jpayne@7
|
1 # SeqSero2 v1.0.0
|
jpayne@7
|
2 Salmonella serotype prediction from genome sequencing data
|
jpayne@1
|
3
|
jpayne@1
|
4 # Introduction
|
jpayne@7
|
5 SeqSero2 is a pipeline for Salmonella serotype prediction from raw sequencing reads or genome assemblies
|
jpayne@1
|
6
|
jpayne@1
|
7 # Dependencies
|
jpayne@7
|
8 SeqSero has three workflows:
|
jpayne@1
|
9
|
jpayne@7
|
10 (A) Allele micro-assembly (default). This workflow takes raw reads as input and performs targeted assembly of serotype determinant alleles. Assembled alleles are used to predict serotype and flag potential inter-serotype contamination in sequencing data (i.e., presence of reads from multiple serotypes due to, for example, cross or carryover contamination during sequencing).
|
jpayne@1
|
11
|
jpayne@7
|
12 Allele micro-assembly workflow depends on:
|
jpayne@1
|
13
|
jpayne@7
|
14 1. Python 3;
|
jpayne@7
|
15
|
jpayne@7
|
16 2. [Burrows-Wheeler Aligner v0.7.12](http://sourceforge.net/projects/bio-bwa/files/);
|
jpayne@7
|
17
|
jpayne@7
|
18 3. [Samtools v1.8](http://sourceforge.net/projects/samtools/files/samtools/);
|
jpayne@7
|
19
|
jpayne@7
|
20 4. [NCBI BLAST v2.2.28+](https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE_TYPE=BlastDocs&DOC_TYPE=Download);
|
jpayne@7
|
21
|
jpayne@7
|
22 5. [SRA Toolkit v2.8.0](http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=software&m=software&s=software);
|
jpayne@7
|
23
|
jpayne@7
|
24 6. [SPAdes v3.9.0](http://bioinf.spbau.ru/spades);
|
jpayne@7
|
25
|
jpayne@7
|
26 7. [Bedtools v2.17.0](http://bedtools.readthedocs.io/en/latest/);
|
jpayne@7
|
27
|
jpayne@7
|
28 8. [SalmID v0.11](https://github.com/hcdenbakker/SalmID).
|
jpayne@7
|
29
|
jpayne@7
|
30
|
jpayne@7
|
31 (B) Raw reads k-mer. This workflow takes raw reads as input and performs rapid serotype prediction based on unique k-mers of serotype determinants.
|
jpayne@7
|
32
|
jpayne@7
|
33 Raw reads k-mer workflow (originally SeqSeroK) depends on:
|
jpayne@1
|
34
|
jpayne@1
|
35 1. Python 3;
|
jpayne@1
|
36 2. [SRA Toolkit](http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=software&m=software&s=software) (optional, just used to fastq-dump sra files);
|
jpayne@1
|
37
|
jpayne@1
|
38
|
jpayne@7
|
39 (C) Genome assembly k-mer. This workflow takes genome assemblies as input and the rest of the workflow largely overlaps with the raw reads k-mer workflow
|
jpayne@1
|
40
|
jpayne@1
|
41
|
jpayne@1
|
42 # Executing the code
|
jpayne@1
|
43 Make sure all SeqSero2 and its dependency executables are added to your path (e.g. to ~/.bashrc). Then type SeqSero2_package.py to get detailed instructions.
|
jpayne@1
|
44
|
jpayne@1
|
45 Usage: SeqSero2_package.py
|
jpayne@1
|
46
|
jpayne@7
|
47 -m <string> (which workflow to apply, 'a'(raw reads allele micro-assembly), 'k'(raw reads and genome assembly k-mer), default=a)
|
jpayne@1
|
48
|
jpayne@1
|
49 -t <string> (input data type, '1' for interleaved paired-end reads, '2' for separated paired-end reads, '3' for single reads, '4' for genome assembly, '5' for nanopore fasta, '6'for nanopore fastq)
|
jpayne@1
|
50
|
jpayne@1
|
51 -i <file> (/path/to/input/file)
|
jpayne@1
|
52
|
jpayne@1
|
53 -p <int> (number of threads for allele mode, if p >4, only 4 threads will be used for assembly since the amount of extracted reads is small, default=1)
|
jpayne@1
|
54
|
jpayne@1
|
55 -b <string> (algorithms for bwa mapping for allele mode; 'mem' for mem, 'sam' for samse/sampe; default=mem; optional; for now we only optimized for default "mem" mode)
|
jpayne@1
|
56
|
jpayne@1
|
57 -d <string> (output directory name, if not set, the output directory would be 'SeqSero_result_'+time stamp+one random number)
|
jpayne@1
|
58
|
jpayne@7
|
59 -c <flag> (if '-c' was flagged, SeqSero2 will only output serotype prediction without the directory containing log files)
|
jpayne@1
|
60
|
jpayne@1
|
61
|
jpayne@1
|
62 # Examples
|
jpayne@7
|
63 Allele mode:
|
jpayne@7
|
64
|
jpayne@7
|
65 # Allele workflow ("-m a", default), for separated paired-end raw reads ("-t 2"), use 10 threads in mapping and assembly ("-p 10")
|
jpayne@7
|
66 SeqSero2_package.py -p 10 -t 2 -i R1.fastq.gz R2.fastq.gz
|
jpayne@7
|
67
|
jpayne@1
|
68 K-mer mode:
|
jpayne@1
|
69
|
jpayne@7
|
70 # Raw reads k-mer ("-m k"), for separated paired-end raw reads ("-t 2")
|
jpayne@7
|
71 SeqSero2_package.py -m k -t 2 -i R1.fastq.gz R2.fastq.gz
|
jpayne@1
|
72
|
jpayne@7
|
73 # Genome assembly k-mer ("-t 4", genome assemblies only predicted by the k-mer workflow, "-m k")
|
jpayne@7
|
74 SeqSero2_package.py -m k -t 4 -i assembly.fasta
|
jpayne@1
|
75
|
jpayne@1
|
76 # Output
|
jpayne@1
|
77 Upon executing the command, a directory named 'SeqSero_result_Time_your_run' will be created. Your result will be stored in 'Seqsero_result.txt' in that directory. And the assembled alleles can also be found in the directory if using "-m a" (allele mode).
|
jpayne@1
|
78
|
jpayne@1
|
79
|
jpayne@1
|
80 # Citation
|
jpayne@1
|
81 Zhang S, Yin Y, Jones MB, Zhang Z, Deatherage Kaiser BL, Dinsmore BA, Fitzgerald C, Fields PI, Deng X.
|
jpayne@1
|
82 Salmonella serotype determination utilizing high-throughput genome sequencing data.
|
jpayne@1
|
83 **J Clin Microbiol.** 2015 May;53(5):1685-92.[PMID:25762776](http://jcm.asm.org/content/early/2015/03/05/JCM.00323-15)
|