Mercurial > repos > jasmine_amir > snrqk2
comparison SNRQK2.py @ 0:2547394443a0
"planemo upload commit 8b4c59e523d28c30368aebfa0416d9ff8e27d257"
author | jasmine_amir |
---|---|
date | Thu, 09 Jun 2022 19:29:02 -0400 |
parents | |
children | 1ab67c0c0054 |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:2547394443a0 |
---|---|
1 #!/usr/bin/env python3 | |
2 # coding: utf-8 | |
3 ########################################################### | |
4 ########################################################### | |
5 ## Jasmine Amirzadegan | |
6 ## 2022 APRIL 14 | |
7 ########################################################### | |
8 ## SNRQC.py: | |
9 ## compute QC metrics specific to SSQuAWK v4 + workflows | |
10 ## usage: python SNRQC.py intermediateSSQuAWKfile.txt | |
11 ## python 3.7 | |
12 ########################################################### | |
13 import pandas as pd | |
14 import sys | |
15 | |
16 fn = sys.argv[1] | |
17 df = pd.read_csv(fn, sep = "\t", header = 0) | |
18 | |
19 | |
20 | |
21 if (df['Sample'].str.contains('negativeControl')).any(): | |
22 m = df.loc[ (df['Sample'].str.contains('negativeControl')) ] | |
23 noise = m['readsAlignPassFilt'] | |
24 SNR = [] | |
25 | |
26 for i in df['readsAlignPassFilt']: | |
27 SNR.append(i/noise.item()) | |
28 #[float(j) for j in SNR] | |
29 df['SNR'] = SNR | |
30 | |
31 else: | |
32 df['SNR'] = "NA" | |
33 | |
34 #print(df) | |
35 #fn1 = fn.split("/")[1] | |
36 #df.to_csv('test-data/snrqk_result' + fn1 + '.tsv', sep="\t") | |
37 df.to_csv('snrqk_result.tsv', sep='\t') |