comparison README.md @ 2:bf80acab3d66

Uploaded
author estrain
date Thu, 05 Sep 2019 09:51:13 -0400
parents
children
comparison
equal deleted inserted replaced
1:4effdffcabc3 2:bf80acab3d66
1 # SeqSero2 v1.0.1
2 Salmonella serotype prediction from genome sequencing data.
3
4 Online version: http://www.denglab.info/SeqSero2
5
6 # Introduction
7 SeqSero2 is a pipeline for Salmonella serotype prediction from raw sequencing reads or genome assemblies
8
9 # Dependencies
10 SeqSero has three workflows:
11
12 (A) Allele micro-assembly (default). This workflow takes raw reads as input and performs targeted assembly of serotype determinant alleles. Assembled alleles are used to predict serotype and flag potential inter-serotype contamination in sequencing data (i.e., presence of reads from multiple serotypes due to, for example, cross or carryover contamination during sequencing).
13
14 Allele micro-assembly workflow depends on:
15
16 1. Python 3;
17
18 2. Biopython 1.73;
19
20 3. [Burrows-Wheeler Aligner v0.7.12](http://sourceforge.net/projects/bio-bwa/files/);
21
22 4. [Samtools v1.8](http://sourceforge.net/projects/samtools/files/samtools/);
23
24 5. [NCBI BLAST v2.2.28+](https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE_TYPE=BlastDocs&DOC_TYPE=Download);
25
26 6. [SRA Toolkit v2.8.0](http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=software&m=software&s=software);
27
28 7. [SPAdes v3.9.0](http://bioinf.spbau.ru/spades);
29
30 8. [Bedtools v2.17.0](http://bedtools.readthedocs.io/en/latest/);
31
32 9. [SalmID v0.11](https://github.com/hcdenbakker/SalmID).
33
34
35 (B) Raw reads k-mer. This workflow takes raw reads as input and performs rapid serotype prediction based on unique k-mers of serotype determinants.
36
37 Raw reads k-mer workflow (originally SeqSeroK) depends on:
38
39 1. Python 3;
40 2. [SRA Toolkit](http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=software&m=software&s=software) (optional, just used to fastq-dump sra files);
41
42
43 (C) Genome assembly k-mer. This workflow takes genome assemblies as input and the rest of the workflow largely overlaps with the raw reads k-mer workflow
44
45
46 # Executing the code
47 Make sure all SeqSero2 and its dependency executables are added to your path (e.g. to ~/.bashrc). Then type SeqSero2_package.py to get detailed instructions.
48
49 Usage: SeqSero2_package.py
50
51 -m <string> (which workflow to apply, 'a'(raw reads allele micro-assembly), 'k'(raw reads and genome assembly k-mer), default=a)
52
53 -t <string> (input data type, '1' for interleaved paired-end reads, '2' for separated paired-end reads, '3' for single reads, '4' for genome assembly, '5' for nanopore fasta, '6'for nanopore fastq)
54
55 -i <file> (/path/to/input/file)
56
57 -p <int> (number of threads for allele mode, if p >4, only 4 threads will be used for assembly since the amount of extracted reads is small, default=1)
58
59 -b <string> (algorithms for bwa mapping for allele mode; 'mem' for mem, 'sam' for samse/sampe; default=mem; optional; for now we only optimized for default "mem" mode)
60
61 -d <string> (output directory name, if not set, the output directory would be 'SeqSero_result_'+time stamp+one random number)
62
63 -c <flag> (if '-c' was flagged, SeqSero2 will only output serotype prediction without the directory containing log files)
64
65 --check <flag> (use '--check' flag to check the required dependencies)
66
67 -v, --version (show program's version number and exit)
68
69
70 # Examples
71 Allele mode:
72
73 # Allele workflow ("-m a", default), for separated paired-end raw reads ("-t 2"), use 10 threads in mapping and assembly ("-p 10")
74 SeqSero2_package.py -p 10 -t 2 -i R1.fastq.gz R2.fastq.gz
75
76 K-mer mode:
77
78 # Raw reads k-mer ("-m k"), for separated paired-end raw reads ("-t 2")
79 SeqSero2_package.py -m k -t 2 -i R1.fastq.gz R2.fastq.gz
80
81 # Genome assembly k-mer ("-t 4", genome assemblies only predicted by the k-mer workflow, "-m k")
82 SeqSero2_package.py -m k -t 4 -i assembly.fasta
83
84 # Output
85 Upon executing the command, a directory named 'SeqSero_result_Time_your_run' will be created. Your result will be stored in 'Seqsero_result.txt' in that directory. And the assembled alleles can also be found in the directory if using "-m a" (allele mode).
86
87
88 # Citation
89 Zhang S, Yin Y, Jones MB, Zhang Z, Deatherage Kaiser BL, Dinsmore BA, Fitzgerald C, Fields PI, Deng X.
90 Salmonella serotype determination utilizing high-throughput genome sequencing data.
91 **J Clin Microbiol.** 2015 May;53(5):1685-92.[PMID:25762776](http://jcm.asm.org/content/early/2015/03/05/JCM.00323-15)