Mercurial > repos > jpayne > cfsan_qaqc
view qa_core/gims_qa_kraken.py @ 2:021864b5a0a5 tip
planemo upload
author | jpayne |
---|---|
date | Fri, 11 May 2018 10:25:14 -0400 |
parents | dafec28bd37e |
children |
line wrap: on
line source
import csv from collections import Counter, OrderedDict from hashlib import md5 import os.path import tempfile from subprocess import check_call from gims_qa_tests import TaxTuple #from qa_core import present def run_kraken(sequenceFiles, database, kraken_options=dict(preload=None, threads=1)): "kraken options should be supplied as a dict to kraken_options; give a None value for valueless options" #hash the kraken db files md5hash = md5() #os.path.walk(database, lambda arg, dirname, files: [md5hash.update(open(os.path.join(database, dirname, f), 'rb').read()) for f in files], None) md5hash.update(open(os.path.join(database, 'database.kdb'), 'rb').read()) db_hash = md5hash.hexdigest() with tempfile.NamedTemporaryFile('rU') as kraken_out: with tempfile.NamedTemporaryFile() as seq_data: #cat all the files together check_call("cat {files} > {seq_data.name}".format( files = " ".join([present(f) for f in sequenceFiles]), seq_data = seq_data ), shell=True) def make_option(key, value): if value is not None: return "--{} {}".format(key, value) return "--{}".format(key) #build options options = " ".join([make_option(k,v) for k,v in kraken_options.items()]) #call kraken check_call("kraken {options} " "--db {database} " "--gzip-compressed " "--fastq {seq_data.name} " "--output {kraken_out.name}".format(**locals()), shell=True) counts = Counter() with tempfile.NamedTemporaryFile('rU') as kraken_report: check_call("kraken-translate --db {database} {kraken_out.name} > {kraken_report.name}".format(**locals()), shell=True) rows = csv.reader(kraken_report, delimiter='\t') for seq_id, taxon in rows: counts[taxon] += 1.0 counts["total"] += 1.0 #clean up all the temp files by releasing contexts top_results = counts.most_common(6) #total, plus five most common taxa total, total_count = top_results.pop(0) top_hit, top_hit_count = top_results.pop(0) next_hits = [h[0].replace(';', ' ') for h in top_results] next_hit_counts = [h[1] for h in top_results] top_hit_frac = top_hit_count / total_count next_hit_frac = [h / total_count for h in next_hit_counts] return TaxTuple(top_hit.replace(';', ' '), top_hit_frac, next_hits, next_hit_frac, db_hash) def runKrakenSeqtest(sequenceFiles,database): krakenoutoutpath = "/home/charles.strittmatter/output/kraken/" w = datetime.datetime.now() krakenout = "krakenOut" + w.strftime("%Y-%m-%d-%H-%M") krakenreport = "" + krakenoutoutpath + "kraken_report_" + w.strftime("%Y-%m-%d-%H-%M") sequenceFiles[0] sequenceFiles[1] os.path.abspath(os.path.join("Input", sequenceFileName[0])) command = "kraken --preload " command += "--db " + database + ' ' #if len(fastqPaths) > 1: command += "--paired " + os.path.abspath(os.path.join("sample/Input", sequenceFiles[0])) + " " + os.path.abspath(os.path.join("sample/Input", sequenceFiles[1])) # command += ' '.join(fastqPaths) command += " --output " + "/home/charles.strittmatter/output/kraken/" + krakenout print command check_call(command, shell=True) print "%s -- Kraken called..." % datetime.datetime.now() kraken_report_cmd = "kraken-report --db " kraken_report_cmd += database kraken_report_cmd += " " + krakenoutoutpath + krakenout kraken_report_cmd += " > " + krakenreport print kraken_report_cmd check_call(kraken_report_cmd, shell=True) parsed_kraken_rpt = "cat "+ krakenreport + " | grep \"$(printf '\tS\t')\" | grep -v '-' | head -n 5" kraken_rpt_lines = check_output(parsed_kraken_rpt, shell=True) split_kraken_rpt_line = re.split("\t|\n", kraken_rpt_lines) print "=====================" + krakenreport + "==========================" print split_kraken_rpt_line split_kraken_rpt_length = len(split_kraken_rpt_line) print split_kraken_rpt_line[5]+" "+split_kraken_rpt_line[0]+" "+split_kraken_rpt_line[4] taxLen = 6; taxIdIdx = 4; outputFile = "/home/charles.strittmatter/output/kraken/" + w.strftime("%Y-%m-%d-%H-%M") + '_metadata_kraken.tsv' metadata = "Platform Run asm_stats_contig_n50 asm_stats_length_bp asm_stats_n_contig attribute_package bioproject_acc bioproject_center bioproject_title biosample_acc collected_by sample_name scientific_name serovar sra_center strain sub_species tax-id" splitMetadata = metadata.split("\t") for i in range(0, len(split_kraken_rpt_line)): if split_kraken_rpt_line[i] == '': print "don't add to the metadata...split_kraken_rpt_line.pop(i)" elif i%(taxLen) == taxLen-1: print "i is "+str(i)+"under this condition: i%(taxLen) == taxLen-1" splitMetadata.insert(len(splitMetadata)-3, split_kraken_rpt_line[i].strip()) elif i%(taxLen) == taxIdIdx: print "i is "+str(i)+"under this condition: i%(taxLen) == taxIdIdx" splitMetadata.insert(len(splitMetadata)-1, split_kraken_rpt_line[i].strip()) elif i%(taxLen) == 0: print "i is "+str(i)+"under this condition: i%(taxLen) == 0" splitMetadata.insert(len(splitMetadata)-1, split_kraken_rpt_line[i].strip()) splitMetadataLength = len(splitMetadata) first_kraken_percentage = splitMetadataLength-15 with open(outputFile, 'wb') as f: #writer = csv.writer(f, delimiter="\t") # print splitMetadata for i in xrange(splitMetadataLength-3, first_kraken_percentage-1, -3): print "Split metadata of i "+splitMetadata[i] for j in xrange(splitMetadataLength-3, first_kraken_percentage-1, -3): if float(splitMetadata[j]) > float(splitMetadata[i]): print "i: "+str(i)+" and j: "+str(j) print "swapping "+splitMetadata[i]+" with "+splitMetadata[j] old_hit_org = splitMetadata[i-1] old_hit_percentage = splitMetadata[i] old_hit_tx_id = splitMetadata[i+1] splitMetadata[i-1] = splitMetadata[j-1] splitMetadata[i] = splitMetadata[j] splitMetadata[i+1] = splitMetadata[j+1] splitMetadata[j-1] = old_hit_org splitMetadata[j] = old_hit_percentage splitMetadata[j+1] = old_hit_tx_id df = pandas.DataFrame(splitMetadata) print df # Here aree dataframe collumns for ! print df.iat[0,0] print df.iat[1,0] print df.iat[3,0] print df.iat[4,0] print df.iat[6,0] print df.iat[7,0] print df.iat[9,0] print df.iat[10,0] OrganismOne = df.iat[0,0] OrganismTwo = df.iat[3,0] OrganismThree = df.iat[6,0] OrganismFour = df.iat[9,0] OrganismOnePer = df.iat[1,0] OrganismTwoPer = df.iat[4,0] OrganismThreePer = df.iat[7,0] OrganismFourPer = df.iat[10,0] df = {'OrganismOne':OrganismOne, 'OrganismTwo':OrganismTwo, 'OrganismThree':OrganismThree, 'OrganismFour':OrganismFour, 'OrganismOne%':OrganismOnePer, 'OrganismTwo%':OrganismTwoPer, 'OrganismThree%':OrganismThreePer, 'OrganismFour%':OrganismFourPer } #Clean up files command = "" command += "rm " + krakenoutoutpath + krakenout print command check_call(command, shell=True) command = "" command += "rm " + outputFile print command return pandas.DataFrame(df, index=[0])