estrain@2: # SeqSero2 v1.0.1 estrain@2: Salmonella serotype prediction from genome sequencing data. estrain@2: estrain@2: Online version: http://www.denglab.info/SeqSero2 estrain@2: estrain@2: # Introduction estrain@2: SeqSero2 is a pipeline for Salmonella serotype prediction from raw sequencing reads or genome assemblies estrain@2: estrain@2: # Dependencies estrain@2: SeqSero has three workflows: estrain@2: estrain@2: (A) Allele micro-assembly (default). This workflow takes raw reads as input and performs targeted assembly of serotype determinant alleles. Assembled alleles are used to predict serotype and flag potential inter-serotype contamination in sequencing data (i.e., presence of reads from multiple serotypes due to, for example, cross or carryover contamination during sequencing). estrain@2: estrain@2: Allele micro-assembly workflow depends on: estrain@2: estrain@2: 1. Python 3; estrain@2: estrain@2: 2. Biopython 1.73; estrain@2: estrain@2: 3. [Burrows-Wheeler Aligner v0.7.12](http://sourceforge.net/projects/bio-bwa/files/); estrain@2: estrain@2: 4. [Samtools v1.8](http://sourceforge.net/projects/samtools/files/samtools/); estrain@2: estrain@2: 5. [NCBI BLAST v2.2.28+](https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE_TYPE=BlastDocs&DOC_TYPE=Download); estrain@2: estrain@2: 6. [SRA Toolkit v2.8.0](http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=software&m=software&s=software); estrain@2: estrain@2: 7. [SPAdes v3.9.0](http://bioinf.spbau.ru/spades); estrain@2: estrain@2: 8. [Bedtools v2.17.0](http://bedtools.readthedocs.io/en/latest/); estrain@2: estrain@2: 9. [SalmID v0.11](https://github.com/hcdenbakker/SalmID). estrain@2: estrain@2: estrain@2: (B) Raw reads k-mer. This workflow takes raw reads as input and performs rapid serotype prediction based on unique k-mers of serotype determinants. estrain@2: estrain@2: Raw reads k-mer workflow (originally SeqSeroK) depends on: estrain@2: estrain@2: 1. Python 3; estrain@2: 2. [SRA Toolkit](http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=software&m=software&s=software) (optional, just used to fastq-dump sra files); estrain@2: estrain@2: estrain@2: (C) Genome assembly k-mer. This workflow takes genome assemblies as input and the rest of the workflow largely overlaps with the raw reads k-mer workflow estrain@2: estrain@2: estrain@2: # Executing the code estrain@2: Make sure all SeqSero2 and its dependency executables are added to your path (e.g. to ~/.bashrc). Then type SeqSero2_package.py to get detailed instructions. estrain@2: estrain@2: Usage: SeqSero2_package.py estrain@2: estrain@2: -m (which workflow to apply, 'a'(raw reads allele micro-assembly), 'k'(raw reads and genome assembly k-mer), default=a) estrain@2: estrain@2: -t (input data type, '1' for interleaved paired-end reads, '2' for separated paired-end reads, '3' for single reads, '4' for genome assembly, '5' for nanopore fasta, '6'for nanopore fastq) estrain@2: estrain@2: -i (/path/to/input/file) estrain@2: estrain@2: -p (number of threads for allele mode, if p >4, only 4 threads will be used for assembly since the amount of extracted reads is small, default=1) estrain@2: estrain@2: -b (algorithms for bwa mapping for allele mode; 'mem' for mem, 'sam' for samse/sampe; default=mem; optional; for now we only optimized for default "mem" mode) estrain@2: estrain@2: -d (output directory name, if not set, the output directory would be 'SeqSero_result_'+time stamp+one random number) estrain@2: estrain@2: -c (if '-c' was flagged, SeqSero2 will only output serotype prediction without the directory containing log files) estrain@2: estrain@2: --check (use '--check' flag to check the required dependencies) estrain@2: estrain@2: -v, --version (show program's version number and exit) estrain@2: estrain@2: estrain@2: # Examples estrain@2: Allele mode: estrain@2: estrain@2: # Allele workflow ("-m a", default), for separated paired-end raw reads ("-t 2"), use 10 threads in mapping and assembly ("-p 10") estrain@2: SeqSero2_package.py -p 10 -t 2 -i R1.fastq.gz R2.fastq.gz estrain@2: estrain@2: K-mer mode: estrain@2: estrain@2: # Raw reads k-mer ("-m k"), for separated paired-end raw reads ("-t 2") estrain@2: SeqSero2_package.py -m k -t 2 -i R1.fastq.gz R2.fastq.gz estrain@2: estrain@2: # Genome assembly k-mer ("-t 4", genome assemblies only predicted by the k-mer workflow, "-m k") estrain@2: SeqSero2_package.py -m k -t 4 -i assembly.fasta estrain@2: estrain@2: # Output estrain@2: Upon executing the command, a directory named 'SeqSero_result_Time_your_run' will be created. Your result will be stored in 'Seqsero_result.txt' in that directory. And the assembled alleles can also be found in the directory if using "-m a" (allele mode). estrain@2: estrain@2: estrain@2: # Citation estrain@2: Zhang S, Yin Y, Jones MB, Zhang Z, Deatherage Kaiser BL, Dinsmore BA, Fitzgerald C, Fields PI, Deng X. estrain@2: Salmonella serotype determination utilizing high-throughput genome sequencing data. estrain@2: **J Clin Microbiol.** 2015 May;53(5):1685-92.[PMID:25762776](http://jcm.asm.org/content/early/2015/03/05/JCM.00323-15)