diff SeqSero2/SeqSero2_package.py @ 1:fae43708974d

planemo upload
author jpayne
date Fri, 09 Nov 2018 11:30:45 -0500
parents
children b82e5f3c9187
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/SeqSero2/SeqSero2_package.py	Fri Nov 09 11:30:45 2018 -0500
@@ -0,0 +1,1281 @@
+#!/usr/bin/env python3
+
+import sys
+import time
+import random
+import os
+import subprocess
+import gzip
+import io
+import pickle
+import argparse
+import itertools
+from distutils.version import LooseVersion
+
+from collections import OrderedDict
+from csv import DictWriter
+
+dirpath = os.path.abspath(os.path.dirname(os.path.realpath(__file__)))
+
+### SeqSero Kmer
+def parse_args():
+    "Parse the input arguments, use '-h' for help."
+    parser = argparse.ArgumentParser(usage='SeqSero2_package.py -t <data_type> -m <mode> -i <input_data> [-p <number of threads>] [-b <BWA_algorithm>]\n\nDevelopper: Shaokang Zhang (zskzsk@uga.edu), Hendrik C Den-Bakker (Hendrik.DenBakker@uga.edu) and Xiangyu Deng (xdeng@uga.edu)\n\nContact email:seqsero@gmail.com')#add "-m <data_type>" in future
+    parser.add_argument("-i",nargs="+",help="<string>: path/to/input_data")
+    parser.add_argument("-t",choices=['1','2','3','4','5','6'],help="<int>: '1'(pair-end reads, interleaved),'2'(pair-end reads, seperated),'3'(single-end reads), '4'(assembly),'5'(nanopore fasta),'6'(nanopore fastq)")
+    parser.add_argument("-b",choices=['sam','mem'],default="mem",help="<string>: mode for mapping, 'sam'(bwa samse/sampe), 'mem'(bwa mem), default=mem") 
+    parser.add_argument("-p",default="1",help="<int>: threads used for mapping mode, if p>4, only 4 threads will be used for assembly, default=1") 
+    parser.add_argument("-m",choices=['k','a'],default="k",help="<string>: 'k'(kmer mode), 'a'(allele mode), default=k") 
+    parser.add_argument("-d",help="<string>: output directory name, if not set, the output directory would be 'SeqSero_result_'+time stamp+one random number")
+    parser.add_argument("-c",action="store_true",help="<flag>: if '-c' was flagged, SeqSero2 will use clean mode and only output serotyping prediction, the directory containing log files will be deleted")
+    return parser.parse_args()
+
+def reverse_complement(sequence):
+    complement = {
+        'A': 'T',
+        'C': 'G',
+        'G': 'C',
+        'T': 'A',
+        'N': 'N',
+        'M': 'K',
+        'R': 'Y',
+        'W': 'W',
+        'S': 'S',
+        'Y': 'R',
+        'K': 'M',
+        'V': 'B',
+        'H': 'D',
+        'D': 'H',
+        'B': 'V'
+    }
+    return "".join(complement[base] for base in reversed(sequence))
+
+
+def createKmerDict_reads(list_of_strings, kmer):
+    kmer_table = {}
+    for string in list_of_strings:
+        sequence = string.strip('\n')
+        for i in range(len(sequence) - kmer + 1):
+            new_mer = sequence[i:i + kmer].upper()
+            new_mer_rc = reverse_complement(new_mer)
+            if new_mer in kmer_table:
+                kmer_table[new_mer.upper()] += 1
+            else:
+                kmer_table[new_mer.upper()] = 1
+            if new_mer_rc in kmer_table:
+                kmer_table[new_mer_rc.upper()] += 1
+            else:
+                kmer_table[new_mer_rc.upper()] = 1
+    return kmer_table
+
+
+def multifasta_dict(multifasta):
+    multifasta_list = [
+        line.strip() for line in open(multifasta, 'r') if len(line.strip()) > 0
+    ]
+    headers = [i for i in multifasta_list if i[0] == '>']
+    multifasta_dict = {}
+    for h in headers:
+        start = multifasta_list.index(h)
+        for element in multifasta_list[start + 1:]:
+            if element[0] == '>':
+                break
+            else:
+                if h[1:] in multifasta_dict:
+                    multifasta_dict[h[1:]] += element
+                else:
+                    multifasta_dict[h[1:]] = element
+    return multifasta_dict
+
+
+def multifasta_single_string(multifasta):
+    multifasta_list = [
+        line.strip() for line in open(multifasta, 'r')
+        if (len(line.strip()) > 0) and (line.strip()[0] != '>')
+    ]
+    return ''.join(multifasta_list)
+
+
+def chunk_a_long_sequence(long_sequence, chunk_size=60):
+    chunk_list = []
+    steps = len(long_sequence) // 60  #how many chunks
+    for i in range(steps):
+        chunk_list.append(long_sequence[i * chunk_size:(i + 1) * chunk_size])
+    chunk_list.append(long_sequence[steps * chunk_size:len(long_sequence)])
+    return chunk_list
+
+
+def target_multifasta_kmerizer(multifasta, k, kmerDict):
+    forward_length = 300  #if find the target, put forward 300 bases
+    reverse_length = 2200  #if find the target, put backward 2200 bases
+    chunk_size = 60  #it will firstly chunk the single long sequence to multiple smaller sequences, it controls the size of those smaller sequences
+    target_mers = []
+    long_single_string = multifasta_single_string(multifasta)
+    multifasta_list = chunk_a_long_sequence(long_single_string, chunk_size)
+    unit_length = len(multifasta_list[0])
+    forward_lines = int(forward_length / unit_length) + 1
+    reverse_lines = int(forward_length / unit_length) + 1
+    start_num = 0
+    end_num = 0
+    for i in range(len(multifasta_list)):
+        if i not in range(start_num, end_num):  #avoid computational repetition
+            line = multifasta_list[i]
+            start = int((len(line) - k) // 2)
+            s1 = line[start:k + start]
+            if s1 in kmerDict:  #detect it is a potential read or not (use the middle part)
+                if i - forward_lines >= 0:
+                    start_num = i - forward_lines
+                else:
+                    start_num = 0
+                if i + reverse_lines <= len(multifasta_list) - 1:
+                    end_num = i + reverse_lines
+                else:
+                    end_num = len(multifasta_list) - 1
+                target_list = [
+                    x.strip() for x in multifasta_list[start_num:end_num]
+                ]
+                target_line = "".join(target_list)
+                target_mers += [
+                    k1 for k1 in createKmerDict_reads([str(target_line)], k)
+                ]  ##changed k to k1, just want to avoid the mixes of this "k" (kmer) to the "k" above (kmer length)
+        else:
+            pass
+    return set(target_mers)
+
+
+def target_read_kmerizer(file, k, kmerDict):
+    i = 1
+    n_reads = 0
+    total_coverage = 0
+    target_mers = []
+    if file.endswith(".gz"):
+        file_content = io.BufferedReader(gzip.open(file))
+    else:
+        file_content = open(file, "r").readlines()
+    for line in file_content:
+        start = int((len(line) - k) // 2)
+        if i % 4 == 2:
+            if file.endswith(".gz"):
+                s1 = line[start:k + start].decode()
+                line = line.decode()
+            else:
+                s1 = line[start:k + start]
+            if s1 in kmerDict:  #detect it is a potential read or not (use the middle part)
+                n_reads += 1
+                total_coverage += len(line)
+                target_mers += [
+                    k1 for k1 in createKmerDict_reads([str(line)], k)
+                ]  #changed k to k1, just want to avoid the mixes of this "k" (kmer) to the "k" above (kmer length)
+        i += 1
+        if total_coverage >= 4000000:
+            break
+    return set(target_mers)
+
+
+def minion_fasta_kmerizer(file, k, kmerDict):
+    i = 1
+    n_reads = 0
+    total_coverage = 0
+    target_mers = {}
+    for line in open(file):
+        if i % 2 == 0:
+            for kmer, rc_kmer in kmers(line.strip().upper(), k):
+                if (kmer in kmerDict) or (rc_kmer in kmerDict):
+                    if kmer in target_mers:
+                        target_mers[kmer] += 1
+                    else:
+                        target_mers[kmer] = 1
+                    if rc_kmer in target_mers:
+                        target_mers[rc_kmer] += 1
+                    else:
+                        target_mers[rc_kmer] = 1
+        i += 1
+    return set([h for h in target_mers])
+
+
+def minion_fastq_kmerizer(file, k, kmerDict):
+    i = 1
+    n_reads = 0
+    total_coverage = 0
+    target_mers = {}
+    for line in open(file):
+        if i % 4 == 2:
+            for kmer, rc_kmer in kmers(line.strip().upper(), k):
+                if (kmer in kmerDict) or (rc_kmer in kmerDict):
+                    if kmer in target_mers:
+                        target_mers[kmer] += 1
+                    else:
+                        target_mers[kmer] = 1
+                    if rc_kmer in target_mers:
+                        target_mers[rc_kmer] += 1
+                    else:
+                        target_mers[rc_kmer] = 1
+        i += 1
+    return set([h for h in target_mers])
+
+
+def multifasta_single_string2(multifasta):
+    single_string = ''
+    with open(multifasta, 'r') as f:
+        for line in f:
+            if line.strip()[0] == '>':
+                pass
+            else:
+                single_string += line.strip()
+    return single_string
+
+
+def kmers(seq, k):
+    rev_comp = reverse_complement(seq)
+    for start in range(1, len(seq) - k + 1):
+        yield seq[start:start + k], rev_comp[-(start + k):-start]
+
+
+def multifasta_to_kmers_dict(multifasta,k_size):#used to create database kmer set
+    multi_seq_dict = multifasta_dict(multifasta)
+    lib_dict = {}
+    for h in multi_seq_dict:
+        lib_dict[h] = set(
+            [k for k in createKmerDict_reads([multi_seq_dict[h]], k_size)])
+    return lib_dict
+
+
+def Combine(b, c):
+    fliC_combinations = []
+    fliC_combinations.append(",".join(c))
+    temp_combinations = []
+    for i in range(len(b)):
+        for x in itertools.combinations(b, i + 1):
+            temp_combinations.append(",".join(x))
+    for x in temp_combinations:
+        temp = []
+        for y in c:
+            temp.append(y)
+        temp.append(x)
+        temp = ",".join(temp)
+        temp = temp.split(",")
+        temp.sort()
+        temp = ",".join(temp)
+        fliC_combinations.append(temp)
+    return fliC_combinations
+
+
+def seqsero_from_formula_to_serotypes(Otype, fliC, fljB, special_gene_list,subspecies):
+    #like test_output_06012017.txt
+    #can add more varialbles like sdf-type, sub-species-type in future (we can conclude it into a special-gene-list)
+    from Initial_Conditions import phase1
+    from Initial_Conditions import phase2
+    from Initial_Conditions import phaseO
+    from Initial_Conditions import sero
+    from Initial_Conditions import subs
+    seronames = []
+    seronames_none_subspecies=[]
+    for i in range(len(phase1)):
+        fliC_combine = []
+        fljB_combine = []
+        if phaseO[i] == Otype: # no VII in KW, but it's there
+            ### for fliC, detect every possible combinations to avoid the effect of "["
+            if phase1[i].count("[") == 0:
+                fliC_combine.append(phase1[i])
+            elif phase1[i].count("[") >= 1:
+                c = []
+                b = []
+                if phase1[i][0] == "[" and phase1[i][-1] == "]" and phase1[i].count(
+                        "[") == 1:
+                    content = phase1[i].replace("[", "").replace("]", "")
+                    fliC_combine.append(content)
+                    fliC_combine.append("-")
+                else:
+                    for x in phase1[i].split(","):
+                        if "[" in x:
+                            b.append(x.replace("[", "").replace("]", ""))
+                        else:
+                            c.append(x)
+                    fliC_combine = Combine(
+                        b, c
+                    )  #Combine will offer every possible combinations of the formula, like f,[g],t: f,t  f,g,t
+            ### end of fliC "[" detect
+            ### for fljB, detect every possible combinations to avoid the effect of "["
+            if phase2[i].count("[") == 0:
+                fljB_combine.append(phase2[i])
+            elif phase2[i].count("[") >= 1:
+                d = []
+                e = []
+                if phase2[i][0] == "[" and phase2[i][-1] == "]" and phase2[i].count(
+                        "[") == 1:
+                    content = phase2[i].replace("[", "").replace("]", "")
+                    fljB_combine.append(content)
+                    fljB_combine.append("-")
+                else:
+                    for x in phase2[i].split(","):
+                        if "[" in x:
+                            d.append(x.replace("[", "").replace("]", ""))
+                        else:
+                            e.append(x)
+                    fljB_combine = Combine(d, e)
+            ### end of fljB "[" detect
+            new_fliC = fliC.split(
+                ","
+            )  #because some antigen like r,[i] not follow alphabetical order, so use this one to judge and can avoid missings
+            new_fliC.sort()
+            new_fliC = ",".join(new_fliC)
+            new_fljB = fljB.split(",")
+            new_fljB.sort()
+            new_fljB = ",".join(new_fljB)
+            if (new_fliC in fliC_combine
+                    or fliC in fliC_combine) and (new_fljB in fljB_combine
+                                                  or fljB in fljB_combine):
+                if subs[i] == subspecies:
+                  seronames.append(sero[i])
+                seronames_none_subspecies.append(sero[i])
+    #analyze seronames
+    subspecies_pointer=""
+    if len(seronames) == 0 and len(seronames_none_subspecies)!=0:
+      seronames=seronames_none_subspecies
+      subspecies_pointer="1"
+    if len(seronames) == 0:
+        seronames = [
+            "N/A (The predicted antigenic profile does not exist in the White-Kauffmann-Le Minor scheme)"
+        ]
+    star = ""
+    star_line = ""
+    if len(seronames) > 1:  #there are two possible predictions for serotypes
+        star = "*"
+        star_line = "The predicted serotypes share the same general formula:\t" + Otype + ":" + fliC + ":" + fljB + "\n"
+    if subspecies_pointer=="1" and len(seronames_none_subspecies)!=0:
+      star="*"
+      star_line="The formula with this subspieces prediction can't get a serotype in KW manual, and the serotyping prediction was made without considering it."+star_line
+    if  Otype=="":
+      Otype="-"
+    predict_form = Otype + ":" + fliC + ":" + fljB
+    predict_sero = (" or ").join(seronames)
+    ###special test for Enteritidis
+    if predict_form == "9:g,m:-":
+        sdf = "-"
+        for x in special_gene_list:
+            if x.startswith("sdf"):
+                sdf = "+"
+        predict_form = predict_form + " Sdf prediction:" + sdf
+        if sdf == "-":
+            star = "*"
+            star_line = "Additional characterization is necessary to assign a serotype to this strain.  Commonly circulating strains of serotype Enteritidis are sdf+, although sdf- strains of serotype Enteritidis are known to exist. Serotype Gallinarum is typically sdf- but should be quite rare. Sdf- strains of serotype Enteritidis and serotype Gallinarum can be differentiated by phenotypic profile or genetic criteria.\n"
+            predict_sero = "Gallinarum/Enteritidis sdf -"
+    ###end of special test for Enteritidis
+    elif predict_form == "4:i:-":
+        predict_sero = "potential monophasic variant of Typhimurium"
+    elif predict_form == "4:r:-":
+        predict_sero = "potential monophasic variant of Heidelberg"
+    elif predict_form == "4:b:-":
+        predict_sero = "potential monophasic variant of Paratyphi B"
+    elif predict_form == "8:e,h:1,2":
+        predict_sero = "Newport"
+        star = "*"
+        star_line = "Serotype Bardo shares the same antigenic profile with Newport, but Bardo is exceedingly rare."
+    claim = "The serotype(s) is/are the only serotype(s) with the indicated antigenic profile currently recognized in the Kauffmann White Scheme.  New serotypes can emerge and the possibility exists that this antigenic profile may emerge in a different subspecies.  Identification of strains to the subspecies level should accompany serotype determination; the same antigenic profile in different subspecies is considered different serotypes.\n"
+    if "N/A" in predict_sero:
+        claim = ""
+    #special test for Typhimurium
+    if "Typhimurium" in predict_sero or predict_form == "4:i:-":
+        normal = 0
+        mutation = 0
+        for x in special_gene_list:
+            if "oafA-O-4_full" in x:
+                normal = float(special_gene_list[x])
+            elif "oafA-O-4_5-" in x:
+                mutation = float(special_gene_list[x])
+        if normal > mutation:
+            pass
+        elif normal < mutation:
+            predict_sero = predict_sero.strip() + "(O5-)"
+            star = "*"
+            star_line = "Detected the deletion of O5-."
+        else:
+            pass
+    #special test for Paratyphi B
+    if "Paratyphi B" in predict_sero or predict_form == "4:b:-":
+        normal = 0
+        mutation = 0
+        for x in special_gene_list:
+            if "gntR-family-regulatory-protein_dt-positive" in x:
+                normal = float(special_gene_list[x])
+            elif "gntR-family-regulatory-protein_dt-negative" in x:
+                mutation = float(special_gene_list[x])
+        #print(normal,mutation)
+        if normal > mutation:
+            predict_sero = predict_sero.strip() + "(dt+)"
+            star = "*"
+            star_line = "Didn't detect the SNP for dt- which means this isolate is a Paratyphi B variant L(+) tartrate(+)."
+        elif normal < mutation:
+            predict_sero = predict_sero.strip() + "(dt-)"
+            star = "*"
+            star_line = "Detected the SNP for dt- which means this isolate is a systemic pathovar of Paratyphi B."
+        else:
+            star = "*"
+            star_line = "Failed to detect the SNP for dt-, can't decide it's a Paratyphi B variant L(+) tartrate(+) or not."
+    #special test for O13,22 and O13,23
+    if Otype=="13":
+      #ex_dir = os.path.dirname(os.path.realpath(__file__))
+      f = open(dirpath + '/special.pickle', 'rb')
+      special = pickle.load(f)
+      O22_O23=special['O22_O23']
+      if predict_sero.split(" or ")[0] in O22_O23[-1]:
+        O22_score=0
+        O23_score=0
+        for x in special_gene_list:
+            if "O:22" in x:
+                O22_score = O22_score+float(special_gene_list[x])
+            elif "O:23" in x:
+                O23_score = O23_score+float(special_gene_list[x])
+        #print(O22_score,O23_score)
+        for z in O22_O23[0]:
+          if predict_sero.split(" or ")[0] in z:
+            if O22_score > O23_score:
+              star = "*"
+              star_line = "Detected O22 specific genes to further differenciate '"+predict_sero+"'."
+              predict_sero = z[0]
+            elif O22_score < O23_score:
+              star = "*"
+              star_line = "Detected O23 specific genes to further differenciate '"+predict_sero+"'."
+              predict_sero = z[1]
+            else:
+              star = "*"
+              star_line = "Fail to detect O22 and O23 differences."
+    #special test for O6,8 
+    merge_O68_list=["Blockley","Bovismorbificans","Hadar","Litchfield","Manhattan","Muenchen"]
+    for x in merge_O68_list:
+      if x in predict_sero:
+        predict_sero=x
+        star=""
+        star_line=""
+    #special test for Montevideo; most of them are monophasic
+    if "Montevideo" in predict_sero and "1,2,7" in predict_form:
+      star="*"
+      star_line="Montevideo is almost always monophasic, having an antigen called for the fljB position may be a result of Salmonella-Salmonella contamination."
+    return predict_form, predict_sero, star, star_line, claim
+### End of SeqSero Kmer part
+
+### Begin of SeqSero2 allele prediction and output
+def xml_parse_score_comparision_seqsero(xmlfile):
+  #used to do seqsero xml analysis
+  from Bio.Blast import NCBIXML
+  handle=open(xmlfile)
+  handle=NCBIXML.parse(handle)
+  handle=list(handle)
+  List=[]
+  List_score=[]
+  List_ids=[]
+  List_query_region=[]
+  for i in range(len(handle)):
+    if len(handle[i].alignments)>0:
+      for j in range(len(handle[i].alignments)):
+        score=0
+        ids=0
+        cover_region=set() #fixed problem that repeated calculation leading percentage > 1
+        List.append(handle[i].query.strip()+"___"+handle[i].alignments[j].hit_def)
+        for z in range(len(handle[i].alignments[j].hsps)):
+          hsp=handle[i].alignments[j].hsps[z]
+          temp=set(range(hsp.query_start,hsp.query_end))
+          if len(cover_region)==0:
+            cover_region=cover_region|temp
+            fraction=1
+          else:
+            fraction=1-len(cover_region&temp)/float(len(temp))
+            cover_region=cover_region|temp
+          if "last" in handle[i].query or "first" in handle[i].query:
+            score+=hsp.bits*fraction
+            ids+=float(hsp.identities)/handle[i].query_length*fraction
+          else:
+            score+=hsp.bits*fraction
+            ids+=float(hsp.identities)/handle[i].query_length*fraction
+        List_score.append(score)
+        List_ids.append(ids)
+        List_query_region.append(cover_region)
+  temp=zip(List,List_score,List_ids,List_query_region)
+  Final_list=sorted(temp, key=lambda d:d[1], reverse = True)
+  return Final_list
+
+
+def Uniq(L,sort_on_fre="none"): #return the uniq list and the count number
+  Old=L
+  L.sort()
+  L = [L[i] for i in range(len(L)) if L[i] not in L[:i]]
+  count=[]
+  for j in range(len(L)):
+    y=0
+    for x in Old:
+      if L[j]==x:
+        y+=1
+    count.append(y)
+  if sort_on_fre!="none":
+    d=zip(*sorted(zip(count, L)))
+    L=d[1]
+    count=d[0]
+  return (L,count)
+
+def judge_fliC_or_fljB_from_head_tail_for_one_contig(nodes_vs_score_list):
+  #used to predict it's fliC or fljB for one contig, based on tail and head score, but output the score difference,if it is very small, then not reliable, use blast score for whole contig to test
+  #this is mainly used for 
+  a=nodes_vs_score_list
+  fliC_score=0
+  fljB_score=0
+  for z in a:
+    if "fliC" in z[0]:
+      fliC_score+=z[1]
+    elif "fljB" in z[0]:
+      fljB_score+=z[1]
+  if fliC_score>=fljB_score:
+    role="fliC"
+  else:
+    role="fljB"
+  return (role,abs(fliC_score-fljB_score))
+
+def judge_fliC_or_fljB_from_whole_contig_blast_score_ranking(node_name,Final_list,Final_list_passed):
+  #used to predict contig is fliC or fljB, if the differnce score value on above head_and_tail is less than 10 (quite small)
+  #also used when no head or tail got blasted score for the contig
+  role=""
+  for z in Final_list_passed:
+    if node_name in z[0]:
+      role=z[0].split("_")[0]
+      break
+  return role
+
+def fliC_or_fljB_judge_from_head_tail_sequence(nodes_list,tail_head_list,Final_list,Final_list_passed):
+  #nodes_list is the c created by c,d=Uniq(nodes) in below function
+  first_target=""
+  role_list=[]
+  for x in nodes_list:
+    a=[]
+    role=""
+    for y in tail_head_list:
+      if x in y[0]:
+        a.append(y)
+    if len(a)==4:
+      role,diff=judge_fliC_or_fljB_from_head_tail_for_one_contig(a)
+      if diff<20:
+        role=judge_fliC_or_fljB_from_whole_contig_blast_score_ranking(x,Final_list,Final_list_passed)
+    elif len(a)==3:
+      ###however, if the one with highest score is the fewer one, compare their accumulation score
+      role,diff=judge_fliC_or_fljB_from_head_tail_for_one_contig(a)
+      if diff<20:
+        role=judge_fliC_or_fljB_from_whole_contig_blast_score_ranking(x,Final_list,Final_list_passed)
+      ###end of above score comparison
+    elif len(a)==2:
+      #must on same node, if not, then decide with unit blast score, blast-score/length_of_special_sequence(30 or 37)
+      temp=[]
+      for z in a:
+        temp.append(z[0].split("_")[0])
+      m,n=Uniq(temp)#should only have one choice, but weird situation might occur too
+      if len(m)==1:
+        pass
+      else:
+        pass
+      role,diff=judge_fliC_or_fljB_from_head_tail_for_one_contig(a)
+      if diff<20:
+        role=judge_fliC_or_fljB_from_whole_contig_blast_score_ranking(x,Final_list,Final_list_passed)
+        ###need to desgin a algorithm to guess most possible situation for nodes_list, See the situations of test evaluation
+    elif len(a)==1:
+      #that one
+      role,diff=judge_fliC_or_fljB_from_head_tail_for_one_contig(a)
+      if diff<20:
+        role=judge_fliC_or_fljB_from_whole_contig_blast_score_ranking(x,Final_list,Final_list_passed)
+      #need to evaluate, in future, may set up a cut-off, if not met, then just find Final_list_passed best match,like when "a==0"
+    else:#a==0
+      #use Final_list_passed best match
+      for z in Final_list_passed:
+        if x in z[0]:
+          role=z[0].split("_")[0]
+          break
+    #print x,role,len(a)
+    role_list.append((role,x))
+  if len(role_list)==2:
+    if role_list[0][0]==role_list[1][0]:#this is the most cocmmon error, two antigen were assigned to same phase
+      #just use score to do a final test
+      role_list=[]
+      for x in nodes_list: 
+        role=judge_fliC_or_fljB_from_whole_contig_blast_score_ranking(x,Final_list,Final_list_passed)
+        role_list.append((role,x))
+  return role_list
+
+def decide_contig_roles_for_H_antigen(Final_list,Final_list_passed):
+  #used to decide which contig is FliC and which one is fljB
+  contigs=[]
+  nodes=[]
+  for x in Final_list_passed:
+    if x[0].startswith("fl") and "last" not in x[0] and "first" not in x[0]:
+      nodes.append(x[0].split("___")[1].strip())
+  c,d=Uniq(nodes)#c is node_list
+  #print c
+  tail_head_list=[x for x in Final_list if ("last" in x[0] or "first" in x[0])]
+  roles=fliC_or_fljB_judge_from_head_tail_sequence(c,tail_head_list,Final_list,Final_list_passed)
+  return roles
+
+def decide_O_type_and_get_special_genes(Final_list,Final_list_passed):
+  #decide O based on Final_list
+  O_choice="?"
+  O_list=[]
+  special_genes={}
+  nodes=[]
+  for x in Final_list_passed:
+    if x[0].startswith("O-"):
+      nodes.append(x[0].split("___")[1].strip())
+    elif not x[0].startswith("fl"):
+      special_genes[x[0]]=x[2]#08172018, x[2] changed from x[-1]
+  #print "special_genes:",special_genes
+  c,d=Uniq(nodes)
+  #print "potential O antigen contig",c
+  final_O=[]
+  O_nodes_list=[]
+  for x in c:#c is the list for contigs
+    temp=0
+    for y in Final_list_passed:
+      if x in y[0] and y[0].startswith("O-"):
+        final_O.append(y)
+        break
+  ### O contig has the problem of two genes on same contig, so do additional test
+  potenial_new_gene=""
+  for x in final_O:
+    pointer=0 #for genes merged or not
+    #not consider O-1,3,19_not_in_3,10, too short compared with others
+    if "O-1,3,19_not_in_3,10" not in x[0] and int(x[0].split("__")[1].split("___")[0])*x[2]+850 <= int(x[0].split("length_")[1].split("_")[0]):#gene length << contig length; for now give 300*2 (for secureity can use 400*2) as flank region
+      pointer=x[0].split("___")[1].strip()#store the contig name
+      print(pointer)
+    if pointer!=0:#it has potential merge event
+      for y in Final_list:
+        if pointer in y[0] and y not in final_O and (y[1]>=int(y[0].split("__")[1].split("___")[0])*1.5 or (y[1]>=int(y[0].split("__")[1].split("___")[0])*y[2] and y[1]>=400)):#that's a realtively strict filter now; if passed, it has merge event and add one more to final_O
+          potenial_new_gene=y
+          #print(potenial_new_gene)
+          break
+  if potenial_new_gene!="":
+    print("two differnt genes in same contig, fix it for O antigen")
+    print(potenial_new_gene[:3])
+    final_O.append(potenial_new_gene)
+  ### end of the two genes on same contig test
+  final_O=sorted(final_O,key=lambda x: x[2], reverse=True)#sorted
+  if len(final_O)==0 or (len(final_O)==1 and "O-1,3,19_not_in_3,10" in final_O[0][0]):
+    #print "$$$No Otype, due to no hit"#may need to be changed
+    O_choice="-"
+  else:
+    highest_O_coverage=max([float(x[0].split("_cov_")[-1]) for x in final_O if "O-1,3,19_not_in_3,10" not in x[0]])
+    O_list=[]
+    O_list_less_contamination=[]
+    for x in final_O:
+      if not "O-1,3,19_not_in_3,10__130" in x[0]:#O-1,3,19_not_in_3,10 is too small, which may affect further analysis; to avoid contamination affect, use 0.15 of highest coverage as cut-off
+        O_list.append(x[0].split("__")[0])
+        O_nodes_list.append(x[0].split("___")[1])
+        if float(x[0].split("_cov_")[-1])>highest_O_coverage*0.15:
+          O_list_less_contamination.append(x[0].split("__")[0])
+    ### special test for O9,46 and O3,10 family
+    if ("O-9,46_wbaV" in O_list or "O-9,46_wbaV-from-II-9,12:z29:1,5-SRR1346254" in O_list) and O_list_less_contamination[0].startswith("O-9,"):#not sure should use and float(O9_wbaV)/float(num_1) > 0.1
+      if "O-9,46_wzy" in O_list:#and float(O946_wzy)/float(num_1) > 0.1
+        O_choice="O-9,46"
+        #print "$$$Most possilble Otype:  O-9,46"
+      elif "O-9,46,27_partial_wzy" in O_list:#and float(O94627)/float(num_1) > 0.1
+        O_choice="O-9,46,27"
+        #print "$$$Most possilble Otype:  O-9,46,27"
+      else:
+        O_choice="O-9"#next, detect O9 vs O2?
+        O2=0
+        O9=0
+        for z in special_genes:
+          if "tyr-O-9" in z:
+            O9=special_genes[z]
+          elif "tyr-O-2" in z:
+            O2=special_genes[z]
+        if O2>O9:
+          O_choice="O-2"
+        elif O2<O9:
+          pass
+        else:
+          pass
+          #print "$$$No suitable one, because can't distinct it's O-9 or O-2, but O-9 has a more possibility."
+    elif ("O-3,10_wzx" in O_list) and ("O-9,46_wzy" in O_list) and (O_list[0].startswith("O-3,10") or O_list_less_contamination[0].startswith("O-9,46_wzy")):#and float(O310_wzx)/float(num_1) > 0.1 and float(O946_wzy)/float(num_1) > 0.1
+      if "O-3,10_not_in_1,3,19" in O_list:#and float(O310_no_1319)/float(num_1) > 0.1
+        O_choice="O-3,10"
+        #print "$$$Most possilble Otype:  O-3,10 (contain O-3,10_not_in_1,3,19)"
+      else:
+        O_choice="O-1,3,19"
+        #print "$$$Most possilble Otype:  O-1,3,19 (not contain O-3,10_not_in_1,3,19)"
+    ### end of special test for O9,46 and O3,10 family
+    else:
+      try: 
+        max_score=0
+        for x in final_O:
+          if x[2]>=max_score and float(x[0].split("_cov_")[-1])>highest_O_coverage*0.15:#use x[2],08172018, the "coverage identity = cover_length * identity"; also meet coverage threshold
+            max_score=x[2]#change from x[-1] to x[2],08172018
+            O_choice=x[0].split("_")[0]
+        if O_choice=="O-1,3,19":
+          O_choice=final_O[1][0].split("_")[0]
+        #print "$$$Most possilble Otype: ",O_choice
+      except:
+        pass
+        #print "$$$No suitable Otype, or failure of mapping (please check the quality of raw reads)"
+  #print "O:",O_choice,O_nodes_list
+  Otypes=[]
+  for x in O_list:
+    if x!="O-1,3,19_not_in_3,10":
+      if "O-9,46_" not in x:
+        Otypes.append(x.split("_")[0])
+      else:
+        Otypes.append(x.split("-from")[0])#O-9,46_wbaV-from-II-9,12:z29:1,5-SRR1346254
+  #Otypes=[x.split("_")[0] for x in O_list if x!="O-1,3,19_not_in_3,10"]
+  Otypes_uniq,Otypes_fre=Uniq(Otypes)
+  contamination_O=""
+  if O_choice=="O-9,46,27" or O_choice=="O-3,10" or O_choice=="O-1,3,19":
+    if len(Otypes_uniq)>2:
+      contamination_O="potential contamination from O antigen signals"
+  else:
+    if len(Otypes_uniq)>1:
+      if O_choice=="O-4" and len(Otypes_uniq)==2 and "O-9,46,27" in Otypes_uniq: #for special 4,12,27 case such as Bredeney and Schwarzengrund
+        contamination_O=""
+      elif O_choice=="O-9,46" and len(Otypes_uniq)==2 and "O-9,46_wbaV" in Otypes_uniq and "O-9,46_wzy" in Otypes_uniq: #for special 4,12,27 case such as Bredeney and Schwarzengrund
+        contamination_O=""
+      else:
+        contamination_O="potential contamination from O antigen signals"
+  return O_choice,O_nodes_list,special_genes,final_O,contamination_O
+### End of SeqSero2 allele prediction and output
+
+def get_input_files(make_dir,input_file,data_type,dirpath):
+  #tell input files from datatype
+  #"<int>: '1'(pair-end reads, interleaved),'2'(pair-end reads, seperated),'3'(single-end reads), '4'(assembly),'5'(nanopore fasta),'6'(nanopore fastq)"
+  for_fq=""
+  rev_fq=""
+  old_dir = os.getcwd()
+  os.chdir(make_dir)
+  if data_type=="1":
+    input_file=input_file[0].split("/")[-1]
+    if input_file.endswith(".sra"):
+      subprocess.check_output("fastq-dump --split-files "+input_file,shell=True, stderr=subprocess.STDOUT)
+      for_fq=input_file.replace(".sra","_1.fastq")
+      rev_fq=input_file.replace(".sra","_2.fastq")
+    else:
+      core_id=input_file.split(".fastq")[0].split(".fq")[0]
+      for_fq=core_id+"_1.fastq"
+      rev_fq=core_id+"_2.fastq"
+      if input_file.endswith(".gz"):
+        subprocess.check_output("gzip -dc "+input_file+" | "+dirpath+"/deinterleave_fastq.sh "+for_fq+" "+rev_fq,shell=True, stderr=subprocess.STDOUT)
+      else:
+        subprocess.check_output("cat "+input_file+" | "+dirpath+"/deinterleave_fastq.sh "+for_fq+" "+rev_fq,shell=True, stderr=subprocess.STDOUT)
+  elif data_type=="2":
+    for_fq=input_file[0].split("/")[-1]
+    rev_fq=input_file[1].split("/")[-1]
+  elif data_type=="3":
+    input_file=input_file[0].split("/")[-1]
+    if input_file.endswith(".sra"):
+      subprocess.check_output("fastq-dump --split-files "+input_file,shell=True, stderr=subprocess.STDOUT)
+      for_fq=input_file.replace(".sra","_1.fastq")
+    else:
+      for_fq=input_file
+  elif data_type in ["4","5","6"]:
+    for_fq=input_file[0].split("/")[-1]
+  os.chdir(old_dir)
+  return for_fq,rev_fq
+
+def predict_O_and_H_types(Final_list,Final_list_passed):
+  #get O and H types from Final_list from blast parsing; allele mode
+  fliC_choice="-"
+  fljB_choice="-"
+  fliC_contig="NA"
+  fljB_contig="NA"
+  fliC_region=set([0])
+  fljB_region=set([0,])
+  fliC_length=0 #can be changed to coverage in future
+  fljB_length=0 #can be changed to coverage in future
+  O_choice="-"#no need to decide O contig for now, should be only one
+  O_choice,O_nodes,special_gene_list,O_nodes_roles,contamination_O=decide_O_type_and_get_special_genes(Final_list,Final_list_passed)#decide the O antigen type and also return special-gene-list for further identification
+  O_choice=O_choice.split("-")[-1].strip()
+  if (O_choice=="1,3,19" and len(O_nodes_roles)==1 and "1,3,19" in O_nodes_roles[0][0]) or O_choice=="":
+    O_choice="-"
+  H_contig_roles=decide_contig_roles_for_H_antigen(Final_list,Final_list_passed)#decide the H antigen contig is fliC or fljB
+  log_file=open("SeqSero_log.txt","a")
+  print("O_contigs:")
+  log_file.write("O_contigs:\n")
+  for x in O_nodes_roles:
+    if "O-1,3,19_not_in_3,10" not in x[0]:#O-1,3,19_not_in_3,10 is just a small size marker
+      print(x[0].split("___")[-1],x[0].split("__")[0],"blast score:",x[1],"identity%:",str(round(x[2]*100,2))+"%",str(min(x[-1]))+" to "+str(max(x[-1])))
+      log_file.write(x[0].split("___")[-1]+" "+x[0].split("__")[0]+" "+"blast score: "+str(x[1])+"identity%:"+str(round(x[2]*100,2))+"% "+str(min(x[-1]))+" to "+str(max(x[-1]))+"\n")
+  if len(H_contig_roles)!=0:
+    highest_H_coverage=max([float(x[1].split("_cov_")[-1]) for x in H_contig_roles]) #less than highest*0.1 would be regarded as contamination and noises, they will still be considered in contamination detection and logs, but not used as final serotype output
+  else:
+    highest_H_coverage=0
+  for x in H_contig_roles:
+    #if multiple choices, temporately select the one with longest length for now, will revise in further change
+    if "fliC" == x[0] and int(x[1].split("_")[3])>=fliC_length and x[1] not in O_nodes and float(x[1].split("_cov_")[-1])>highest_H_coverage*0.13:#remember to avoid the effect of O-type contig, so should not in O_node list
+      fliC_contig=x[1]
+      fliC_length=int(x[1].split("_")[3])
+    elif "fljB" == x[0] and int(x[1].split("_")[3])>=fljB_length and x[1] not in O_nodes and float(x[1].split("_cov_")[-1])>highest_H_coverage*0.13:
+      fljB_contig=x[1]
+      fljB_length=int(x[1].split("_")[3])
+  for x in Final_list_passed:
+    if fliC_choice=="-" and "fliC_" in x[0] and fliC_contig in x[0]:
+      fliC_choice=x[0].split("_")[1]
+    elif fljB_choice=="-" and "fljB_" in x[0] and fljB_contig in x[0]:
+      fljB_choice=x[0].split("_")[1]
+    elif fliC_choice!="-" and fljB_choice!="-":
+      break
+  #now remove contigs not in middle core part
+  first_allele="NA"
+  first_allele_percentage=0
+  for x in Final_list:
+    if x[0].startswith("fliC") or x[0].startswith("fljB"):
+      first_allele=x[0].split("__")[0] #used to filter those un-middle contigs
+      first_allele_percentage=x[2]
+      break 
+  additional_contigs=[]
+  for x in Final_list:
+    if first_allele in x[0]:
+      if (fliC_contig == x[0].split("___")[-1]): 
+        fliC_region=x[3]
+      elif fljB_contig!="NA" and (fljB_contig == x[0].split("___")[-1]):
+        fljB_region=x[3]
+      else:
+        if x[1]*1.1>int(x[0].split("___")[1].split("_")[3]):#loose threshold by multiplying 1.1
+          additional_contigs.append(x)
+        #else:
+          #print x[:3]
+  #we can just use the fljB region (or fliC depends on size), no matter set() or contain a large locations (without middle part); however, if none of them is fully assembled, use 500 and 1200 as conservative cut-off
+  if first_allele_percentage>0.9:
+    if len(fliC_region)>len(fljB_region) and (max(fljB_region)-min(fljB_region))>1000:
+      target_region=fljB_region|(fliC_region-set(range(min(fljB_region),max(fljB_region)))) #fljB_region|(fliC_region-set(range(min(fljB_region),max(fljB_region))))
+    elif len(fliC_region)<len(fljB_region) and (max(fliC_region)-min(fliC_region))>1000:
+      target_region=fliC_region|(fljB_region-set(range(min(fliC_region),max(fliC_region))))  #fljB_region|(fliC_region-set(range(min(fljB_region),max(fljB_region))))
+    else:
+      target_region=set()#doesn't do anything
+  else:
+    target_region=set()#doesn't do anything
+  #print(target_region)
+  #print(additional_contigs)
+  target_region2=set(list(range(0,525))+list(range(1200,1700)))#I found to use 500 to 1200 as special region would be best
+  target_region=target_region2|target_region
+  for x in additional_contigs:
+    removal=0
+    contig_length=int(x[0].split("___")[1].split("length_")[-1].split("_")[0])
+    if fljB_contig not in x[0] and fliC_contig not in x[0] and len(target_region&x[3])/float(len(x[3]))>0.65 and contig_length*0.5<len(x[3])<contig_length*1.5: #consider length and alignment length for now, but very loose,0.5 and 1.5 as cut-off
+      removal=1
+    else:
+      if first_allele_percentage > 0.9 and float(x[0].split("__")[1].split("___")[0])*x[2]/len(x[-1])>0.96:#if high similiarity with middle part of first allele (first allele >0.9, already cover middle part)
+        removal=1
+      else:
+        pass
+    if removal==1:
+      for y in H_contig_roles:
+        if y[1] in x[0]:
+          H_contig_roles.remove(y)
+    else:
+      pass
+      #print(x[:3],contig_length,len(target_region&x[3])/float(len(x[3])),contig_length*0.5,len(x[3]),contig_length*1.5)
+  #end of removing none-middle contigs
+  print("H_contigs:")
+  log_file.write("H_contigs:\n")
+  H_contig_stat=[]
+  H1_cont_stat={}
+  H2_cont_stat={}
+  for i in range(len(H_contig_roles)):
+    x=H_contig_roles[i]
+    a=0
+    for y in Final_list_passed:
+      if x[1] in y[0] and y[0].startswith(x[0]):
+        if "first" in y[0] or "last" in y[0]: #this is the final filter to decide it's fliC or fljB, if can't pass, then can't decide
+          for y in Final_list_passed: #it's impossible to has the "first" and "last" allele as prediction, so re-do it
+            if x[1] in y[0]:#it's very possible to be third phase allele, so no need to make it must be fliC or fljB
+              print(x[1],"can't_decide_fliC_or_fljB",y[0].split("_")[1],"blast_score:",y[1],"identity%:",str(round(y[2]*100,2))+"%",str(min(y[-1]))+" to "+str(max(y[-1])))
+              log_file.write(x[1]+" "+x[0]+" "+y[0].split("_")[1]+" "+"blast_score: "+str(y[1])+" identity%:"+str(round(y[2]*100,2))+"% "+str(min(y[-1]))+" to "+str(max(y[-1]))+"\n")
+              H_contig_roles[i]="can't decide fliC or fljB, may be third phase"
+              break
+        else:
+          print(x[1],x[0],y[0].split("_")[1],"blast_score:",y[1],"identity%:",str(round(y[2]*100,2))+"%",str(min(y[-1]))+" to "+str(max(y[-1])))
+          log_file.write(x[1]+" "+x[0]+" "+y[0].split("_")[1]+" "+"blast_score: "+str(y[1])+" identity%:"+str(round(y[2]*100,2))+"% "+str(min(y[-1]))+" to "+str(max(y[-1]))+"\n")
+        if x[0]=="fliC":
+          if y[0].split("_")[1] not in H1_cont_stat:
+            H1_cont_stat[y[0].split("_")[1]]=y[2]
+          else:
+            H1_cont_stat[y[0].split("_")[1]]+=y[2]
+        if x[0]=="fljB":
+          if y[0].split("_")[1] not in H2_cont_stat:
+            H2_cont_stat[y[0].split("_")[1]]=y[2]
+          else:
+            H2_cont_stat[y[0].split("_")[1]]+=y[2]
+        break
+  #detect contaminations
+  #print(H1_cont_stat)
+  #print(H2_cont_stat)
+  H1_cont_stat_list=[x for x in H1_cont_stat if H1_cont_stat[x]>0.2]
+  H2_cont_stat_list=[x for x in H2_cont_stat if H2_cont_stat[x]>0.2]
+  contamination_H=""
+  if len(H1_cont_stat_list)>1 or len(H2_cont_stat_list)>1:
+    contamination_H="potential contamination from H antigen signals"
+  elif len(H2_cont_stat_list)==1 and fljB_contig=="NA":
+    contamination_H="potential contamination from H antigen signals, uncommon weak fljB signals detected"
+  print(contamination_O)
+  print(contamination_H)
+  log_file.write(contamination_O+"\n")
+  log_file.write(contamination_H+"\n")
+  log_file.close()
+  return O_choice,fliC_choice,fljB_choice,special_gene_list,contamination_O,contamination_H
+
+def get_input_K(input_file,lib_dict,data_type,k_size):
+  #kmer mode; get input_Ks from dict and data_type
+  kmers = []
+  for h in lib_dict:
+      kmers += lib_dict[h]
+  if data_type == '4':
+      input_Ks = target_multifasta_kmerizer(input_file, k_size, set(kmers))
+  elif data_type == '1' or data_type == '2' or data_type == '3':#set it for now, will change later
+      input_Ks = target_read_kmerizer(input_file, k_size, set(kmers))
+  elif data_type == '5':#minion_2d_fasta
+      input_Ks = minion_fasta_kmerizer(input_file, k_size, set(kmers))
+  if data_type == '6':#minion_2d_fastq
+      input_Ks = minion_fastq_kmerizer(input_file, k_size, set(kmers))
+  return input_Ks
+
+def get_kmer_dict(lib_dict,input_Ks):
+  #kmer mode; get predicted types
+  O_dict = {}
+  H_dict = {}
+  Special_dict = {}
+  for h in lib_dict:
+      score = (len(lib_dict[h] & input_Ks) / len(lib_dict[h])) * 100
+      if score > 1:  # Arbitrary cut-off for similarity score very low but seems necessary to detect O-3,10 in some cases
+          if h.startswith('O-') and score > 25:
+              O_dict[h] = score
+          if h.startswith('fl') and score > 40:
+              H_dict[h] = score
+          if (h[:2] != 'fl') and (h[:2] != 'O-'):
+              Special_dict[h] = score
+  return O_dict,H_dict,Special_dict
+
+def call_O_and_H_type(O_dict,H_dict,Special_dict,make_dir):
+  log_file=open("SeqSero_log.txt","a")
+  log_file.write("O_scores:\n")
+  #call O:
+  highest_O = '-'
+  if len(O_dict) == 0:
+      pass
+  else:
+      for x in O_dict:
+          log_file.write(x+"\t"+str(O_dict[x])+"\n")
+      if ('O-9,46_wbaV__1002' in O_dict and O_dict['O-9,46_wbaV__1002']>70) or ("O-9,46_wbaV-from-II-9,12:z29:1,5-SRR1346254__1002" in O_dict and O_dict['O-9,46_wbaV-from-II-9,12:z29:1,5-SRR1346254__1002']>70):  # not sure should use and float(O9_wbaV)/float(num_1) > 0.1
+          if 'O-9,46_wzy__1191' in O_dict:  # and float(O946_wzy)/float(num_1) > 0.1
+              highest_O = "O-9,46"
+          elif "O-9,46,27_partial_wzy__1019" in O_dict:  # and float(O94627)/float(num_1) > 0.1
+              highest_O = "O-9,46,27"
+          else:
+              highest_O = "O-9"  # next, detect O9 vs O2?
+              O2 = 0
+              O9 = 0
+              for z in Special_dict:
+                  if "tyr-O-9" in z:
+                      O9 = float(Special_dict[z])
+                  if "tyr-O-2" in z:
+                      O2 = float(Special_dict[z])
+              if O2 > O9:
+                  highest_O = "O-2"
+      elif ("O-3,10_wzx__1539" in O_dict) and (
+              "O-9,46_wzy__1191" in O_dict
+      ):  # and float(O310_wzx)/float(num_1) > 0.1 and float(O946_wzy)/float(num_1) > 0.1
+          if "O-3,10_not_in_1,3,19__1519" in O_dict:  # and float(O310_no_1319)/float(num_1) > 0.1
+              highest_O = "O-3,10"
+          else:
+              highest_O = "O-1,3,19"
+      ### end of special test for O9,46 and O3,10 family
+      else:
+          try:
+              max_score = 0
+              for x in O_dict:
+                  if float(O_dict[x]) >= max_score:
+                      max_score = float(O_dict[x])
+                      highest_O = x.split("_")[0]
+              if highest_O == "O-1,3,19":
+                  highest_O = '-'
+                  max_score = 0
+                  for x in O_dict:
+                      if x == 'O-1,3,19_not_in_3,10__130':
+                          pass
+                      else:
+                          if float(O_dict[x]) >= max_score:
+                              max_score = float(O_dict[x])
+                              highest_O = x.split("_")[0]
+          except:
+              pass
+  #call_fliC:
+  if len(H_dict)!=0:
+    highest_H_score_both_BC=H_dict[max(H_dict.keys(), key=(lambda k: H_dict[k]))] #used to detect whether fljB existed or not
+  else:
+    highest_H_score_both_BC=0
+  highest_fliC = '-'
+  highest_fliC_raw = '-'
+  highest_Score = 0
+  log_file.write("\nH_scores:\n")
+  for s in H_dict:
+      log_file.write(s+"\t"+str(H_dict[s])+"\n")
+      if s.startswith('fliC'):
+          if float(H_dict[s]) > highest_Score:
+              highest_fliC = s.split('_')[1]
+              highest_fliC_raw = s
+              highest_Score = float(H_dict[s])
+  #call_fljB
+  highest_fljB = '-'
+  highest_fljB_raw = '-'
+  highest_Score = 0
+  for s in H_dict:
+      if s.startswith('fljB'):
+          if float(H_dict[s]) > highest_Score and float(H_dict[s]) > highest_H_score_both_BC * 0.65: #fljB is special, so use highest_H_score_both_BC to give a general estimate of coverage, currently 0.65 seems pretty good; the reason use a high (0.65) is some fliC and fljB shared with each other
+              highest_fljB = s.split('_')[1]
+              highest_fljB_raw = s
+              highest_Score = float(H_dict[s])
+  log_file.write("\nSpecial_scores:\n")
+  for s in Special_dict:
+    log_file.write(s+"\t"+str(Special_dict[s])+"\n")
+  log_file.close()
+  return highest_O,highest_fliC,highest_fljB
+
+def get_temp_file_names(for_fq,rev_fq):
+  #seqsero2 -a; get temp file names
+  sam=for_fq+".sam"
+  bam=for_fq+".bam"
+  sorted_bam=for_fq+"_sorted.bam"
+  mapped_fq1=for_fq+"_mapped.fq"
+  mapped_fq2=rev_fq+"_mapped.fq"
+  combined_fq=for_fq+"_combined.fq"
+  for_sai=for_fq+".sai"
+  rev_sai=rev_fq+".sai"
+  return sam,bam,sorted_bam,mapped_fq1,mapped_fq2,combined_fq,for_sai,rev_sai
+
+def map_and_sort(threads,database,fnameA,fnameB,sam,bam,for_sai,rev_sai,sorted_bam,mapping_mode):
+  #seqsero2 -a; do mapping and sort
+  print("building database...")
+  subprocess.check_output("bwa index "+database,shell=True, stderr=subprocess.STDOUT)
+  print("mapping...")
+  if mapping_mode=="mem":
+    subprocess.check_output("bwa mem -k 17 -t "+threads+" "+database+" "+fnameA+" "+fnameB+" > "+sam,shell=True, stderr=subprocess.STDOUT)
+  elif mapping_mode=="sam":
+    if fnameB!="":
+      subprocess.check_output("bwa aln -t "+threads+" "+database+" "+fnameA+" > "+for_sai,shell=True, stderr=subprocess.STDOUT)
+      subprocess.check_output("bwa aln -t "+threads+" "+database+" "+fnameB+" > "+rev_sai,shell=True, stderr=subprocess.STDOUT)
+      subprocess.check_output("bwa sampe "+database+" "+for_sai+" "+ rev_sai+" "+fnameA+" "+fnameB+" > "+sam,shell=True, stderr=subprocess.STDOUT)
+    else:
+      subprocess.check_output("bwa aln -t "+threads+" "+database+" "+fnameA+" > "+for_sai,shell=True, stderr=subprocess.STDOUT)
+      subprocess.check_output("bwa samse "+database+" "+for_sai+" "+for_fq+" > "+sam, stderr=subprocess.STDOUT)
+  subprocess.check_output("samtools view -@ "+threads+" -F 4 -Sh "+sam+" > "+bam,shell=True, stderr=subprocess.STDOUT)
+  ### check the version of samtools then use differnt commands
+  samtools_version=subprocess.Popen(["samtools"],stdout=subprocess.PIPE,stderr=subprocess.PIPE)
+  out, err = samtools_version.communicate()
+  version = str(err).split("ersion:")[1].strip().split(" ")[0].strip()
+  print("check samtools version:",version)
+  ### end of samtools version check and its analysis
+  if LooseVersion(version)<=LooseVersion("1.2"):
+    subprocess.check_output("samtools sort -@ "+threads+" -n "+bam+" "+fnameA+"_sorted",shell=True, stderr=subprocess.STDOUT)
+  else:
+    subprocess.check_output("samtools sort -@ "+threads+" -n "+bam+" >"+sorted_bam,shell=True, stderr=subprocess.STDOUT)
+
+def extract_mapped_reads_and_do_assembly_and_blast(current_time,sorted_bam,combined_fq,mapped_fq1,mapped_fq2,threads,fnameA,fnameB,database,mapping_mode):
+  #seqsero2 -a; extract, assembly and blast
+  subprocess.check_output("bamToFastq -i "+sorted_bam+" -fq "+combined_fq,shell=True, stderr=subprocess.STDOUT)
+  if fnameB!="":
+    subprocess.check_output("bamToFastq -i "+sorted_bam+" -fq "+mapped_fq1+" -fq2 "+mapped_fq2 ,shell=True, stderr=subprocess.STDOUT)#2> /dev/null if want no output
+  else:
+    pass
+  outdir=current_time+"_temp"
+  print("assembling...")
+  if int(threads)>4:
+    t="4"
+  else:
+    t=threads
+  if os.path.getsize(combined_fq)>100 and os.path.getsize(mapped_fq1)>100:#if not, then it's "-:-:-"
+    if fnameB!="":
+      subprocess.check_output("spades.py --careful --pe1-s "+combined_fq+" --pe1-1 "+mapped_fq1+" --pe1-2 "+mapped_fq2+" -t "+t+" -o "+outdir,shell=True, stderr=subprocess.STDOUT)
+    else:
+      subprocess.check_output("spades.py --careful --pe1-s "+combined_fq+" -t "+t+" -o "+outdir,shell=True, stderr=subprocess.STDOUT)
+    new_fasta=fnameA+"_"+database+"_"+mapping_mode+".fasta"
+    subprocess.check_output("mv "+outdir+"/contigs.fasta "+new_fasta+ " 2> /dev/null",shell=True, stderr=subprocess.STDOUT)
+    #os.system("mv "+outdir+"/scaffolds.fasta "+new_fasta+ " 2> /dev/null") contigs.fasta
+    subprocess.check_output("rm -rf "+outdir+ " 2> /dev/null",shell=True, stderr=subprocess.STDOUT)
+    print("blasting...","\n")
+    xmlfile="blasted_output.xml"#fnameA+"-extracted_vs_"+database+"_"+mapping_mode+".xml"
+    subprocess.check_output('makeblastdb -in '+new_fasta+' -out '+new_fasta+'_db '+'-dbtype nucl',shell=True, stderr=subprocess.STDOUT) #temp.txt is to forbid the blast result interrupt the output of our program###1/27/2015
+    subprocess.check_output("blastn -query "+database+" -db "+new_fasta+"_db -out "+xmlfile+" -outfmt 5",shell=True, stderr=subprocess.STDOUT)###1/27/2015; 08272018, remove "-word_size 10"
+  else:
+    xmlfile="NA"
+  return xmlfile
+
+def judge_subspecies(fnameA):
+  #seqsero2 -a; judge subspecies on just forward raw reads fastq
+  salmID_output=subprocess.check_output("../SalmID/SalmID.py -i "+fnameA, shell=True, stderr=subprocess.STDOUT)
+  #out, err = salmID_output.communicate()
+  #out=out.decode("utf-8")
+  out = salmID_output.decode("utf-8")
+  file=open("data_log.txt","a")
+  file.write(out)
+  file.close()
+  salm_species_scores=out.split("\n")[1].split("\t")[6:]
+  salm_species_results=out.split("\n")[0].split("\t")[6:]
+  max_score=0
+  max_score_index=1 #default is 1, means "I"
+  for i in range(len(salm_species_scores)):
+    if max_score<float(salm_species_scores[i]):
+      max_score=float(salm_species_scores[i])
+      max_score_index=i
+  prediction=salm_species_results[max_score_index].split(".")[1].strip().split(" ")[0]
+  if float(out.split("\n")[1].split("\t")[4]) > float(out.split("\n")[1].split("\t")[5]): #bongori and enterica compare
+    prediction="bongori" #if not, the prediction would always be enterica, since they are located in the later part
+  if max_score<10:
+    prediction="-"
+  return prediction
+
+def judge_subspecies_Kmer(Special_dict):
+  #seqsero2 -k;
+  max_score=0
+  prediction="-" #default should be I
+  for x in Special_dict:
+    if "mer" in x:
+      if max_score<float(Special_dict[x]):
+        max_score=float(Special_dict[x])
+        prediction=x.split("_")[-1].strip()
+      if x.split("_")[-1].strip()=="bongori" and float(Special_dict[x])>95:#if bongori already, then no need to test enterica
+        prediction="bongori"
+        break
+  return prediction
+
+def main():
+  #combine SeqSeroK and SeqSero2, also with SalmID
+  args = parse_args()
+  input_file = args.i
+  data_type = args.t
+  analysis_mode = args.m
+  mapping_mode=args.b
+  threads=args.p
+  make_dir=args.d
+  clean_mode=args.c
+  k_size=27 #will change for bug fixing
+  database="H_and_O_and_specific_genes.fasta"
+  
+  if len(sys.argv)==1:
+    subprocess.check_output(dirpath+"/SeqSero2_package.py -h",shell=True, stderr=subprocess.STDOUT)#change name of python file
+  else:
+    request_id = time.strftime("%m_%d_%Y_%H_%M_%S", time.localtime())
+    request_id += str(random.randint(1, 10000000))
+    if make_dir is None:
+      make_dir="SeqSero_result_"+request_id
+    if os.path.isdir(make_dir):
+      pass
+    else:
+      subprocess.check_output(["mkdir",make_dir])
+    #subprocess.check_output("cp "+dirpath+"/"+database+" "+" ".join(input_file)+" "+make_dir,shell=True, stderr=subprocess.STDOUT)
+    subprocess.check_output("ln -srf "+dirpath+"/"+database+" "+" ".join(input_file)+" "+make_dir,shell=True, stderr=subprocess.STDOUT)
+  ############################begin the real analysis 
+    if analysis_mode=="a":
+      if data_type in ["1","2","3"]:#use allele mode
+        for_fq,rev_fq=get_input_files(make_dir,input_file,data_type,dirpath)
+        os.chdir(make_dir)
+        ###add a function to tell input files
+        fnameA=for_fq.split("/")[-1]
+        fnameB=rev_fq.split("/")[-1]
+        current_time=time.strftime("%Y_%m_%d_%H_%M_%S", time.localtime())
+        sam,bam,sorted_bam,mapped_fq1,mapped_fq2,combined_fq,for_sai,rev_sai=get_temp_file_names(fnameA,fnameB) #get temp files id
+        map_and_sort(threads,database,fnameA,fnameB,sam,bam,for_sai,rev_sai,sorted_bam,mapping_mode) #do mapping and sort
+        xmlfile=extract_mapped_reads_and_do_assembly_and_blast(current_time,sorted_bam,combined_fq,mapped_fq1,mapped_fq2,threads,fnameA,fnameB,database,mapping_mode) #extract the mapped reads and do micro assembly and blast
+        if xmlfile=="NA":
+          O_choice,fliC_choice,fljB_choice,special_gene_list,contamination_O,contamination_H=("-","-","-",[],"","")
+        else:
+          Final_list=xml_parse_score_comparision_seqsero(xmlfile) #analyze xml and get parsed results
+          file=open("data_log.txt","a")
+          for x in Final_list:
+            file.write("\t".join(str(y) for y in x)+"\n")
+          file.close()
+          Final_list_passed=[x for x in Final_list if float(x[0].split("_cov_")[1])>=0.9 and (x[1]>=int(x[0].split("__")[1]) or x[1]>=int(x[0].split("___")[1].split("_")[3]) or x[1]>1000)]
+          O_choice,fliC_choice,fljB_choice,special_gene_list,contamination_O,contamination_H=predict_O_and_H_types(Final_list,Final_list_passed) #predict O, fliC and fljB
+        subspecies=judge_subspecies(fnameA) #predict subspecies
+        ###output
+        predict_form,predict_sero,star,star_line,claim=seqsero_from_formula_to_serotypes(O_choice,fliC_choice,fljB_choice,special_gene_list,subspecies)
+        contamination_report=""
+        if contamination_O!="" and contamination_H=="":
+          contamination_report="#detected potential contamination of mixed serotypes from O antigen signals.\n"
+        elif contamination_O=="" and contamination_H!="":
+          contamination_report="#detected potential contamination of mixed serotypes or potential thrid H phase from H antigen signals.\n"
+        elif contamination_O!="" and contamination_H!="":
+          contamination_report="#detected potential contamination of mixed serotypes from both O and H antigen signals.\n"
+        if clean_mode:
+          subprocess.check_output("rm -rf ../"+make_dir,shell=True, stderr=subprocess.STDOUT)
+          make_dir="none-output-directory due to '-c' flag"
+        else:
+          #new_file=open("Seqsero_result.txt","w")
+          if O_choice=="":
+            O_choice="-"
+          result = OrderedDict(
+          sample_name = input_file[0],
+          O_antigen_prediction = O_choice,
+          H1_antigen_prediction = fliC_choice,
+          H2_antigen_prediction = fljB_choice,
+          predicted_antigenic_profile = predict_form,
+          predicted_subspecies = subspecies,
+          predicted_serotype = predict_sero,
+          note=claim.replace('\n','')
+          )
+          with open("Seqsero_result.tsv","w") as new_file:
+         #new_file.write("Output_directory:"+make_dir+"\nInput files:\t"+input_file+"\n"+"O antigen prediction:\t"+O_choice+"\n"+"H1 antigen prediction(fliC):\t"+highest_fliC+"\n"+"H2 antigen prediction(fljB):\t"+highest_fljB+"\n"+"Predicted antigenic profile:\t"+predict_form+"\n"+"Predicted subspecies:\t"+subspecies+"\n"+"Predicted serotype(s):\t"+predict_sero+star+"\n"+star+star_line+claim+"\n")#+##
+         #new_file.close()
+            wrtr = DictWriter(new_file, delimiter='\t', fieldnames=result.keys())
+            wrtr.writeheader()
+            wrtr.writerow(result)
+
+          
+          # new_file.write("Output_directory:"+make_dir+"\nInput files:\t"+for_fq+" "+rev_fq+"\n"+"O antigen prediction:\t"+O_choice+"\n"+"H1 antigen prediction(fliC):\t"+fliC_choice+"\n"+"H2 antigen prediction(fljB):\t"+fljB_choice+"\n"+"Predicted antigenic profile:\t"+predict_form+"\n"+"Predicted subspecies:\t"+subspecies+"\n"+"Predicted serotype(s):\t"+predict_sero+star+"\n"+contamination_report+star+star_line+claim+"\n")#+##
+          # new_file.close()
+          #subprocess.check_output("cat Seqsero_result.txt",shell=True, stderr=subprocess.STDOUT)
+          #subprocess.call("rm H_and_O_and_specific_genes.fasta* *.sra *.bam *.sam *.fastq *.gz *.fq temp.txt *.xml "+fnameA+"*_db* 2> /dev/null",shell=True, stderr=subprocess.STDOUT)
+          subprocess.call("rm H_and_O_and_specific_genes.fasta* *.sra *.bam *.sam *.fastq *.gz *.fq temp.txt "+fnameA+"*_db* 2> /dev/null",shell=True, stderr=subprocess.STDOUT)
+        print("Output_directory:"+make_dir+"\nInput files:\t"+for_fq+" "+rev_fq+"\n"+"O antigen prediction:\t"+O_choice+"\n"+"H1 antigen prediction(fliC):\t"+fliC_choice+"\n"+"H2 antigen prediction(fljB):\t"+fljB_choice+"\n"+"Predicted antigenic profile:\t"+predict_form+"\n"+"Predicted subspecies:\t"+subspecies+"\n"+"Predicted serotype(s):\t"+predict_sero+star+"\n"+contamination_report+star+star_line+claim+"\n")#+##
+      else:
+        print("Allele modes only support raw reads datatype, i.e. '-t 1 or 2 or 3'; please use '-m k'")
+    elif analysis_mode=="k":
+      ex_dir = os.path.dirname(os.path.realpath(__file__))
+      #output_mode = args.mode
+      for_fq,rev_fq=get_input_files(make_dir,input_file,data_type,dirpath)
+      input_file = for_fq #-k will just use forward because not all reads were used
+      os.chdir(make_dir)
+      f = open(ex_dir + '/antigens.pickle', 'rb')
+      lib_dict = pickle.load(f)
+      f.close
+      input_Ks = get_input_K(input_file,lib_dict,data_type,k_size)
+      O_dict,H_dict,Special_dict = get_kmer_dict(lib_dict,input_Ks)
+      highest_O,highest_fliC,highest_fljB = call_O_and_H_type(O_dict,H_dict,Special_dict,make_dir)
+      subspecies = judge_subspecies_Kmer(Special_dict)
+      if subspecies=="IIb" or subspecies=="IIa":
+        subspecies="II"
+      predict_form,predict_sero,star,star_line,claim = seqsero_from_formula_to_serotypes(
+          highest_O.split('-')[1], highest_fliC, highest_fljB, Special_dict,subspecies)
+      if clean_mode:
+        subprocess.check_output("rm -rf ../"+make_dir,shell=True, stderr=subprocess.STDOUT)
+        make_dir="none-output-directory due to '-c' flag"
+      else:
+        if highest_O.split('-')[-1]=="":
+          O_choice="-"
+        else:
+          O_choice=highest_O.split('-')[-1]
+        #print("Output_directory:"+make_dir+"\tInput_file:"+input_file+"\tPredicted subpecies:"+subspecies + '\tPredicted antigenic profile:' + predict_form + '\tPredicted serotype(s):' + predict_sero)
+        result = OrderedDict(
+          sample_name = input_file,
+          O_antigen_prediction = O_choice,
+          H1_antigen_prediction = highest_fliC,
+          H2_antigen_prediction = highest_fljB,
+          predicted_antigenic_profile = predict_form,
+          predicted_subspecies = subspecies,
+          predicted_serotype = predict_sero,
+          note=claim.replace('\n','')
+        )
+        with open("Seqsero_result.tsv","w") as new_file:
+         #new_file.write("Output_directory:"+make_dir+"\nInput files:\t"+input_file+"\n"+"O antigen prediction:\t"+O_choice+"\n"+"H1 antigen prediction(fliC):\t"+highest_fliC+"\n"+"H2 antigen prediction(fljB):\t"+highest_fljB+"\n"+"Predicted antigenic profile:\t"+predict_form+"\n"+"Predicted subspecies:\t"+subspecies+"\n"+"Predicted serotype(s):\t"+predict_sero+star+"\n"+star+star_line+claim+"\n")#+##
+         #new_file.close()
+         wrtr = DictWriter(new_file, delimiter='\t', fieldnames=result.keys())
+         wrtr.writeheader()
+         wrtr.writerow(result)
+        subprocess.call("rm *.fasta* *.fastq *.gz *.fq temp.txt *.sra 2> /dev/null",shell=True, stderr=subprocess.STDOUT)
+        print("Output_directory:"+make_dir+"\nInput files:\t"+input_file+"\n"+"O antigen prediction:\t"+O_choice+"\n"+"H1 antigen prediction(fliC):\t"+highest_fliC+"\n"+"H2 antigen prediction(fljB):\t"+highest_fljB+"\n"+"Predicted antigenic profile:\t"+predict_form+"\n"+"Predicted subspecies:\t"+subspecies+"\n"+"Predicted serotype(s):\t"+predict_sero+star+"\n"+star+star_line+claim+"\n")#+##
+        return 0
+
+if __name__ == '__main__':
+  try:
+    quit(main())
+  except subprocess.CalledProcessError as e:
+    print(str(e.output))
+    print(e)
+    quit(e.returncode)