencing_information[i]) for i in header_sequencing]) + + '\t' + ','.join(fastq_used) + '\n') + + +def concatenate_extra_seq_2_consensus(consensus_sequence, reference_sequence, extra_seq_length, outdir): + reference_dict, ignore, ignore = rematch_module.get_sequence_information(reference_sequence, extra_seq_length) + consensus_dict, genes, ignore = rematch_module.get_sequence_information(consensus_sequence, 0) + number_consensus_with_sequences = 0 + for k, values_consensus in list(consensus_dict.items()): + for values_reference in list(reference_dict.values()): + if values_reference['header'] == values_consensus['header']: + if len(set(consensus_dict[k]['sequence'])) > 1: + number_consensus_with_sequences += 1 + if extra_seq_length <= len(values_reference['sequence']): + right_extra_seq = \ + '' if extra_seq_length == 0 else values_reference['sequence'][-extra_seq_length:] + consensus_dict[k]['sequence'] = \ + values_reference['sequence'][:extra_seq_length] + \ + consensus_dict[k]['sequence'] + \ + right_extra_seq + consensus_dict[k]['length'] += extra_seq_length + len(right_extra_seq) + + consensus_concatenated = os.path.join(outdir, 'consensus_concatenated_extraSeq.fasta') + with open(consensus_concatenated, 'wt') as writer: + for i in consensus_dict: + writer.write('>' + consensus_dict[i]['header'] + '\n') + fasta_sequence_lines = rematch_module.chunkstring(consensus_dict[i]['sequence'], 80) + for line in fasta_sequence_lines: + writer.write(line + '\n') + + return consensus_concatenated, genes, consensus_dict, number_consensus_with_sequences + + +def clean_headers_reference_file(reference_file, outdir, extra_seq): + problematic_characters = ["|", " ", ",", ".", "(", ")", "'", "/", ":"] + print('Checking if reference sequences contain ' + str(problematic_characters) + '\n') + # headers_changed = False + new_reference_file = str(reference_file) + sequences, genes, headers_changed = rematch_module.get_sequence_information(reference_file, extra_seq) + if headers_changed: + print('At least one of the those characters was found. Replacing those with _' + '\n') + new_reference_file = \ + os.path.join(outdir, os.path.splitext(os.path.basename(reference_file))[0] + '.headers_renamed.fasta') + with open(new_reference_file, 'wt') as writer: + for i in sequences: + writer.write('>' + sequences[i]['header'] + '\n') + fasta_sequence_lines = rematch_module.chunkstring(sequences[i]['sequence'], 80) + for line in fasta_sequence_lines: + writer.write(line + '\n') + return new_reference_file, genes, sequences + + +def write_mlst_report(sample, run_times, consensus_type, st, alleles_profile, loci_order, outdir, time_str): + mlst_report = os.path.join(outdir, 'mlst_report.' + time_str + '.tab') + mlst_report_exist = os.path.isfile(mlst_report) + with open(mlst_report, 'at') as writer: + if not mlst_report_exist: + writer.write('\t'.join(['#sample', 'ReMatCh_run', 'consensus_type', 'ST'] + loci_order) + '\n') + writer.write('\t'.join([sample, run_times, consensus_type, str(st)] + alleles_profile.split(',')) + '\n') + + +def run_get_st(sample, mlst_dicts, consensus_sequences, mlst_consensus, run_times, outdir, time_str): + if mlst_consensus == 'all': + for consensus_type in consensus_sequences: + print('Searching MLST for ' + consensus_type + ' consensus') + st, alleles_profile = check_mlst.get_st(mlst_dicts, consensus_sequences[consensus_type]) + write_mlst_report(sample, run_times, consensus_type, st, alleles_profile, mlst_dicts[2], outdir, time_str) + print('ST found: ' + str(st) + ' (' + alleles_profile + ')') + else: + st, alleles_profile = check_mlst.get_st(mlst_dicts, consensus_sequences[mlst_consensus]) + write_mlst_report(sample, run_times, mlst_consensus, st, alleles_profile, mlst_dicts[2], outdir, time_str) + print('ST found for ' + mlst_consensus + ' consensus: ' + str(st) + ' (' + alleles_profile + ')') + + +def write_summary_report(outdir, reported_data_type, time_str, gene_list_reference, genes_present): + with open(os.path.join(outdir, + 'summary.{reported_data_type}.{time_str}.tab'.format(reported_data_type=reported_data_type, + time_str=time_str)), 'wt') as writer: + seq_list = [] + for info in list(genes_present.values()): + seq_list.extend(list(info.keys())) + seq_list = list(set(seq_list)) + writer.write('#sample' + '\t' + '\t'.join([gene_list_reference[seq] for seq in sorted(seq_list)]) + '\n') + for sample, info in list(genes_present.items()): + data = [] + for seq in sorted(seq_list): + if seq in info: + data.append(info[seq]) + else: + data.append('NF') + writer.write(sample + '\t' + '\t'.join(data) + '\n') + + +def run_rematch(args): + workdir = os.path.abspath(args.workdir) + if not os.path.isdir(workdir): + os.makedirs(workdir) + + aspera_key = os.path.abspath(args.asperaKey.name) if args.asperaKey is not None else None + + # Start logger + logfile, time_str = utils.start_logger(workdir) + + # Get general information + script_path = utils.general_information(logfile, __version__, workdir, time_str, args.doNotUseProvidedSoftware, + aspera_key, args.downloadCramBam, args.SRA, args.SRAopt) + + # Set list_ids + list_ids, searched_fastq_files = get_list_ids(workdir, args.listIDs.name if args.listIDs is not None else None, + args.taxon) + + mlst_sequences = None + mlst_dicts = None + if args.mlst is not None: + time_taken_pub_mlst, mlst_dicts, mlst_sequences = check_mlst.download_pub_mlst_xml(args.mlst, + args.mlstSchemaNumber, + workdir) + args.softClip_recodeRun = 'first' + + if args.reference is None: + if args.mlst is not None: + reference_file = check_mlst.check_existing_schema(args.mlst, args.mlstSchemaNumber, script_path) + args.extraSeq = 200 + if reference_file is None: + print('It was not found provided MLST scheme sequences for ' + args.mlst) + print('Trying to obtain reference MLST sequences from PubMLST') + if len(mlst_sequences) > 0: + reference_file = check_mlst.write_mlst_reference(args.mlst, mlst_sequences, workdir, time_str) + args.extraSeq = 0 + else: + sys.exit('It was not possible to download MLST sequences from PubMLST!') + else: + print('Using provided scheme as referece: ' + reference_file) + else: + sys.exit('Need to provide at least one of the following options: "--reference" and "--mlst"') + else: + reference_file = os.path.abspath(args.reference.name) + + # Run ReMatCh for each sample + print('\n' + 'STARTING ReMatCh' + '\n') + + # Clean sequences headers + reference_file, gene_list_reference, reference_dict = clean_headers_reference_file(reference_file, workdir, + args.extraSeq) + + if args.mlst is not None: + problem_genes = False + for header in mlst_sequences: + if header not in gene_list_reference: + print('MLST gene {header} not found between reference sequences'.format(header=header)) + problem_genes = True + if problem_genes: + sys.exit('Missing MLST genes from reference sequences (at least sequences names do not match)!') + + if len(gene_list_reference) == 0: + sys.exit('No sequences left') + + # To use in combined report + + number_samples_successfully = 0 + genes_present_coverage_depth = {} + genes_present_sequence_coverage = {} + for sample in list_ids: + sample_start_time = time.time() + print('\n\n' + 'Sample ID: ' + sample) + + # Create sample outdir + sample_outdir = os.path.join(workdir, sample, '') + if not os.path.isdir(sample_outdir): + os.mkdir(sample_outdir) + + run_successfully_fastq = None + time_taken_fastq = 0 + sequencing_information = {'run_accession': None, 'instrument_platform': None, 'instrument_model': None, + 'library_layout': None, 'library_source': None, 'extra_run_accession': None, + 'nominal_length': None, 'read_count': None, 'base_count': None, 'date_download': None} + if not searched_fastq_files: + # Download Files + time_taken_fastq, run_successfully_fastq, fastq_files, sequencing_information = \ + download.run_download(sample, args.downloadLibrariesType, aspera_key, sample_outdir, + args.downloadCramBam, args.threads, args.downloadInstrumentPlatform, args.SRA, + args.SRAopt) + else: + fastq_files = list_ids[sample] + + file_size = None + + run_successfully_rematch_first = None + run_successfully_rematch_second = None + time_taken_rematch_first = 0 + time_taken_rematch_second = 0 + sample_data_general_first = None + sample_data_general_second = None + if run_successfully_fastq is not False: + file_size = sum(os.path.getsize(fastq) for fastq in fastq_files) + # Run ReMatCh + time_taken_rematch_first, run_successfully_rematch_first, data_by_gene, sample_data_general_first, \ + consensus_files, consensus_sequences = \ + rematch_module.run_rematch_module(sample, fastq_files, reference_file, args.threads, sample_outdir, + args.extraSeq, args.minCovPresence, args.minCovCall, + args.minFrequencyDominantAllele, args.minGeneCoverage, + args.debug, args.numMapLoc, args.minGeneIdentity, + 'first', args.softClip_baseQuality, args.softClip_recodeRun, + reference_dict, args.softClip_cigarFlagRecode, + args.bowtieAlgo, args.bowtieOPT, + gene_list_reference, args.notWriteConsensus, clean_run=True) + if run_successfully_rematch_first: + if args.mlst is not None and (args.mlstRun == 'first' or args.mlstRun == 'all'): + run_get_st(sample, mlst_dicts, consensus_sequences, args.mlstConsensus, 'first', workdir, time_str) + genes_present_coverage_depth = write_data_by_gene(gene_list_reference, args.minGeneCoverage, sample, + data_by_gene, workdir, time_str, 'first_run', + args.minGeneIdentity, 'coverage_depth', args.summary, + genes_present_coverage_depth) + if args.reportSequenceCoverage: + genes_present_sequence_coverage = write_data_by_gene(gene_list_reference, args.minGeneCoverage, + sample, data_by_gene, workdir, time_str, + 'first_run', args.minGeneIdentity, + 'sequence_coverage', args.summary, + genes_present_sequence_coverage) + if args.doubleRun: + rematch_second_outdir = os.path.join(sample_outdir, 'rematch_second_run', '') + if not os.path.isdir(rematch_second_outdir): + os.mkdir(rematch_second_outdir) + consensus_concatenated_fasta, consensus_concatenated_gene_list, consensus_concatenated_dict, \ + number_consensus_with_sequences = \ + concatenate_extra_seq_2_consensus(consensus_files['noMatter'], reference_file, args.extraSeq, + rematch_second_outdir) + if len(consensus_concatenated_gene_list) > 0: + if args.mlst is None or \ + (args.mlst is not None and number_consensus_with_sequences == len(gene_list_reference)): + time_taken_rematch_second, run_successfully_rematch_second, data_by_gene, \ + sample_data_general_second, consensus_files, consensus_sequences = \ + rematch_module.run_rematch_module(sample, fastq_files, consensus_concatenated_fasta, + args.threads, rematch_second_outdir, args.extraSeq, + args.minCovPresence, args.minCovCall, + args.minFrequencyDominantAllele, args.minGeneCoverage, + args.debug, args.numMapLoc, + args.minGeneIdentity, 'second', + args.softClip_baseQuality, args.softClip_recodeRun, + consensus_concatenated_dict, + args.softClip_cigarFlagRecode, + args.bowtieAlgo, args.bowtieOPT, + gene_list_reference, args.notWriteConsensus, + clean_run=True) + if not args.debug: + os.remove(consensus_concatenated_fasta) + if run_successfully_rematch_second: + if args.mlst is not None and (args.mlstRun == 'second' or args.mlstRun == 'all'): + run_get_st(sample, mlst_dicts, consensus_sequences, args.mlstConsensus, 'second', + workdir, time_str) + _ = write_data_by_gene(gene_list_reference, args.minGeneCoverage, sample, data_by_gene, + workdir, time_str, 'second_run', args.minGeneIdentity, + 'coverage_depth', False, {}) + if args.reportSequenceCoverage: + _ = write_data_by_gene(gene_list_reference, args.minGeneCoverage, sample, + data_by_gene, workdir, time_str, 'second_run', + args.minGeneIdentity, 'sequence_coverage', False, {}) + else: + print('Some sequences missing after ReMatCh module first run. Second run will not be' + ' performed') + if os.path.isfile(consensus_concatenated_fasta): + os.remove(consensus_concatenated_fasta) + if os.path.isdir(rematch_second_outdir): + utils.remove_directory(rematch_second_outdir) + else: + print('No sequences left after ReMatCh module first run. Second run will not be performed') + if os.path.isfile(consensus_concatenated_fasta): + os.remove(consensus_concatenated_fasta) + if os.path.isdir(rematch_second_outdir): + utils.remove_directory(rematch_second_outdir) + + if not searched_fastq_files and not args.keepDownloadedFastq and fastq_files is not None: + for fastq in fastq_files: + if os.path.isfile(fastq): + os.remove(fastq) + + time_taken = utils.run_time(sample_start_time) + + write_sample_report(sample, workdir, time_str, file_size, run_successfully_fastq, + run_successfully_rematch_first, run_successfully_rematch_second, time_taken_fastq, + time_taken_rematch_first, time_taken_rematch_second, time_taken, sequencing_information, + sample_data_general_first if run_successfully_rematch_first else + {'number_absent_genes': None, 'number_genes_multiple_alleles': None, + 'mean_sample_coverage': None}, + sample_data_general_second if run_successfully_rematch_second else + {'number_absent_genes': None, 'number_genes_multiple_alleles': None, + 'mean_sample_coverage': None}, + fastq_files if fastq_files is not None else '') + + if all([run_successfully_fastq is not False, + run_successfully_rematch_first is not False, + run_successfully_rematch_second is not False]): + number_samples_successfully += 1 + + if args.summary: + write_summary_report(workdir, 'coverage_depth', time_str, gene_list_reference, genes_present_coverage_depth) + if args.reportSequenceCoverage: + write_summary_report(workdir, 'sequence_coverage', time_str, gene_list_reference, + genes_present_sequence_coverage) + + return number_samples_successfully, len(list_ids) + + +def main(): + if sys.version_info[0] < 3: + sys.exit('Must be using Python 3. Try calling "python3 rematch.py"') + + parser = argparse.ArgumentParser(prog='rematch.py', + description='Reads mapping against target sequences, checking mapping and' + ' consensus sequences production', + formatter_class=argparse.ArgumentDefaultsHelpFormatter) + parser.add_argument('--version', help='Version information', action='version', + version='{prog} v{version}'.format(prog=parser.prog, version=__version__)) + + parser_optional_general = parser.add_argument_group('General facultative options') + parser_optional_general.add_argument('-r', '--reference', type=argparse.FileType('r'), + metavar='/path/to/reference_sequence.fasta', + help='Fasta file containing reference sequences', required=False) + parser_optional_general.add_argument('-w', '--workdir', type=str, metavar='/path/to/workdir/directory/', + help='Path to the directory where ReMatCh will run and produce the outputs' + ' with reads (ended with fastq.gz/fq.gz and, in case of PE data, pair-end' + ' direction coded as _R1_001 / _R2_001 or _1 / _2) already' + ' present (organized in sample folders) or to be downloaded', + required=False, default='.') + parser_optional_general.add_argument('-j', '--threads', type=int, metavar='N', help='Number of threads to use', + required=False, default=1) + parser_optional_general.add_argument('--mlst', type=str, metavar='"Streptococcus agalactiae"', + help='Species name (same as in PubMLST) to be used in MLST' + ' determination. ReMatCh will use Bowtie2 very-sensitive-local mapping' + ' parameters and will recode the soft clip CIGAR flags of the first run', + required=False) + parser_optional_general.add_argument('--doNotUseProvidedSoftware', action='store_true', + help='Tells ReMatCh to not use Bowtie2, Samtools and Bcftools that are' + ' provided with it') + + parser_optional_download_exclusive = parser.add_mutually_exclusive_group() + parser_optional_download_exclusive.add_argument('-l', '--listIDs', type=argparse.FileType('r'), + metavar='/path/to/list_IDs.txt', + help='Path to list containing the IDs to be' + ' downloaded (one per line)', required=False) + parser_optional_download_exclusive.add_argument('-t', '--taxon', type=str, metavar='"Streptococcus agalactiae"', + help='Taxon name for which ReMatCh will download fastq files', + required=False) + + parser_optional_rematch = parser.add_argument_group('ReMatCh module facultative options') + parser_optional_rematch.add_argument('--extraSeq', type=int, metavar='N', + help='Sequence length added to both ends of target sequences (usefull to' + ' improve reads mapping to the target one) that will be trimmed in' + ' ReMatCh outputs', required=False, default=0) + parser_optional_rematch.add_argument('--minCovPresence', type=int, metavar='N', + help='Reference position minimum coverage depth to consider the position to be' + ' present in the sample', required=False, default=5) + parser_optional_rematch.add_argument('--minCovCall', type=int, metavar='N', + help='Reference position minimum coverage depth to perform a base call. Lower' + ' coverage will be coded as N', required=False, default=10) + parser_optional_rematch.add_argument('--minFrequencyDominantAllele', type=float, metavar='0.6', + help='Minimum relative frequency of the dominant allele coverage depth (value' + ' between [0, 1]). Positions with lower values will be considered as' + ' having multiple alleles (and will be coded as N)', required=False, + default=0.6) + parser_optional_rematch.add_argument('--minGeneCoverage', type=int, metavar='N', + help='Minimum percentage of target reference gene sequence covered' + ' by --minCovPresence to consider a gene to be present (value' + ' between [0, 100])', required=False, default=70) + parser_optional_rematch.add_argument('--minGeneIdentity', type=int, metavar='N', + help='Minimum percentage of identity of reference gene sequence covered' + ' by --minCovCall to consider a gene to be present (value' + ' between [0, 100]). One INDEL will be considered as one difference', + required=False, default=80) + parser_optional_rematch.add_argument('--numMapLoc', type=int, metavar='N', help=argparse.SUPPRESS, required=False, + default=1) + # parser_optional_rematch.add_argument('--numMapLoc', type=int, metavar='N', help='Maximum number of locations to which a read can map (sometimes useful when mapping against similar sequences)', required=False, default=1) + parser_optional_rematch.add_argument('--doubleRun', action='store_true', + help='Tells ReMatCh to run a second time using as reference the noMatter' + ' consensus sequence produced in the first run. This will improve' + ' consensus sequence determination for sequences with high percentage of' + ' target reference gene sequence covered') + parser_optional_rematch.add_argument('--reportSequenceCoverage', action='store_true', + help='Produce an extra combined_report.data_by_gene with the sequence coverage' + ' instead of coverage depth') + parser_optional_rematch.add_argument('--summary', action='store_true', + help='Produce extra report files containing only sequences present in at least' + ' one sample (usefull when using a large number of reference' + ' sequences, and only for first run)') + parser_optional_rematch.add_argument('--notWriteConsensus', action='store_true', + help='Do not write consensus sequences') + parser_optional_rematch.add_argument('--bowtieAlgo', type=str, metavar='"--very-sensitive-local"', + help='Bowtie2 alignment mode. It can be an end-to-end alignment (unclipped' + ' alignment) or local alignment (soft clipped alignment). Also, can' + ' choose between fast or sensitive alignments. Please check Bowtie2' + ' manual for extra' + ' information: http://bowtie-bio.sourceforge.net/bowtie2/index.shtml .' + ' This option should be provided between quotes and starting with' + ' an empty space (like --bowtieAlgo " --very-fast") or using equal' + ' sign (like --bowtieAlgo="--very-fast")', + required=False, default='--very-sensitive-local') + parser_optional_rematch.add_argument('--bowtieOPT', type=str, metavar='"--no-mixed"', + help='Extra Bowtie2 options. This option should be provided between quotes and' + ' starting with an empty space (like --bowtieOPT " --no-mixed") or using' + ' equal sign (like --bowtieOPT="--no-mixed")', + required=False) + parser_optional_rematch.add_argument('--debug', action='store_true', + help='DeBug Mode: do not remove temporary files') + + parser_optional_mlst = parser.add_argument_group('MLST facultative options') + parser_optional_rematch.add_argument('--mlstReference', action='store_true', + help='If the curated scheme for MLST alleles is available, tells ReMatCh to' + ' use these as reference (force Bowtie2 to run with very-sensitive-local' + ' parameters, and sets --extraSeq to 200), otherwise ReMatCh uses the' + ' first alleles of each MLST gene fragment in PubMLST as reference' + ' sequences (force Bowtie2 to run with very-sensitive-local parameters,' + ' and sets --extraSeq to 0)') + parser_optional_mlst.add_argument('--mlstSchemaNumber', type=int, metavar='N', + help='Number of the species PubMLST schema to be used in case of multiple schemes' + ' available (by default will use the first schema)', required=False) + parser_optional_mlst.add_argument('--mlstConsensus', choices=['noMatter', 'correct', 'alignment', 'all'], type=str, + metavar='noMatter', + help='Consensus sequence to be used in MLST' + ' determination (available options: %(choices)s)', required=False, + default='noMatter') + parser_optional_mlst.add_argument('--mlstRun', choices=['first', 'second', 'all'], type=str, metavar='first', + help='ReMatCh run outputs to be used in MLST determination (available' + ' options: %(choices)s)', required=False, default='all') + + parser_optional_download = parser.add_argument_group('Download facultative options') + parser_optional_download.add_argument('-a', '--asperaKey', type=argparse.FileType('r'), + metavar='/path/to/asperaweb_id_dsa.openssh', + help='Tells ReMatCh to download fastq files from ENA using Aspera' + ' Connect. With this option, the path to Private-key file' + ' asperaweb_id_dsa.openssh must be provided (normaly found in' + ' ~/.aspera/connect/etc/asperaweb_id_dsa.openssh).', required=False) + parser_optional_download.add_argument('-k', '--keepDownloadedFastq', action='store_true', + help='Tells ReMatCh to keep the fastq files downloaded') + parser_optional_download.add_argument('--downloadLibrariesType', type=str, metavar='PAIRED', + help='Tells ReMatCh to download files with specific library' + ' layout (available options: %(choices)s)', + choices=['PAIRED', 'SINGLE', 'BOTH'], required=False, default='BOTH') + parser_optional_download.add_argument('--downloadInstrumentPlatform', type=str, metavar='ILLUMINA', + help='Tells ReMatCh to download files with specific library layout (available' + ' options: %(choices)s)', choices=['ILLUMINA', 'ALL'], required=False, + default='ILLUMINA') + parser_optional_download.add_argument('--downloadCramBam', action='store_true', + help='Tells ReMatCh to also download cram/bam files and convert them to fastq' + ' files') + + parser_optional_sra = parser.add_mutually_exclusive_group() + parser_optional_sra.add_argument('--SRA', action='store_true', + help='Tells getSeqENA.py to download reads in fastq format only from NCBI SRA' + ' database (not recommended)') + parser_optional_sra.add_argument('--SRAopt', action='store_true', + help='Tells getSeqENA.py to download reads from NCBI SRA if the download from ENA' + ' fails') + + parser_optional_soft_clip = parser.add_argument_group('Soft clip facultative options') + parser_optional_soft_clip.add_argument('--softClip_baseQuality', type=int, metavar='N', + help='Base quality phred score in reads soft clipped regions', + required=False, + default=7) + parser_optional_soft_clip.add_argument('--softClip_recodeRun', type=str, metavar='first', + help='ReMatCh run to recode soft clipped regions (available' + ' options: %(choices)s)', choices=['first', 'second', 'both', 'none'], + required=False, default='none') + parser_optional_soft_clip.add_argument('--softClip_cigarFlagRecode', type=str, metavar='M', + help='CIGAR flag to recode CIGAR soft clip (available options: %(choices)s)', + choices=['M', 'I', 'X'], required=False, default='X') + + args = parser.parse_args() + + msg = [] + if args.reference is None and not args.mlstReference: + msg.append('At least --reference or --mlstReference should be provided') + elif args.reference is not None and args.mlstReference: + msg.append('Only --reference or --mlstReference should be provided') + else: + if args.mlstReference: + if args.mlst is None: + msg.append('Please provide species name using --mlst') + if args.minFrequencyDominantAllele < 0 or args.minFrequencyDominantAllele > 1: + msg.append('--minFrequencyDominantAllele should be a value between [0, 1]') + if args.minGeneCoverage < 0 or args.minGeneCoverage > 100: + msg.append('--minGeneCoverage should be a value between [0, 100]') + if args.minGeneIdentity < 0 or args.minGeneIdentity > 100: + msg.append('--minGeneIdentity should be a value between [0, 100]') + if args.notWriteConsensus and args.doubleRun: + msg.append('--notWriteConsensus and --doubleRun cannot be used together.' + ' Maybe you only want to use --doubleRun') + + if len(msg) > 0: + argparse.ArgumentParser.error('\n'.join(msg)) + + start_time = time.time() + + number_samples_successfully, samples_total_number = run_rematch(args) + + print('\n' + 'END ReMatCh') + print('\n' + + str(number_samples_successfully) + ' samples out of ' + str(samples_total_number) + ' run successfully') + time_taken = utils.run_time(start_time) + del time_taken + + if number_samples_successfully == 0: + sys.exit('No samples run successfully!') + + +if __name__ == "__main__": + main()