estrain@9
|
1 #!/usr/bin/env python3
|
estrain@9
|
2
|
estrain@9
|
3
|
estrain@9
|
4 import gzip
|
estrain@9
|
5 import io
|
estrain@9
|
6 import pickle
|
estrain@9
|
7 import os
|
estrain@9
|
8 import sys
|
estrain@9
|
9
|
estrain@9
|
10 from argparse import ArgumentParser
|
estrain@9
|
11 #try:
|
estrain@9
|
12 # from .version import SalmID_version
|
estrain@9
|
13 #except ImportError:
|
estrain@9
|
14 # SalmID_version = "version unknown"
|
estrain@9
|
15 SalmID_version = '0.1.23'
|
estrain@9
|
16
|
estrain@9
|
17 def reverse_complement(sequence):
|
estrain@9
|
18 """return the reverse complement of a nucleotide (including IUPAC ambiguous nuceotide codes)"""
|
estrain@9
|
19 complement = {'A': 'T', 'C': 'G', 'G': 'C', 'T': 'A', 'N': 'N', 'M': 'K', 'R': 'Y', 'W': 'W',
|
estrain@9
|
20 'S': 'S', 'Y': 'R', 'K': 'M', 'V': 'B', 'H': 'D', 'D': 'H', 'B': 'V'}
|
estrain@9
|
21 return "".join(complement[base] for base in reversed(sequence))
|
estrain@9
|
22
|
estrain@9
|
23
|
estrain@9
|
24 def parse_args():
|
estrain@9
|
25 "Parse the input arguments, use '-h' for help."
|
estrain@9
|
26 parser = ArgumentParser(description='SalmID - rapid Kmer based Salmonella identifier from sequence data')
|
estrain@9
|
27 # inputs
|
estrain@9
|
28 parser.add_argument('-v', '--version', action='version', version='%(prog)s ' + SalmID_version)
|
estrain@9
|
29 parser.add_argument(
|
estrain@9
|
30 '-i', '--input_file', type=str, required=False, default='None', metavar='your_fastqgz',
|
estrain@9
|
31 help='Single fastq.gz file input, include path to file if file is not in same directory ')
|
estrain@9
|
32 parser.add_argument(
|
estrain@9
|
33 '-e', '--extension', type=str, required=False, default='.fastq.gz', metavar='file_extension',
|
estrain@9
|
34 help='File extension, if specified without "--input_dir", SalmID will attempt to ID all files\n' +
|
estrain@9
|
35 ' with this extension in current directory, otherwise files in input directory')
|
estrain@9
|
36
|
estrain@9
|
37 parser.add_argument(
|
estrain@9
|
38 '-d', '--input_dir', type=str, required=False, default='.', metavar='directory',
|
estrain@9
|
39 help='Directory which contains data for identification, when not specified files in current directory will be analyzed.')
|
estrain@9
|
40 parser.add_argument(
|
estrain@9
|
41 '-r', '--report', type=str, required=False, default='percentage', metavar='percentage, coverage or taxonomy',
|
estrain@9
|
42 help='Report either percentage ("percentage") of clade specific kmers recovered, average kmer-coverage ("cov"), or '
|
estrain@9
|
43 'taxonomy (taxonomic species ID, plus observed mean k-mer coverages and expected coverage).')
|
estrain@9
|
44 parser.add_argument(
|
estrain@9
|
45 '-m', '--mode', type=str, required=False, default='quick', metavar='quick or thorough',
|
estrain@9
|
46 help='Quick [quick] or thorough [thorough] mode')
|
estrain@9
|
47 if len(sys.argv) == 1:
|
estrain@9
|
48 parser.print_help(sys.stderr)
|
estrain@9
|
49 sys.exit(1)
|
estrain@9
|
50 return parser.parse_args()
|
estrain@9
|
51
|
estrain@9
|
52
|
estrain@9
|
53 def get_av_read_length(file):
|
estrain@9
|
54 """Samples the first 100 reads from a fastq file and return the average read length."""
|
estrain@9
|
55 i = 1
|
estrain@9
|
56 n_reads = 0
|
estrain@9
|
57 total_length = 0
|
estrain@9
|
58 if file.endswith(".gz"):
|
estrain@9
|
59 file_content = io.BufferedReader(gzip.open(file))
|
estrain@9
|
60 else:
|
estrain@9
|
61 file_content = open(file, "r").readlines()
|
estrain@9
|
62 for line in file_content:
|
estrain@9
|
63 if i % 4 == 2:
|
estrain@9
|
64 total_length += len(line.strip())
|
estrain@9
|
65 n_reads += 1
|
estrain@9
|
66 i += 1
|
estrain@9
|
67 if n_reads == 100:
|
estrain@9
|
68 break
|
estrain@9
|
69 return total_length / 100
|
estrain@9
|
70
|
estrain@9
|
71
|
estrain@9
|
72 def createKmerDict_reads(list_of_strings, kmer):
|
estrain@9
|
73 """Count occurence of K-mers in a list of strings
|
estrain@9
|
74
|
estrain@9
|
75 Args:
|
estrain@9
|
76 list_of_strings(list of str): nucleotide sequences as a list of strings
|
estrain@9
|
77 kmer(int): length of the K-mer to count
|
estrain@9
|
78
|
estrain@9
|
79 Returns:
|
estrain@9
|
80 dict: dictionary with kmers as keys, counts for each kmer as values"""
|
estrain@9
|
81 kmer_table = {}
|
estrain@9
|
82 for string in list_of_strings:
|
estrain@9
|
83 sequence = string.strip('\n')
|
estrain@9
|
84 if len(sequence) >= kmer:
|
estrain@9
|
85 for i in range(len(sequence) - kmer + 1):
|
estrain@9
|
86 new_mer = sequence[i:i + kmer]
|
estrain@9
|
87 new_mer_rc = reverse_complement(new_mer)
|
estrain@9
|
88 if new_mer in kmer_table:
|
estrain@9
|
89 kmer_table[new_mer.upper()] += 1
|
estrain@9
|
90 else:
|
estrain@9
|
91 kmer_table[new_mer.upper()] = 1
|
estrain@9
|
92 if new_mer_rc in kmer_table:
|
estrain@9
|
93 kmer_table[new_mer_rc.upper()] += 1
|
estrain@9
|
94 else:
|
estrain@9
|
95 kmer_table[new_mer_rc.upper()] = 1
|
estrain@9
|
96 return kmer_table
|
estrain@9
|
97
|
estrain@9
|
98
|
estrain@9
|
99 def target_read_kmerizer_multi(file, k, kmerDict_1, kmerDict_2, mode):
|
estrain@9
|
100 mean_1 = None
|
estrain@9
|
101 mean_2 = None
|
estrain@9
|
102 i = 1
|
estrain@9
|
103 n_reads_1 = 0
|
estrain@9
|
104 n_reads_2 = 0
|
estrain@9
|
105 total_coverage_1 = 0
|
estrain@9
|
106 total_coverage_2 = 0
|
estrain@9
|
107 reads_1 = []
|
estrain@9
|
108 reads_2 = []
|
estrain@9
|
109 total_reads = 0
|
estrain@9
|
110 if file.endswith(".gz"):
|
estrain@9
|
111 file_content = io.BufferedReader(gzip.open(file))
|
estrain@9
|
112 else:
|
estrain@9
|
113 file_content = open(file, "r").readlines()
|
estrain@9
|
114 for line in file_content:
|
estrain@9
|
115 start = int((len(line) - k) // 2)
|
estrain@9
|
116 if i % 4 == 2:
|
estrain@9
|
117 total_reads += 1
|
estrain@9
|
118 if file.endswith(".gz"):
|
estrain@9
|
119 s1 = line[start:k + start].decode()
|
estrain@9
|
120 line = line.decode()
|
estrain@9
|
121 else:
|
estrain@9
|
122 s1 = line[start:k + start]
|
estrain@9
|
123 if s1 in kmerDict_1:
|
estrain@9
|
124 n_reads_1 += 1
|
estrain@9
|
125 total_coverage_1 += len(line)
|
estrain@9
|
126 reads_1.append(line)
|
estrain@9
|
127 if s1 in kmerDict_2:
|
estrain@9
|
128 n_reads_2 += 1
|
estrain@9
|
129 total_coverage_2 += len(line)
|
estrain@9
|
130 reads_2.append(line)
|
estrain@9
|
131 i += 1
|
estrain@9
|
132 if mode == 'quick':
|
estrain@9
|
133 if total_coverage_2 >= 800000:
|
estrain@9
|
134 break
|
estrain@9
|
135
|
estrain@9
|
136 if len(reads_1) == 0:
|
estrain@9
|
137 kmer_Dict1 = {}
|
estrain@9
|
138 else:
|
estrain@9
|
139 kmer_Dict1 = createKmerDict_reads(reads_1, k)
|
estrain@9
|
140 mers_1 = set([key for key in kmer_Dict1])
|
estrain@9
|
141 mean_1 = sum([kmer_Dict1[key] for key in kmer_Dict1]) / len(mers_1)
|
estrain@9
|
142 if len(reads_2) == 0:
|
estrain@9
|
143 kmer_Dict2 = {}
|
estrain@9
|
144 else:
|
estrain@9
|
145 kmer_Dict2 = createKmerDict_reads(reads_2, k)
|
estrain@9
|
146 mers_2 = set([key for key in kmer_Dict2])
|
estrain@9
|
147 mean_2 = sum([kmer_Dict2[key] for key in kmer_Dict2]) / len(mers_2)
|
estrain@9
|
148 return kmer_Dict1, kmer_Dict2, mean_1, mean_2, total_reads
|
estrain@9
|
149
|
estrain@9
|
150
|
estrain@9
|
151 def mean_cov_selected_kmers(iterable, kmer_dict, clade_specific_kmers):
|
estrain@9
|
152 '''
|
estrain@9
|
153 Given an iterable (list, set, dictrionary) returns mean coverage for the kmers in iterable
|
estrain@9
|
154 :param iterable: set, list or dictionary containing kmers
|
estrain@9
|
155 :param kmer_dict: dictionary with kmers as keys, kmer-frequency as value
|
estrain@9
|
156 :param clade_specific_kmers: list, dict or set of clade specific kmers
|
estrain@9
|
157 :return: mean frequency as float
|
estrain@9
|
158 '''
|
estrain@9
|
159 if len(iterable) == 0:
|
estrain@9
|
160 return 0
|
estrain@9
|
161 return sum([kmer_dict[value] for value in iterable]) / len(clade_specific_kmers)
|
estrain@9
|
162
|
estrain@9
|
163
|
estrain@9
|
164 def kmer_lists(query_fastq_gz, k,
|
estrain@9
|
165 allmers, allmers_rpoB,
|
estrain@9
|
166 uniqmers_bongori,
|
estrain@9
|
167 uniqmers_I,
|
estrain@9
|
168 uniqmers_IIa,
|
estrain@9
|
169 uniqmers_IIb,
|
estrain@9
|
170 uniqmers_IIIa,
|
estrain@9
|
171 uniqmers_IIIb,
|
estrain@9
|
172 uniqmers_IV,
|
estrain@9
|
173 uniqmers_VI,
|
estrain@9
|
174 uniqmers_VII,
|
estrain@9
|
175 uniqmers_VIII,
|
estrain@9
|
176 uniqmers_bongori_rpoB,
|
estrain@9
|
177 uniqmers_S_enterica_rpoB,
|
estrain@9
|
178 uniqmers_Escherichia_rpoB,
|
estrain@9
|
179 uniqmers_Listeria_ss_rpoB,
|
estrain@9
|
180 uniqmers_Lmono_rpoB,
|
estrain@9
|
181 mode):
|
estrain@9
|
182 dict_invA, dict_rpoB, mean_invA, mean_rpoB, total_reads = target_read_kmerizer_multi(query_fastq_gz, k, allmers,
|
estrain@9
|
183 allmers_rpoB, mode)
|
estrain@9
|
184 target_mers_invA = set([key for key in dict_invA])
|
estrain@9
|
185 target_mers_rpoB = set([key for key in dict_rpoB])
|
estrain@9
|
186 if target_mers_invA == 0:
|
estrain@9
|
187 print('No reads found matching invA, no Salmonella in sample?')
|
estrain@9
|
188 else:
|
estrain@9
|
189 p_bongori = (len(uniqmers_bongori & target_mers_invA) / len(uniqmers_bongori)) * 100
|
estrain@9
|
190 p_I = (len(uniqmers_I & target_mers_invA) / len(uniqmers_I)) * 100
|
estrain@9
|
191 p_IIa = (len(uniqmers_IIa & target_mers_invA) / len(uniqmers_IIa)) * 100
|
estrain@9
|
192 p_IIb = (len(uniqmers_IIb & target_mers_invA) / len(uniqmers_IIb)) * 100
|
estrain@9
|
193 p_IIIa = (len(uniqmers_IIIa & target_mers_invA) / len(uniqmers_IIIa)) * 100
|
estrain@9
|
194 p_IIIb = (len(uniqmers_IIIb & target_mers_invA) / len(uniqmers_IIIb)) * 100
|
estrain@9
|
195 p_VI = (len(uniqmers_VI & target_mers_invA) / len(uniqmers_VI)) * 100
|
estrain@9
|
196 p_IV = (len(uniqmers_IV & target_mers_invA) / len(uniqmers_IV)) * 100
|
estrain@9
|
197 p_VII = (len(uniqmers_VII & target_mers_invA) / len(uniqmers_VII)) * 100
|
estrain@9
|
198 p_VIII = (len(uniqmers_VIII & target_mers_invA) / len(uniqmers_VIII)) * 100
|
estrain@9
|
199 p_bongori_rpoB = (len(uniqmers_bongori_rpoB & target_mers_rpoB) / len(uniqmers_bongori_rpoB)) * 100
|
estrain@9
|
200 p_Senterica = (len(uniqmers_S_enterica_rpoB & target_mers_rpoB) / len(uniqmers_S_enterica_rpoB)) * 100
|
estrain@9
|
201 p_Escherichia = (len(uniqmers_Escherichia_rpoB & target_mers_rpoB) / len(uniqmers_Escherichia_rpoB)) * 100
|
estrain@9
|
202 p_Listeria_ss = (len(uniqmers_Listeria_ss_rpoB & target_mers_rpoB) / len(uniqmers_Listeria_ss_rpoB)) * 100
|
estrain@9
|
203 p_Lmono = (len(uniqmers_Lmono_rpoB & target_mers_rpoB) / len(uniqmers_Lmono_rpoB)) * 100
|
estrain@9
|
204 bongori_invA_cov = mean_cov_selected_kmers(uniqmers_bongori & target_mers_invA, dict_invA, uniqmers_bongori)
|
estrain@9
|
205 I_invA_cov = mean_cov_selected_kmers(uniqmers_I & target_mers_invA, dict_invA, uniqmers_I)
|
estrain@9
|
206 IIa_invA_cov = mean_cov_selected_kmers(uniqmers_IIa & target_mers_invA, dict_invA, uniqmers_IIa)
|
estrain@9
|
207 IIb_invA_cov = mean_cov_selected_kmers(uniqmers_IIb & target_mers_invA, dict_invA, uniqmers_IIb)
|
estrain@9
|
208 IIIa_invA_cov = mean_cov_selected_kmers(uniqmers_IIIa & target_mers_invA, dict_invA, uniqmers_IIIa)
|
estrain@9
|
209 IIIb_invA_cov = mean_cov_selected_kmers(uniqmers_IIIb & target_mers_invA, dict_invA, uniqmers_IIIb)
|
estrain@9
|
210 IV_invA_cov = mean_cov_selected_kmers(uniqmers_IV & target_mers_invA, dict_invA, uniqmers_IV)
|
estrain@9
|
211 VI_invA_cov = mean_cov_selected_kmers(uniqmers_VI & target_mers_invA, dict_invA, uniqmers_VI)
|
estrain@9
|
212 VII_invA_cov = mean_cov_selected_kmers(uniqmers_VII & target_mers_invA, dict_invA, uniqmers_VII)
|
estrain@9
|
213 VIII_invA_cov = mean_cov_selected_kmers(uniqmers_VIII & target_mers_invA, dict_invA, uniqmers_VIII)
|
estrain@9
|
214 S_enterica_rpoB_cov = mean_cov_selected_kmers((uniqmers_S_enterica_rpoB & target_mers_rpoB), dict_rpoB,
|
estrain@9
|
215 uniqmers_S_enterica_rpoB)
|
estrain@9
|
216 S_bongori_rpoB_cov = mean_cov_selected_kmers((uniqmers_bongori_rpoB & target_mers_rpoB), dict_rpoB,
|
estrain@9
|
217 uniqmers_bongori_rpoB)
|
estrain@9
|
218 Escherichia_rpoB_cov = mean_cov_selected_kmers((uniqmers_Escherichia_rpoB & target_mers_rpoB), dict_rpoB,
|
estrain@9
|
219 uniqmers_Escherichia_rpoB)
|
estrain@9
|
220 Listeria_ss_rpoB_cov = mean_cov_selected_kmers((uniqmers_Listeria_ss_rpoB & target_mers_rpoB), dict_rpoB,
|
estrain@9
|
221 uniqmers_Listeria_ss_rpoB)
|
estrain@9
|
222 Lmono_rpoB_cov = mean_cov_selected_kmers((uniqmers_Lmono_rpoB & target_mers_rpoB), dict_rpoB,
|
estrain@9
|
223 uniqmers_Lmono_rpoB)
|
estrain@9
|
224 coverages = [Listeria_ss_rpoB_cov, Lmono_rpoB_cov, Escherichia_rpoB_cov, S_bongori_rpoB_cov,
|
estrain@9
|
225 S_enterica_rpoB_cov, bongori_invA_cov, I_invA_cov, IIa_invA_cov, IIb_invA_cov,
|
estrain@9
|
226 IIIa_invA_cov, IIIb_invA_cov, IV_invA_cov, VI_invA_cov, VII_invA_cov, VIII_invA_cov]
|
estrain@9
|
227 locus_scores = [p_Listeria_ss, p_Lmono, p_Escherichia, p_bongori_rpoB, p_Senterica, p_bongori,
|
estrain@9
|
228 p_I, p_IIa, p_IIb, p_IIIa, p_IIIb, p_IV, p_VI, p_VII, p_VIII]
|
estrain@9
|
229 return locus_scores, coverages, total_reads
|
estrain@9
|
230
|
estrain@9
|
231
|
estrain@9
|
232 def report_taxon(locus_covs, average_read_length, number_of_reads):
|
estrain@9
|
233 list_taxa = [ 'Listeria ss', 'Listeria monocytogenes', 'Escherichia sp.', # noqa: E201
|
estrain@9
|
234 'Salmonella bongori (rpoB)', 'Salmonella enterica (rpoB)',
|
estrain@9
|
235 'Salmonella bongori (invA)', 'S. enterica subsp. enterica (invA)',
|
estrain@9
|
236 'S. enterica subsp. salamae (invA: clade a)', 'S. enterica subsp. salamae (invA: clade b)',
|
estrain@9
|
237 'S. enterica subsp. arizonae (invA)', 'S. enterica subsp. diarizonae (invA)',
|
estrain@9
|
238 'S. enterica subsp. houtenae (invA)', 'S. enterica subsp. indica (invA)',
|
estrain@9
|
239 'S. enterica subsp. VII (invA)', 'S. enterica subsp. salamae (invA: clade VIII)' ] # noqa: E202
|
estrain@9
|
240 if sum(locus_covs) < 1:
|
estrain@9
|
241 rpoB = ('No rpoB matches!', 0)
|
estrain@9
|
242 invA = ('No invA matches!', 0)
|
estrain@9
|
243 return rpoB, invA, 0.0
|
estrain@9
|
244 else:
|
estrain@9
|
245 # given list of scores get taxon
|
estrain@9
|
246 if sum(locus_covs[0:5]) > 0:
|
estrain@9
|
247 best_rpoB = max(range(len(locus_covs[1:5])), key=lambda x: locus_covs[1:5][x]) + 1
|
estrain@9
|
248 all_rpoB = max(range(len(locus_covs[0:5])), key=lambda x: locus_covs[0:5][x])
|
estrain@9
|
249 if (locus_covs[best_rpoB] != 0) & (all_rpoB == 0):
|
estrain@9
|
250 rpoB = (list_taxa[best_rpoB], locus_covs[best_rpoB])
|
estrain@9
|
251 elif (all_rpoB == 0) & (round(sum(locus_covs[1:5]), 1) < 1):
|
estrain@9
|
252 rpoB = (list_taxa[0], locus_covs[0])
|
estrain@9
|
253 else:
|
estrain@9
|
254 rpoB = (list_taxa[best_rpoB], locus_covs[best_rpoB])
|
estrain@9
|
255 else:
|
estrain@9
|
256 rpoB = ('No rpoB matches!', 0)
|
estrain@9
|
257 if sum(locus_covs[5:]) > 0:
|
estrain@9
|
258 best_invA = max(range(len(locus_covs[5:])), key=lambda x: locus_covs[5:][x]) + 5
|
estrain@9
|
259 invA = (list_taxa[best_invA], locus_covs[best_invA])
|
estrain@9
|
260 else:
|
estrain@9
|
261 invA = ('No invA matches!', 0)
|
estrain@9
|
262 if 'Listeria' in rpoB[0]:
|
estrain@9
|
263 return rpoB, invA, (average_read_length * number_of_reads) / 3000000
|
estrain@9
|
264 else:
|
estrain@9
|
265 return rpoB, invA, (average_read_length * number_of_reads) / 5000000
|
estrain@9
|
266
|
estrain@9
|
267
|
estrain@9
|
268 def main():
|
estrain@14
|
269 ex_dir = os.path.abspath(os.path.dirname(os.path.realpath(__file__)))
|
estrain@14
|
270 #ex_dir = os.path.dirname(os.path.realpath(__file__))
|
estrain@9
|
271 args = parse_args()
|
estrain@9
|
272 input_file = args.input_file
|
estrain@9
|
273 if input_file != 'None':
|
estrain@9
|
274 files = [input_file]
|
estrain@9
|
275 else:
|
estrain@9
|
276 extension = args.extension
|
estrain@9
|
277 inputdir = args.input_dir
|
estrain@9
|
278 files = [inputdir + '/' + f for f in os.listdir(inputdir) if f.endswith(extension)]
|
estrain@9
|
279 report = args.report
|
estrain@9
|
280 mode = args.mode
|
estrain@9
|
281 f_invA = open(ex_dir + "/invA_mers_dict", "rb")
|
estrain@9
|
282 sets_dict_invA = pickle.load(f_invA)
|
estrain@9
|
283 f_invA.close()
|
estrain@9
|
284 allmers = sets_dict_invA['allmers']
|
estrain@9
|
285 uniqmers_I = sets_dict_invA['uniqmers_I']
|
estrain@9
|
286 uniqmers_IIa = sets_dict_invA['uniqmers_IIa']
|
estrain@9
|
287 uniqmers_IIb = sets_dict_invA['uniqmers_IIb']
|
estrain@9
|
288 uniqmers_IIIa = sets_dict_invA['uniqmers_IIIa']
|
estrain@9
|
289 uniqmers_IIIb = sets_dict_invA['uniqmers_IIIb']
|
estrain@9
|
290 uniqmers_IV = sets_dict_invA['uniqmers_IV']
|
estrain@9
|
291 uniqmers_VI = sets_dict_invA['uniqmers_VI']
|
estrain@9
|
292 uniqmers_VII = sets_dict_invA['uniqmers_VII']
|
estrain@9
|
293 uniqmers_VIII = sets_dict_invA['uniqmers_VIII']
|
estrain@9
|
294 uniqmers_bongori = sets_dict_invA['uniqmers_bongori']
|
estrain@9
|
295
|
estrain@9
|
296 f = open(ex_dir + "/rpoB_mers_dict", "rb")
|
estrain@9
|
297 sets_dict = pickle.load(f)
|
estrain@9
|
298 f.close()
|
estrain@9
|
299
|
estrain@9
|
300 allmers_rpoB = sets_dict['allmers']
|
estrain@9
|
301 uniqmers_bongori_rpoB = sets_dict['uniqmers_bongori']
|
estrain@9
|
302 uniqmers_S_enterica_rpoB = sets_dict['uniqmers_S_enterica']
|
estrain@9
|
303 uniqmers_Escherichia_rpoB = sets_dict['uniqmers_Escherichia']
|
estrain@9
|
304 uniqmers_Listeria_ss_rpoB = sets_dict['uniqmers_Listeria_ss']
|
estrain@9
|
305 uniqmers_Lmono_rpoB = sets_dict['uniqmers_L_mono']
|
estrain@9
|
306 # todo: run kmer_lists() once, create list of tuples containing data to be used fro different reports
|
estrain@9
|
307 if report == 'taxonomy':
|
estrain@9
|
308 print('file\trpoB\tinvA\texpected coverage')
|
estrain@9
|
309 for f in files:
|
estrain@9
|
310 locus_scores, coverages, reads = kmer_lists(f, 27,
|
estrain@9
|
311 allmers, allmers_rpoB,
|
estrain@9
|
312 uniqmers_bongori,
|
estrain@9
|
313 uniqmers_I,
|
estrain@9
|
314 uniqmers_IIa,
|
estrain@9
|
315 uniqmers_IIb,
|
estrain@9
|
316 uniqmers_IIIa,
|
estrain@9
|
317 uniqmers_IIIb,
|
estrain@9
|
318 uniqmers_IV,
|
estrain@9
|
319 uniqmers_VI,
|
estrain@9
|
320 uniqmers_VII,
|
estrain@9
|
321 uniqmers_VIII,
|
estrain@9
|
322 uniqmers_bongori_rpoB,
|
estrain@9
|
323 uniqmers_S_enterica_rpoB,
|
estrain@9
|
324 uniqmers_Escherichia_rpoB,
|
estrain@9
|
325 uniqmers_Listeria_ss_rpoB,
|
estrain@9
|
326 uniqmers_Lmono_rpoB,
|
estrain@9
|
327 mode)
|
estrain@9
|
328 pretty_covs = [round(cov, 1) for cov in coverages]
|
estrain@9
|
329 report = report_taxon(pretty_covs, get_av_read_length(f), reads)
|
estrain@9
|
330 print(f.split('/')[-1] + '\t' + report[0][0] + '[' + str(report[0][1]) + ']' + '\t' + report[1][0] +
|
estrain@9
|
331 '[' + str(report[1][1]) + ']' +
|
estrain@9
|
332 '\t' + str(round(report[2], 1)))
|
estrain@9
|
333 else:
|
estrain@9
|
334 print(
|
estrain@9
|
335 'file\tListeria sensu stricto (rpoB)\tL. monocytogenes (rpoB)\tEscherichia spp. (rpoB)\tS. bongori (rpoB)\tS. enterica' + # noqa: E122
|
estrain@9
|
336 '(rpoB)\tS. bongori (invA)\tsubsp. I (invA)\tsubsp. II (clade a: invA)\tsubsp. II' + # noqa: E122
|
estrain@9
|
337 ' (clade b: invA)\tsubsp. IIIa (invA)\tsubsp. IIIb (invA)\tsubsp.IV (invA)\tsubsp. VI (invA)\tsubsp. VII (invA)' + # noqa: E122
|
estrain@9
|
338 '\tsubsp. II (clade VIII : invA)')
|
estrain@9
|
339 if report == 'percentage':
|
estrain@9
|
340 for f in files:
|
estrain@9
|
341 locus_scores, coverages, reads = kmer_lists(f, 27,
|
estrain@9
|
342 allmers, allmers_rpoB,
|
estrain@9
|
343 uniqmers_bongori,
|
estrain@9
|
344 uniqmers_I,
|
estrain@9
|
345 uniqmers_IIa,
|
estrain@9
|
346 uniqmers_IIb,
|
estrain@9
|
347 uniqmers_IIIa,
|
estrain@9
|
348 uniqmers_IIIb,
|
estrain@9
|
349 uniqmers_IV,
|
estrain@9
|
350 uniqmers_VI,
|
estrain@9
|
351 uniqmers_VII,
|
estrain@9
|
352 uniqmers_VIII,
|
estrain@9
|
353 uniqmers_bongori_rpoB,
|
estrain@9
|
354 uniqmers_S_enterica_rpoB,
|
estrain@9
|
355 uniqmers_Escherichia_rpoB,
|
estrain@9
|
356 uniqmers_Listeria_ss_rpoB,
|
estrain@9
|
357 uniqmers_Lmono_rpoB,
|
estrain@9
|
358 mode)
|
estrain@9
|
359 pretty_scores = [str(round(score)) for score in locus_scores]
|
estrain@9
|
360 print(f.split('/')[-1] + '\t' + '\t'.join(pretty_scores))
|
estrain@9
|
361 else:
|
estrain@9
|
362 for f in files:
|
estrain@9
|
363 locus_scores, coverages, reads = kmer_lists(f, 27,
|
estrain@9
|
364 allmers, allmers_rpoB,
|
estrain@9
|
365 uniqmers_bongori,
|
estrain@9
|
366 uniqmers_I,
|
estrain@9
|
367 uniqmers_IIa,
|
estrain@9
|
368 uniqmers_IIb,
|
estrain@9
|
369 uniqmers_IIIa,
|
estrain@9
|
370 uniqmers_IIIb,
|
estrain@9
|
371 uniqmers_IV,
|
estrain@9
|
372 uniqmers_VI,
|
estrain@9
|
373 uniqmers_VII,
|
estrain@9
|
374 uniqmers_VIII,
|
estrain@9
|
375 uniqmers_bongori_rpoB,
|
estrain@9
|
376 uniqmers_S_enterica_rpoB,
|
estrain@9
|
377 uniqmers_Escherichia_rpoB,
|
estrain@9
|
378 uniqmers_Listeria_ss_rpoB,
|
estrain@9
|
379 uniqmers_Lmono_rpoB,
|
estrain@9
|
380 mode)
|
estrain@9
|
381 pretty_covs = [str(round(cov, 1)) for cov in coverages]
|
estrain@9
|
382 print(f.split('/')[-1] + '\t' + '\t'.join(pretty_covs))
|
estrain@9
|
383
|
estrain@9
|
384
|
estrain@9
|
385 if __name__ == '__main__':
|
estrain@9
|
386 main()
|
estrain@9
|
387
|