Mercurial > repos > jpayne > seqsero_v2
view SeqSero2/SeqSero2_package.py @ 14:496f5f2b5e75
Uploaded
author | estrain |
---|---|
date | Tue, 14 Feb 2023 12:11:27 -0500 |
parents | 4ac593d4b40f |
children |
line wrap: on
line source
#!/usr/bin/env python3 import sys import time import random import os import subprocess import gzip import io import pickle import argparse import itertools from distutils.version import LooseVersion from collections import OrderedDict from csv import DictWriter dirpath = os.path.abspath(os.path.dirname(os.path.realpath(__file__))) ### SeqSero Kmer def parse_args(): "Parse the input arguments, use '-h' for help." parser = argparse.ArgumentParser(usage='SeqSero2_package.py -t <data_type> -m <mode> -i <input_data> [-p <number of threads>] [-b <BWA_algorithm>]\n\nDevelopper: Shaokang Zhang (zskzsk@uga.edu), Hendrik C Den-Bakker (Hendrik.DenBakker@uga.edu) and Xiangyu Deng (xdeng@uga.edu)\n\nContact email:seqsero@gmail.com')#add "-m <data_type>" in future parser.add_argument("-i",nargs="+",help="<string>: path/to/input_data") parser.add_argument("-t",choices=['1','2','3','4','5','6'],help="<int>: '1'(pair-end reads, interleaved),'2'(pair-end reads, seperated),'3'(single-end reads), '4'(assembly),'5'(nanopore fasta),'6'(nanopore fastq)") parser.add_argument("-b",choices=['sam','mem'],default="mem",help="<string>: mode used for mapping in allele workflow, 'sam'(bwa samse/sampe), 'mem'(bwa mem), default=mem") parser.add_argument("-p",default="1",help="<int>: threads used for allele workflow, if p>4, only 4 threads will be used for assembly step, default=1") parser.add_argument("-m",choices=['k','a'],default="a",help="<string>: 'k'(kmer workflow), 'a'(allele workflow), default=a") parser.add_argument("-d",help="<string>: output directory name, if not set, the output directory would be 'SeqSero_result_'+time stamp+one random number") parser.add_argument("-c",action="store_true",help="<flag>: if '-c' was flagged, SeqSero2 will use clean mode and only output serotyping prediction, the directory containing log files will be deleted") return parser.parse_args() def reverse_complement(sequence): complement = { 'A': 'T', 'C': 'G', 'G': 'C', 'T': 'A', 'N': 'N', 'M': 'K', 'R': 'Y', 'W': 'W', 'S': 'S', 'Y': 'R', 'K': 'M', 'V': 'B', 'H': 'D', 'D': 'H', 'B': 'V' } return "".join(complement[base] for base in reversed(sequence)) def createKmerDict_reads(list_of_strings, kmer): kmer_table = {} for string in list_of_strings: sequence = string.strip('\n') for i in range(len(sequence) - kmer + 1): new_mer = sequence[i:i + kmer].upper() new_mer_rc = reverse_complement(new_mer) if new_mer in kmer_table: kmer_table[new_mer.upper()] += 1 else: kmer_table[new_mer.upper()] = 1 if new_mer_rc in kmer_table: kmer_table[new_mer_rc.upper()] += 1 else: kmer_table[new_mer_rc.upper()] = 1 return kmer_table def multifasta_dict(multifasta): multifasta_list = [ line.strip() for line in open(multifasta, 'r') if len(line.strip()) > 0 ] headers = [i for i in multifasta_list if i[0] == '>'] multifasta_dict = {} for h in headers: start = multifasta_list.index(h) for element in multifasta_list[start + 1:]: if element[0] == '>': break else: if h[1:] in multifasta_dict: multifasta_dict[h[1:]] += element else: multifasta_dict[h[1:]] = element return multifasta_dict def multifasta_single_string(multifasta): multifasta_list = [ line.strip() for line in open(multifasta, 'r') if (len(line.strip()) > 0) and (line.strip()[0] != '>') ] return ''.join(multifasta_list) def chunk_a_long_sequence(long_sequence, chunk_size=60): chunk_list = [] steps = len(long_sequence) // 60 #how many chunks for i in range(steps): chunk_list.append(long_sequence[i * chunk_size:(i + 1) * chunk_size]) chunk_list.append(long_sequence[steps * chunk_size:len(long_sequence)]) return chunk_list def target_multifasta_kmerizer(multifasta, k, kmerDict): forward_length = 300 #if find the target, put forward 300 bases reverse_length = 2200 #if find the target, put backward 2200 bases chunk_size = 60 #it will firstly chunk the single long sequence to multiple smaller sequences, it controls the size of those smaller sequences target_mers = [] long_single_string = multifasta_single_string(multifasta) multifasta_list = chunk_a_long_sequence(long_single_string, chunk_size) unit_length = len(multifasta_list[0]) forward_lines = int(forward_length / unit_length) + 1 reverse_lines = int(forward_length / unit_length) + 1 start_num = 0 end_num = 0 for i in range(len(multifasta_list)): if i not in range(start_num, end_num): #avoid computational repetition line = multifasta_list[i] start = int((len(line) - k) // 2) s1 = line[start:k + start] if s1 in kmerDict: #detect it is a potential read or not (use the middle part) if i - forward_lines >= 0: start_num = i - forward_lines else: start_num = 0 if i + reverse_lines <= len(multifasta_list) - 1: end_num = i + reverse_lines else: end_num = len(multifasta_list) - 1 target_list = [ x.strip() for x in multifasta_list[start_num:end_num] ] target_line = "".join(target_list) target_mers += [ k1 for k1 in createKmerDict_reads([str(target_line)], k) ] ##changed k to k1, just want to avoid the mixes of this "k" (kmer) to the "k" above (kmer length) else: pass return set(target_mers) def target_read_kmerizer(file, k, kmerDict): i = 1 n_reads = 0 total_coverage = 0 target_mers = [] if file.endswith(".gz"): file_content = io.BufferedReader(gzip.open(file)) else: file_content = open(file, "r").readlines() for line in file_content: start = int((len(line) - k) // 2) if i % 4 == 2: if file.endswith(".gz"): s1 = line[start:k + start].decode() line = line.decode() else: s1 = line[start:k + start] if s1 in kmerDict: #detect it is a potential read or not (use the middle part) n_reads += 1 total_coverage += len(line) target_mers += [ k1 for k1 in createKmerDict_reads([str(line)], k) ] #changed k to k1, just want to avoid the mixes of this "k" (kmer) to the "k" above (kmer length) i += 1 if total_coverage >= 4000000: break return set(target_mers) def minion_fasta_kmerizer(file, k, kmerDict): i = 1 n_reads = 0 total_coverage = 0 target_mers = {} for line in open(file): if i % 2 == 0: for kmer, rc_kmer in kmers(line.strip().upper(), k): if (kmer in kmerDict) or (rc_kmer in kmerDict): if kmer in target_mers: target_mers[kmer] += 1 else: target_mers[kmer] = 1 if rc_kmer in target_mers: target_mers[rc_kmer] += 1 else: target_mers[rc_kmer] = 1 i += 1 return set([h for h in target_mers]) def minion_fastq_kmerizer(file, k, kmerDict): i = 1 n_reads = 0 total_coverage = 0 target_mers = {} for line in open(file): if i % 4 == 2: for kmer, rc_kmer in kmers(line.strip().upper(), k): if (kmer in kmerDict) or (rc_kmer in kmerDict): if kmer in target_mers: target_mers[kmer] += 1 else: target_mers[kmer] = 1 if rc_kmer in target_mers: target_mers[rc_kmer] += 1 else: target_mers[rc_kmer] = 1 i += 1 return set([h for h in target_mers]) def multifasta_single_string2(multifasta): single_string = '' with open(multifasta, 'r') as f: for line in f: if line.strip()[0] == '>': pass else: single_string += line.strip() return single_string def kmers(seq, k): rev_comp = reverse_complement(seq) for start in range(1, len(seq) - k + 1): yield seq[start:start + k], rev_comp[-(start + k):-start] def multifasta_to_kmers_dict(multifasta,k_size):#used to create database kmer set multi_seq_dict = multifasta_dict(multifasta) lib_dict = {} for h in multi_seq_dict: lib_dict[h] = set( [k for k in createKmerDict_reads([multi_seq_dict[h]], k_size)]) return lib_dict def Combine(b, c): fliC_combinations = [] fliC_combinations.append(",".join(c)) temp_combinations = [] for i in range(len(b)): for x in itertools.combinations(b, i + 1): temp_combinations.append(",".join(x)) for x in temp_combinations: temp = [] for y in c: temp.append(y) temp.append(x) temp = ",".join(temp) temp = temp.split(",") temp.sort() temp = ",".join(temp) fliC_combinations.append(temp) return fliC_combinations def seqsero_from_formula_to_serotypes(Otype, fliC, fljB, special_gene_list,subspecies): #like test_output_06012017.txt #can add more varialbles like sdf-type, sub-species-type in future (we can conclude it into a special-gene-list) from Initial_Conditions import phase1,phase2,phaseO,sero,subs,remove_list,rename_dict rename_dict_not_anymore=[rename_dict[x] for x in rename_dict] rename_dict_all=rename_dict_not_anymore+list(rename_dict) #used for decide whether to seronames = [] seronames_none_subspecies=[] for i in range(len(phase1)): fliC_combine = [] fljB_combine = [] if phaseO[i] == Otype: # no VII in KW, but it's there ### for fliC, detect every possible combinations to avoid the effect of "[" if phase1[i].count("[") == 0: fliC_combine.append(phase1[i]) elif phase1[i].count("[") >= 1: c = [] b = [] if phase1[i][0] == "[" and phase1[i][-1] == "]" and phase1[i].count( "[") == 1: content = phase1[i].replace("[", "").replace("]", "") fliC_combine.append(content) fliC_combine.append("-") else: for x in phase1[i].split(","): if "[" in x: b.append(x.replace("[", "").replace("]", "")) else: c.append(x) fliC_combine = Combine( b, c ) #Combine will offer every possible combinations of the formula, like f,[g],t: f,t f,g,t ### end of fliC "[" detect ### for fljB, detect every possible combinations to avoid the effect of "[" if phase2[i].count("[") == 0: fljB_combine.append(phase2[i]) elif phase2[i].count("[") >= 1: d = [] e = [] if phase2[i][0] == "[" and phase2[i][-1] == "]" and phase2[i].count( "[") == 1: content = phase2[i].replace("[", "").replace("]", "") fljB_combine.append(content) fljB_combine.append("-") else: for x in phase2[i].split(","): if "[" in x: d.append(x.replace("[", "").replace("]", "")) else: e.append(x) fljB_combine = Combine(d, e) ### end of fljB "[" detect new_fliC = fliC.split( "," ) #because some antigen like r,[i] not follow alphabetical order, so use this one to judge and can avoid missings new_fliC.sort() new_fliC = ",".join(new_fliC) new_fljB = fljB.split(",") new_fljB.sort() new_fljB = ",".join(new_fljB) if (new_fliC in fliC_combine or fliC in fliC_combine) and (new_fljB in fljB_combine or fljB in fljB_combine): ######start, remove_list,rename_dict, added on 11/11/2018 if sero[i] not in remove_list: temp_sero=sero[i] if temp_sero in rename_dict: temp_sero=rename_dict[temp_sero] #rename if in the rename list if temp_sero not in seronames:#the new sero may already included, if yes, then not consider if subs[i] == subspecies: seronames.append(temp_sero) seronames_none_subspecies.append(temp_sero) else: pass else: pass ######end, added on 11/11/2018 #analyze seronames subspecies_pointer="" if len(seronames) == 0 and len(seronames_none_subspecies)!=0: seronames=seronames_none_subspecies subspecies_pointer="1" if len(seronames) == 0: seronames = [ "N/A (The predicted antigenic profile does not exist in the White-Kauffmann-Le Minor scheme)" ] star = "" star_line = "" if len(seronames) > 1: #there are two possible predictions for serotypes star = "*" #changed 04072019 #star_line = "The predicted serotypes share the same general formula:\t" + Otype + ":" + fliC + ":" + fljB + "\n" if subspecies_pointer=="1" and len(seronames_none_subspecies)!=0: star="*" star_line=" The predicted O and H antigens correspond to serotype '"+(" or ").join(seronames)+"' in the Kauffmann-White scheme. The predicted subspecies by SalmID (github.com/hcdenbakker/SalmID) may not be consistent with subspecies designation in the Kauffmann-White scheme." + star_line #star_line="The formula with this subspieces prediction can't get a serotype in KW manual, and the serotyping prediction was made without considering it."+star_line if Otype=="": Otype="-" predict_form = Otype + ":" + fliC + ":" + fljB predict_sero = (" or ").join(seronames) ###special test for Enteritidis if predict_form == "9:g,m:-": sdf = "-" for x in special_gene_list: if x.startswith("sdf"): sdf = "+" #star_line="Detected sdf gene, a marker to differentiate Gallinarum and Enteritidis" star_line=" sdf gene detected." # ed_SL_04152019: new output format #predict_form = predict_form + " Sdf prediction:" + sdf predict_form = predict_form #changed 04072019 if sdf == "-": star = "*" #star_line="Didn't detected sdf gene, a marker to differentiate Gallinarum and Enteritidis" star_line=" sdf gene not detected." # ed_SL_04152019: new output format #changed in 04072019, for new output #star_line = "Additional characterization is necessary to assign a serotype to this strain. Commonly circulating strains of serotype Enteritidis are sdf+, although sdf- strains of serotype Enteritidis are known to exist. Serotype Gallinarum is typically sdf- but should be quite rare. Sdf- strains of serotype Enteritidis and serotype Gallinarum can be differentiated by phenotypic profile or genetic criteria.\n" #predict_sero = "Gallinarum/Enteritidis" #04132019, for new output requirement predict_sero = "Gallinarum or Enteritidis" # ed_SL_04152019: new output format ###end of special test for Enteritidis elif predict_form == "4:i:-": predict_sero = "4:i:-" elif predict_form == "4:r:-": predict_sero = "4:r:-" elif predict_form == "4:b:-": predict_sero = "4:b:-" #elif predict_form == "8:e,h:1,2": #removed after official merge of newport and bardo #predict_sero = "Newport" #star = "*" #star_line = "Serotype Bardo shares the same antigenic profile with Newport, but Bardo is exceedingly rare." claim = " The serotype(s) is/are the only serotype(s) with the indicated antigenic profile currently recognized in the Kauffmann White Scheme. New serotypes can emerge and the possibility exists that this antigenic profile may emerge in a different subspecies. Identification of strains to the subspecies level should accompany serotype determination; the same antigenic profile in different subspecies is considered different serotypes.\n" if "N/A" in predict_sero: claim = "" #special test for Typhimurium if "Typhimurium" in predict_sero or predict_form == "4:i:-": normal = 0 mutation = 0 for x in special_gene_list: if "oafA-O-4_full" in x: normal = float(special_gene_list[x]) elif "oafA-O-4_5-" in x: mutation = float(special_gene_list[x]) if normal > mutation: pass elif normal < mutation: #predict_sero = predict_sero.strip() + "(O5-)" predict_sero = predict_sero.strip() #diable special sero for new output requirement, 04132019 star = "*" #star_line = "Detected the deletion of O5-." star_line = " Detected a deletion that causes O5- variant of Typhimurium." # ed_SL_04152019: new output format else: pass #special test for Paratyphi B if "Paratyphi B" in predict_sero or predict_form == "4:b:-": normal = 0 mutation = 0 for x in special_gene_list: if "gntR-family-regulatory-protein_dt-positive" in x: normal = float(special_gene_list[x]) elif "gntR-family-regulatory-protein_dt-negative" in x: mutation = float(special_gene_list[x]) #print(normal,mutation) if normal > mutation: #predict_sero = predict_sero.strip() + "(dt+)" #diable special sero for new output requirement, 04132019 predict_sero = predict_sero.strip()+' var. L(+) tartrate+' if "Paratyphi B" in predict_sero else predict_sero.strip() # ed_SL_04152019: new output format star = "*" #star_line = "Didn't detect the SNP for dt- which means this isolate is a Paratyphi B variant L(+) tartrate(+)." star_line = " The SNP that causes d-Tartrate nonfermentating phenotype was not detected. " # ed_SL_04152019: new output format elif normal < mutation: #predict_sero = predict_sero.strip() + "(dt-)" #diable special sero for new output requirement, 04132019 predict_sero = predict_sero.strip() star = "*" #star_line = "Detected the SNP for dt- which means this isolate is a systemic pathovar of Paratyphi B." star_line = " Detected the SNP for d-Tartrate nonfermenting phenotype." # ed_SL_04152019: new output format else: star = "*" star_line = " Failed to detect the SNP for dt-, can't decide it's a Paratyphi B variant L(+) tartrate(+) or not." #special test for O13,22 and O13,23 if Otype=="13": #ex_dir = os.path.dirname(os.path.realpath(__file__)) f = open(dirpath + '/special.pickle', 'rb') special = pickle.load(f) O22_O23=special['O22_O23'] if predict_sero.split(" or ")[0] in O22_O23[-1] and predict_sero.split(" or ")[0] not in rename_dict_all:#if in rename_dict_all, then it means already merged, no need to analyze O22_score=0 O23_score=0 for x in special_gene_list: if "O:22" in x: O22_score = O22_score+float(special_gene_list[x]) elif "O:23" in x: O23_score = O23_score+float(special_gene_list[x]) #print(O22_score,O23_score) for z in O22_O23[0]: if predict_sero.split(" or ")[0] in z: if O22_score > O23_score: star = "*" #star_line = "Detected O22 specific genes to further differenciate '"+predict_sero+"'." #diabled for new output requirement, 04132019 predict_sero = z[0] elif O22_score < O23_score: star = "*" #star_line = "Detected O23 specific genes to further differenciate '"+predict_sero+"'." #diabled for new output requirement, 04132019 predict_sero = z[1] else: star = "*" #star_line = "Fail to detect O22 and O23 differences." #diabled for new output requirement, 04132019 if " or " in predict_sero: star_line = star_line + " The predicted serotypes share the same general formula:\t" + Otype + ":" + fliC + ":" + fljB + "\n" #special test for O6,8 #merge_O68_list=["Blockley","Bovismorbificans","Hadar","Litchfield","Manhattan","Muenchen"] #remove 11/11/2018, because already in merge list #for x in merge_O68_list: # if x in predict_sero: # predict_sero=x # star="" # star_line="" #special test for Montevideo; most of them are monophasic #if "Montevideo" in predict_sero and "1,2,7" in predict_form: #remove 11/11/2018, because already in merge list #star="*" #star_line="Montevideo is almost always monophasic, having an antigen called for the fljB position may be a result of Salmonella-Salmonella contamination." return predict_form, predict_sero, star, star_line, claim ### End of SeqSero Kmer part ### Begin of SeqSero2 allele prediction and output def xml_parse_score_comparision_seqsero(xmlfile): #used to do seqsero xml analysis from Bio.Blast import NCBIXML handle=open(xmlfile) handle=NCBIXML.parse(handle) handle=list(handle) List=[] List_score=[] List_ids=[] List_query_region=[] for i in range(len(handle)): if len(handle[i].alignments)>0: for j in range(len(handle[i].alignments)): score=0 ids=0 cover_region=set() #fixed problem that repeated calculation leading percentage > 1 List.append(handle[i].query.strip()+"___"+handle[i].alignments[j].hit_def) for z in range(len(handle[i].alignments[j].hsps)): hsp=handle[i].alignments[j].hsps[z] temp=set(range(hsp.query_start,hsp.query_end)) if len(cover_region)==0: cover_region=cover_region|temp fraction=1 else: fraction=1-len(cover_region&temp)/float(len(temp)) cover_region=cover_region|temp if "last" in handle[i].query or "first" in handle[i].query: score+=hsp.bits*fraction ids+=float(hsp.identities)/handle[i].query_length*fraction else: score+=hsp.bits*fraction ids+=float(hsp.identities)/handle[i].query_length*fraction List_score.append(score) List_ids.append(ids) List_query_region.append(cover_region) temp=zip(List,List_score,List_ids,List_query_region) Final_list=sorted(temp, key=lambda d:d[1], reverse = True) return Final_list def Uniq(L,sort_on_fre="none"): #return the uniq list and the count number Old=L L.sort() L = [L[i] for i in range(len(L)) if L[i] not in L[:i]] count=[] for j in range(len(L)): y=0 for x in Old: if L[j]==x: y+=1 count.append(y) if sort_on_fre!="none": d=zip(*sorted(zip(count, L))) L=d[1] count=d[0] return (L,count) def judge_fliC_or_fljB_from_head_tail_for_one_contig(nodes_vs_score_list): #used to predict it's fliC or fljB for one contig, based on tail and head score, but output the score difference,if it is very small, then not reliable, use blast score for whole contig to test #this is mainly used for a=nodes_vs_score_list fliC_score=0 fljB_score=0 for z in a: if "fliC" in z[0]: fliC_score+=z[1] elif "fljB" in z[0]: fljB_score+=z[1] if fliC_score>=fljB_score: role="fliC" else: role="fljB" return (role,abs(fliC_score-fljB_score)) def judge_fliC_or_fljB_from_whole_contig_blast_score_ranking(node_name,Final_list,Final_list_passed): #used to predict contig is fliC or fljB, if the differnce score value on above head_and_tail is less than 10 (quite small) #also used when no head or tail got blasted score for the contig role="" for z in Final_list_passed: if node_name in z[0]: role=z[0].split("_")[0] break return role def fliC_or_fljB_judge_from_head_tail_sequence(nodes_list,tail_head_list,Final_list,Final_list_passed): #nodes_list is the c created by c,d=Uniq(nodes) in below function first_target="" role_list=[] for x in nodes_list: a=[] role="" for y in tail_head_list: if x in y[0]: a.append(y) if len(a)==4: role,diff=judge_fliC_or_fljB_from_head_tail_for_one_contig(a) if diff<20: role=judge_fliC_or_fljB_from_whole_contig_blast_score_ranking(x,Final_list,Final_list_passed) elif len(a)==3: ###however, if the one with highest score is the fewer one, compare their accumulation score role,diff=judge_fliC_or_fljB_from_head_tail_for_one_contig(a) if diff<20: role=judge_fliC_or_fljB_from_whole_contig_blast_score_ranking(x,Final_list,Final_list_passed) ###end of above score comparison elif len(a)==2: #must on same node, if not, then decide with unit blast score, blast-score/length_of_special_sequence(30 or 37) temp=[] for z in a: temp.append(z[0].split("_")[0]) m,n=Uniq(temp)#should only have one choice, but weird situation might occur too if len(m)==1: pass else: pass role,diff=judge_fliC_or_fljB_from_head_tail_for_one_contig(a) if diff<20: role=judge_fliC_or_fljB_from_whole_contig_blast_score_ranking(x,Final_list,Final_list_passed) ###need to desgin a algorithm to guess most possible situation for nodes_list, See the situations of test evaluation elif len(a)==1: #that one role,diff=judge_fliC_or_fljB_from_head_tail_for_one_contig(a) if diff<20: role=judge_fliC_or_fljB_from_whole_contig_blast_score_ranking(x,Final_list,Final_list_passed) #need to evaluate, in future, may set up a cut-off, if not met, then just find Final_list_passed best match,like when "a==0" else:#a==0 #use Final_list_passed best match for z in Final_list_passed: if x in z[0]: role=z[0].split("_")[0] break #print x,role,len(a) role_list.append((role,x)) if len(role_list)==2: if role_list[0][0]==role_list[1][0]:#this is the most cocmmon error, two antigen were assigned to same phase #just use score to do a final test role_list=[] for x in nodes_list: role=judge_fliC_or_fljB_from_whole_contig_blast_score_ranking(x,Final_list,Final_list_passed) role_list.append((role,x)) return role_list def decide_contig_roles_for_H_antigen(Final_list,Final_list_passed): #used to decide which contig is FliC and which one is fljB contigs=[] nodes=[] for x in Final_list_passed: if x[0].startswith("fl") and "last" not in x[0] and "first" not in x[0]: nodes.append(x[0].split("___")[1].strip()) c,d=Uniq(nodes)#c is node_list #print c tail_head_list=[x for x in Final_list if ("last" in x[0] or "first" in x[0])] roles=fliC_or_fljB_judge_from_head_tail_sequence(c,tail_head_list,Final_list,Final_list_passed) return roles def decide_O_type_and_get_special_genes(Final_list,Final_list_passed): #decide O based on Final_list O_choice="?" O_list=[] special_genes={} nodes=[] for x in Final_list_passed: if x[0].startswith("O-"): nodes.append(x[0].split("___")[1].strip()) elif not x[0].startswith("fl"): special_genes[x[0]]=x[2]#08172018, x[2] changed from x[-1] #print "special_genes:",special_genes c,d=Uniq(nodes) #print "potential O antigen contig",c final_O=[] O_nodes_list=[] for x in c:#c is the list for contigs temp=0 for y in Final_list_passed: if x in y[0] and y[0].startswith("O-"): final_O.append(y) break ### O contig has the problem of two genes on same contig, so do additional test potenial_new_gene="" for x in final_O: pointer=0 #for genes merged or not #not consider O-1,3,19_not_in_3,10, too short compared with others if "O-1,3,19_not_in_3,10" not in x[0] and int(x[0].split("__")[1].split("___")[0])*x[2]+850 <= int(x[0].split("length_")[1].split("_")[0]):#gene length << contig length; for now give 300*2 (for secureity can use 400*2) as flank region pointer=x[0].split("___")[1].strip()#store the contig name print(pointer) if pointer!=0:#it has potential merge event for y in Final_list: if pointer in y[0] and y not in final_O and (y[1]>=int(y[0].split("__")[1].split("___")[0])*1.5 or (y[1]>=int(y[0].split("__")[1].split("___")[0])*y[2] and y[1]>=400)):#that's a realtively strict filter now; if passed, it has merge event and add one more to final_O potenial_new_gene=y #print(potenial_new_gene) break if potenial_new_gene!="": print("two differnt genes in same contig, fix it for O antigen") print(potenial_new_gene[:3]) pointer=0 for y in final_O: if y[0].split("___")[-1]==potenial_new_gene[0].split("___")[-1]: pointer=1 if pointer!=1: final_O.append(potenial_new_gene) ### end of the two genes on same contig test final_O=sorted(final_O,key=lambda x: x[2], reverse=True)#sorted if len(final_O)==0 or (len(final_O)==1 and "O-1,3,19_not_in_3,10" in final_O[0][0]): #print "$$$No Otype, due to no hit"#may need to be changed O_choice="-" else: highest_O_coverage=max([float(x[0].split("_cov_")[-1].split("_")[0]) for x in final_O if "O-1,3,19_not_in_3,10" not in x[0]]) O_list=[] O_list_less_contamination=[] for x in final_O: if not "O-1,3,19_not_in_3,10__130" in x[0]:#O-1,3,19_not_in_3,10 is too small, which may affect further analysis; to avoid contamination affect, use 0.15 of highest coverage as cut-off O_list.append(x[0].split("__")[0]) O_nodes_list.append(x[0].split("___")[1]) if float(x[0].split("_cov_")[-1].split("_")[0])>highest_O_coverage*0.15: O_list_less_contamination.append(x[0].split("__")[0]) ### special test for O9,46 and O3,10 family if ("O-9,46_wbaV" in O_list or "O-9,46_wbaV-from-II-9,12:z29:1,5-SRR1346254" in O_list) and O_list_less_contamination[0].startswith("O-9,"):#not sure should use and float(O9_wbaV)/float(num_1) > 0.1 if "O-9,46_wzy" in O_list:#and float(O946_wzy)/float(num_1) > 0.1 O_choice="O-9,46" #print "$$$Most possilble Otype: O-9,46" elif "O-9,46,27_partial_wzy" in O_list:#and float(O94627)/float(num_1) > 0.1 O_choice="O-9,46,27" #print "$$$Most possilble Otype: O-9,46,27" else: O_choice="O-9"#next, detect O9 vs O2? O2=0 O9=0 for z in special_genes: if "tyr-O-9" in z: O9=special_genes[z] elif "tyr-O-2" in z: O2=special_genes[z] if O2>O9: O_choice="O-2" elif O2<O9: pass else: pass #print "$$$No suitable one, because can't distinct it's O-9 or O-2, but O-9 has a more possibility." elif ("O-3,10_wzx" in O_list) and ("O-9,46_wzy" in O_list) and (O_list[0].startswith("O-3,10") or O_list_less_contamination[0].startswith("O-9,46_wzy")):#and float(O310_wzx)/float(num_1) > 0.1 and float(O946_wzy)/float(num_1) > 0.1 if "O-3,10_not_in_1,3,19" in O_list:#and float(O310_no_1319)/float(num_1) > 0.1 O_choice="O-3,10" #print "$$$Most possilble Otype: O-3,10 (contain O-3,10_not_in_1,3,19)" else: O_choice="O-1,3,19" #print "$$$Most possilble Otype: O-1,3,19 (not contain O-3,10_not_in_1,3,19)" ### end of special test for O9,46 and O3,10 family else: try: max_score=0 for x in final_O: if x[2]>=max_score and float(x[0].split("_cov_")[-1].split("_")[0])>highest_O_coverage*0.15:#use x[2],08172018, the "coverage identity = cover_length * identity"; also meet coverage threshold max_score=x[2]#change from x[-1] to x[2],08172018 O_choice=x[0].split("_")[0] if O_choice=="O-1,3,19": O_choice=final_O[1][0].split("_")[0] #print "$$$Most possilble Otype: ",O_choice except: pass #print "$$$No suitable Otype, or failure of mapping (please check the quality of raw reads)" #print "O:",O_choice,O_nodes_list Otypes=[] for x in O_list: if x!="O-1,3,19_not_in_3,10": if "O-9,46_" not in x: Otypes.append(x.split("_")[0]) else: Otypes.append(x.split("-from")[0])#O-9,46_wbaV-from-II-9,12:z29:1,5-SRR1346254 #Otypes=[x.split("_")[0] for x in O_list if x!="O-1,3,19_not_in_3,10"] Otypes_uniq,Otypes_fre=Uniq(Otypes) contamination_O="" if O_choice=="O-9,46,27" or O_choice=="O-3,10" or O_choice=="O-1,3,19": if len(Otypes_uniq)>2: contamination_O="potential contamination from O antigen signals" else: if len(Otypes_uniq)>1: if O_choice=="O-4" and len(Otypes_uniq)==2 and "O-9,46,27" in Otypes_uniq: #for special 4,12,27 case such as Bredeney and Schwarzengrund contamination_O="" elif O_choice=="O-9,46" and len(Otypes_uniq)==2 and "O-9,46_wbaV" in Otypes_uniq and "O-9,46_wzy" in Otypes_uniq: #for special 4,12,27 case such as Bredeney and Schwarzengrund contamination_O="" else: contamination_O="potential contamination from O antigen signals" return O_choice,O_nodes_list,special_genes,final_O,contamination_O,Otypes_uniq ### End of SeqSero2 allele prediction and output def get_input_files(make_dir,input_file,data_type,dirpath): #tell input files from datatype #"<int>: '1'(pair-end reads, interleaved),'2'(pair-end reads, seperated),'3'(single-end reads), '4'(assembly),'5'(nanopore fasta),'6'(nanopore fastq)" for_fq="" rev_fq="" old_dir = os.getcwd() os.chdir(make_dir) if data_type=="1": input_file=input_file[0].split("/")[-1] if input_file.endswith(".sra"): subprocess.check_output("fastq-dump --split-files "+input_file,shell=True, stderr=subprocess.STDOUT) for_fq=input_file.replace(".sra","_1.fastq") rev_fq=input_file.replace(".sra","_2.fastq") else: core_id=input_file.split(".fastq")[0].split(".fq")[0] for_fq=core_id+"_1.fastq" rev_fq=core_id+"_2.fastq" if input_file.endswith(".gz"): subprocess.check_output("gzip -dc "+input_file+" | "+dirpath+"/deinterleave_fastq.sh "+for_fq+" "+rev_fq,shell=True, stderr=subprocess.STDOUT) else: subprocess.check_output("cat "+input_file+" | "+dirpath+"/deinterleave_fastq.sh "+for_fq+" "+rev_fq,shell=True, stderr=subprocess.STDOUT) elif data_type=="2": for_fq=input_file[0].split("/")[-1] rev_fq=input_file[1].split("/")[-1] elif data_type=="3": input_file=input_file[0].split("/")[-1] if input_file.endswith(".sra"): subprocess.check_output("fastq-dump --split-files "+input_file,shell=True, stderr=subprocess.STDOUT) for_fq=input_file.replace(".sra","_1.fastq") else: for_fq=input_file elif data_type in ["4","5","6"]: for_fq=input_file[0].split("/")[-1] os.chdir(old_dir) return for_fq,rev_fq def predict_O_and_H_types(Final_list,Final_list_passed,new_fasta): #get O and H types from Final_list from blast parsing; allele mode from Bio import SeqIO fliC_choice="-" fljB_choice="-" fliC_contig="NA" fljB_contig="NA" fliC_region=set([0]) fljB_region=set([0,]) fliC_length=0 #can be changed to coverage in future; in 03292019, changed to ailgned length fljB_length=0 #can be changed to coverage in future; in 03292019, changed to ailgned length O_choice="-"#no need to decide O contig for now, should be only one O_choice,O_nodes,special_gene_list,O_nodes_roles,contamination_O,Otypes_uniq=decide_O_type_and_get_special_genes(Final_list,Final_list_passed)#decide the O antigen type and also return special-gene-list for further identification O_choice=O_choice.split("-")[-1].strip() if (O_choice=="1,3,19" and len(O_nodes_roles)==1 and "1,3,19" in O_nodes_roles[0][0]) or O_choice=="": O_choice="-" H_contig_roles=decide_contig_roles_for_H_antigen(Final_list,Final_list_passed)#decide the H antigen contig is fliC or fljB #add alignment locations, used for further selection, 03312019 for i in range(len(H_contig_roles)): x=H_contig_roles[i] for y in Final_list_passed: if x[1] in y[0] and y[0].startswith(x[0]): H_contig_roles[i]+=H_contig_roles[i]+(y[-1],) break log_file=open("SeqSero_log.txt","a") extract_file=open("Extracted_antigen_alleles.fasta","a") handle_fasta=list(SeqIO.parse(new_fasta,"fasta")) #print("O_contigs:") log_file.write("O_contigs:\n") extract_file.write("#Sequences with antigen signals (if the micro-assembled contig only covers the flanking region, it will not be used for contamination analysis)\n") extract_file.write("#O_contigs:\n") for x in O_nodes_roles: if "O-1,3,19_not_in_3,10" not in x[0]:#O-1,3,19_not_in_3,10 is just a small size marker #print(x[0].split("___")[-1],x[0].split("__")[0],"blast score:",x[1],"identity%:",str(round(x[2]*100,2))+"%",str(min(x[-1]))+" to "+str(max(x[-1]))) log_file.write(x[0].split("___")[-1]+" "+x[0].split("__")[0]+"; "+"blast score: "+str(x[1])+" identity%: "+str(round(x[2]*100,2))+"%; alignment from "+str(min(x[-1]))+" to "+str(max(x[-1]))+" of antigen\n") title=">"+x[0].split("___")[-1]+" "+x[0].split("__")[0]+"; "+"blast score: "+str(x[1])+" identity%: "+str(round(x[2]*100,2))+"%; alignment from "+str(min(x[-1]))+" to "+str(max(x[-1]))+" of antigen\n" seqs="" for z in handle_fasta: if x[0].split("___")[-1]==z.description: seqs=str(z.seq) extract_file.write(title+seqs+"\n") if len(H_contig_roles)!=0: highest_H_coverage=max([float(x[1].split("_cov_")[-1].split("_")[0]) for x in H_contig_roles]) #less than highest*0.1 would be regarded as contamination and noises, they will still be considered in contamination detection and logs, but not used as final serotype output else: highest_H_coverage=0 for x in H_contig_roles: #if multiple choices, temporately select the one with longest length for now, will revise in further change if "fliC" == x[0] and len(x[-1])>=fliC_length and x[1] not in O_nodes and float(x[1].split("_cov_")[-1].split("_")[0])>highest_H_coverage*0.13:#remember to avoid the effect of O-type contig, so should not in O_node list fliC_contig=x[1] fliC_length=len(x[-1]) elif "fljB" == x[0] and len(x[-1])>=fljB_length and x[1] not in O_nodes and float(x[1].split("_cov_")[-1].split("_")[0])>highest_H_coverage*0.13: fljB_contig=x[1] fljB_length=len(x[-1]) for x in Final_list_passed: if fliC_choice=="-" and "fliC_" in x[0] and fliC_contig in x[0]: fliC_choice=x[0].split("_")[1] elif fljB_choice=="-" and "fljB_" in x[0] and fljB_contig in x[0]: fljB_choice=x[0].split("_")[1] elif fliC_choice!="-" and fljB_choice!="-": break #now remove contigs not in middle core part first_allele="NA" first_allele_percentage=0 for x in Final_list: if x[0].startswith("fliC") or x[0].startswith("fljB"): first_allele=x[0].split("__")[0] #used to filter those un-middle contigs first_allele_percentage=x[2] break additional_contigs=[] for x in Final_list: if first_allele in x[0]: if (fliC_contig == x[0].split("___")[-1]): fliC_region=x[3] elif fljB_contig!="NA" and (fljB_contig == x[0].split("___")[-1]): fljB_region=x[3] else: if x[1]*1.1>int(x[0].split("___")[1].split("_")[3]):#loose threshold by multiplying 1.1 additional_contigs.append(x) #else: #print x[:3] #we can just use the fljB region (or fliC depends on size), no matter set() or contain a large locations (without middle part); however, if none of them is fully assembled, use 500 and 1200 as conservative cut-off if first_allele_percentage>0.9: if len(fliC_region)>len(fljB_region) and (max(fljB_region)-min(fljB_region))>1000: target_region=fljB_region|(fliC_region-set(range(min(fljB_region),max(fljB_region)))) #fljB_region|(fliC_region-set(range(min(fljB_region),max(fljB_region)))) elif len(fliC_region)<len(fljB_region) and (max(fliC_region)-min(fliC_region))>1000: target_region=fliC_region|(fljB_region-set(range(min(fliC_region),max(fliC_region)))) #fljB_region|(fliC_region-set(range(min(fljB_region),max(fljB_region)))) else: target_region=set()#doesn't do anything else: target_region=set()#doesn't do anything #print(target_region) #print(additional_contigs) target_region2=set(list(range(0,525))+list(range(1200,1700)))#I found to use 500 to 1200 as special region would be best target_region=target_region2|target_region for x in additional_contigs: removal=0 contig_length=int(x[0].split("___")[1].split("length_")[-1].split("_")[0]) if fljB_contig not in x[0] and fliC_contig not in x[0] and len(target_region&x[3])/float(len(x[3]))>0.65 and contig_length*0.5<len(x[3])<contig_length*1.5: #consider length and alignment length for now, but very loose,0.5 and 1.5 as cut-off removal=1 else: if first_allele_percentage > 0.9 and float(x[0].split("__")[1].split("___")[0])*x[2]/len(x[-1])>0.96:#if high similiarity with middle part of first allele (first allele >0.9, already cover middle part) removal=1 else: pass if removal==1: for y in H_contig_roles: if y[1] in x[0]: H_contig_roles.remove(y) else: pass #print(x[:3],contig_length,len(target_region&x[3])/float(len(x[3])),contig_length*0.5,len(x[3]),contig_length*1.5) #end of removing none-middle contigs #print("H_contigs:") log_file.write("H_contigs:\n") extract_file.write("#H_contigs:\n") H_contig_stat=[] H1_cont_stat={} H2_cont_stat={} for i in range(len(H_contig_roles)): x=H_contig_roles[i] a=0 for y in Final_list_passed: if x[1] in y[0] and y[0].startswith(x[0]): if "first" in y[0] or "last" in y[0]: #this is the final filter to decide it's fliC or fljB, if can't pass, then can't decide for y in Final_list_passed: #it's impossible to has the "first" and "last" allele as prediction, so re-do it if x[1] in y[0]:#it's very possible to be third phase allele, so no need to make it must be fliC or fljB #print(x[1],"can't_decide_fliC_or_fljB",y[0].split("_")[1],"blast_score:",y[1],"identity%:",str(round(y[2]*100,2))+"%",str(min(y[-1]))+" to "+str(max(y[-1]))) log_file.write(x[1]+" "+x[0]+" "+y[0].split("_")[1]+"; "+"blast score: "+str(y[1])+" identity%: "+str(round(y[2]*100,2))+"%; alignment from "+str(min(y[-1]))+" to "+str(max(y[-1]))+" of antigen\n") H_contig_roles[i]="can't decide fliC or fljB, may be third phase" title=">"+x[1]+" "+x[0]+" "+y[0].split("_")[1]+"; "+"blast score: "+str(y[1])+" identity%: "+str(round(y[2]*100,2))+"%; alignment from "+str(min(y[-1]))+" to "+str(max(y[-1]))+" of antiten\n" seqs="" for z in handle_fasta: if x[1]==z.description: seqs=str(z.seq) extract_file.write(title+seqs+"\n") break else: #print(x[1],x[0],y[0].split("_")[1],"blast_score:",y[1],"identity%:",str(round(y[2]*100,2))+"%",str(min(y[-1]))+" to "+str(max(y[-1]))) log_file.write(x[1]+" "+x[0]+" "+y[0].split("_")[1]+"; "+"blast score: "+str(y[1])+" identity%: "+str(round(y[2]*100,2))+"%; alignment from "+str(min(y[-1]))+" to "+str(max(y[-1]))+" of antigen\n") title=">"+x[1]+" "+x[0]+" "+y[0].split("_")[1]+"; "+"blast score: "+str(y[1])+" identity%: "+str(round(y[2]*100,2))+"%; alignment from "+str(min(y[-1]))+" to "+str(max(y[-1]))+" of antigen\n" seqs="" for z in handle_fasta: if x[1]==z.description: seqs=str(z.seq) extract_file.write(title+seqs+"\n") if x[0]=="fliC": if y[0].split("_")[1] not in H1_cont_stat: H1_cont_stat[y[0].split("_")[1]]=y[2] else: H1_cont_stat[y[0].split("_")[1]]+=y[2] if x[0]=="fljB": if y[0].split("_")[1] not in H2_cont_stat: H2_cont_stat[y[0].split("_")[1]]=y[2] else: H2_cont_stat[y[0].split("_")[1]]+=y[2] break #detect contaminations #print(H1_cont_stat) #print(H2_cont_stat) H1_cont_stat_list=[x for x in H1_cont_stat if H1_cont_stat[x]>0.2] H2_cont_stat_list=[x for x in H2_cont_stat if H2_cont_stat[x]>0.2] contamination_H="" if len(H1_cont_stat_list)>1 or len(H2_cont_stat_list)>1: contamination_H="potential contamination from H antigen signals" elif len(H2_cont_stat_list)==1 and fljB_contig=="NA": contamination_H="potential contamination from H antigen signals, uncommon weak fljB signals detected" #get additional antigens """ if ("O-9,46_wbaV" in O_list or "O-9,46_wbaV-from-II-9,12:z29:1,5-SRR1346254" in O_list) and O_list_less_contamination[0].startswith("O-9,"):#not sure should use and float(O9_wbaV)/float(num_1) > 0.1 if "O-9,46_wzy" in O_list:#and float(O946_wzy)/float(num_1) > 0.1 O_choice="O-9,46" #print "$$$Most possilble Otype: O-9,46" elif "O-9,46,27_partial_wzy" in O_list:#and float(O94627)/float(num_1) > 0.1 O_choice="O-9,46,27" #print "$$$Most possilble Otype: O-9,46,27" elif ("O-3,10_wzx" in O_list) and ("O-9,46_wzy" in O_list) and (O_list[0].startswith("O-3,10") or O_list_less_contamination[0].startswith("O-9,46_wzy")):#and float(O310_wzx)/float(num_1) > 0.1 and float(O946_wzy)/float(num_1) > 0.1 if "O-3,10_not_in_1,3,19" in O_list:#and float(O310_no_1319)/float(num_1) > 0.1 O_choice="O-3,10" #print "$$$Most possilble Otype: O-3,10 (contain O-3,10_not_in_1,3,19)" else: O_choice="O-1,3,19" #print "$$$Most possilble Otype: O-1,3,19 (not contain O-3,10_not_in_1,3,19)" ### end of special test for O9,46 and O3,10 family if O_choice=="O-9,46,27" or O_choice=="O-3,10" or O_choice=="O-1,3,19": if len(Otypes_uniq)>2: contamination_O="potential contamination from O antigen signals" else: if len(Otypes_uniq)>1: if O_choice=="O-4" and len(Otypes_uniq)==2 and "O-9,46,27" in Otypes_uniq: #for special 4,12,27 case such as Bredeney and Schwarzengrund contamination_O="" elif O_choice=="O-9,46" and len(Otypes_uniq)==2 and "O-9,46_wbaV" in Otypes_uniq and "O-9,46_wzy" in Otypes_uniq: #for special 4,12,27 case such as Bredeney and Schwarzengrund contamination_O="" """ additonal_antigents=[] #print(contamination_O) #print(contamination_H) log_file.write(contamination_O+"\n") log_file.write(contamination_H+"\n") log_file.close() return O_choice,fliC_choice,fljB_choice,special_gene_list,contamination_O,contamination_H,Otypes_uniq,H1_cont_stat_list,H2_cont_stat_list def get_input_K(input_file,lib_dict,data_type,k_size): #kmer mode; get input_Ks from dict and data_type kmers = [] for h in lib_dict: kmers += lib_dict[h] if data_type == '4': input_Ks = target_multifasta_kmerizer(input_file, k_size, set(kmers)) elif data_type == '1' or data_type == '2' or data_type == '3':#set it for now, will change later input_Ks = target_read_kmerizer(input_file, k_size, set(kmers)) elif data_type == '5':#minion_2d_fasta input_Ks = minion_fasta_kmerizer(input_file, k_size, set(kmers)) if data_type == '6':#minion_2d_fastq input_Ks = minion_fastq_kmerizer(input_file, k_size, set(kmers)) return input_Ks def get_kmer_dict(lib_dict,input_Ks): #kmer mode; get predicted types O_dict = {} H_dict = {} Special_dict = {} for h in lib_dict: score = (len(lib_dict[h] & input_Ks) / len(lib_dict[h])) * 100 if score > 1: # Arbitrary cut-off for similarity score very low but seems necessary to detect O-3,10 in some cases if h.startswith('O-') and score > 25: O_dict[h] = score if h.startswith('fl') and score > 40: H_dict[h] = score if (h[:2] != 'fl') and (h[:2] != 'O-'): Special_dict[h] = score return O_dict,H_dict,Special_dict def call_O_and_H_type(O_dict,H_dict,Special_dict,make_dir): log_file=open("SeqSero_log.txt","a") log_file.write("O_scores:\n") #call O: highest_O = '-' if len(O_dict) == 0: pass else: for x in O_dict: log_file.write(x+"\t"+str(O_dict[x])+"\n") if ('O-9,46_wbaV__1002' in O_dict and O_dict['O-9,46_wbaV__1002']>70) or ("O-9,46_wbaV-from-II-9,12:z29:1,5-SRR1346254__1002" in O_dict and O_dict['O-9,46_wbaV-from-II-9,12:z29:1,5-SRR1346254__1002']>70): # not sure should use and float(O9_wbaV)/float(num_1) > 0.1 if 'O-9,46_wzy__1191' in O_dict: # and float(O946_wzy)/float(num_1) > 0.1 highest_O = "O-9,46" elif "O-9,46,27_partial_wzy__1019" in O_dict: # and float(O94627)/float(num_1) > 0.1 highest_O = "O-9,46,27" else: highest_O = "O-9" # next, detect O9 vs O2? O2 = 0 O9 = 0 for z in Special_dict: if "tyr-O-9" in z: O9 = float(Special_dict[z]) if "tyr-O-2" in z: O2 = float(Special_dict[z]) if O2 > O9: highest_O = "O-2" elif ("O-3,10_wzx__1539" in O_dict) and ( "O-9,46_wzy__1191" in O_dict ): # and float(O310_wzx)/float(num_1) > 0.1 and float(O946_wzy)/float(num_1) > 0.1 if "O-3,10_not_in_1,3,19__1519" in O_dict: # and float(O310_no_1319)/float(num_1) > 0.1 highest_O = "O-3,10" else: highest_O = "O-1,3,19" ### end of special test for O9,46 and O3,10 family else: try: max_score = 0 for x in O_dict: if float(O_dict[x]) >= max_score: max_score = float(O_dict[x]) highest_O = x.split("_")[0] if highest_O == "O-1,3,19": highest_O = '-' max_score = 0 for x in O_dict: if x == 'O-1,3,19_not_in_3,10__130': pass else: if float(O_dict[x]) >= max_score: max_score = float(O_dict[x]) highest_O = x.split("_")[0] except: pass #call_fliC: if len(H_dict)!=0: highest_H_score_both_BC=H_dict[max(H_dict.keys(), key=(lambda k: H_dict[k]))] #used to detect whether fljB existed or not else: highest_H_score_both_BC=0 highest_fliC = '-' highest_fliC_raw = '-' highest_Score = 0 log_file.write("\nH_scores:\n") for s in H_dict: log_file.write(s+"\t"+str(H_dict[s])+"\n") if s.startswith('fliC'): if float(H_dict[s]) > highest_Score: highest_fliC = s.split('_')[1] highest_fliC_raw = s highest_Score = float(H_dict[s]) #call_fljB highest_fljB = '-' highest_fljB_raw = '-' highest_Score = 0 for s in H_dict: if s.startswith('fljB'): if float(H_dict[s]) > highest_Score and float(H_dict[s]) > highest_H_score_both_BC * 0.65: #fljB is special, so use highest_H_score_both_BC to give a general estimate of coverage, currently 0.65 seems pretty good; the reason use a high (0.65) is some fliC and fljB shared with each other highest_fljB = s.split('_')[1] highest_fljB_raw = s highest_Score = float(H_dict[s]) log_file.write("\nSpecial_scores:\n") for s in Special_dict: log_file.write(s+"\t"+str(Special_dict[s])+"\n") log_file.close() return highest_O,highest_fliC,highest_fljB def get_temp_file_names(for_fq,rev_fq): #seqsero2 -a; get temp file names sam=for_fq+".sam" bam=for_fq+".bam" sorted_bam=for_fq+"_sorted.bam" mapped_fq1=for_fq+"_mapped.fq" mapped_fq2=rev_fq+"_mapped.fq" combined_fq=for_fq+"_combined.fq" for_sai=for_fq+".sai" rev_sai=rev_fq+".sai" return sam,bam,sorted_bam,mapped_fq1,mapped_fq2,combined_fq,for_sai,rev_sai def map_and_sort(threads,database,fnameA,fnameB,sam,bam,for_sai,rev_sai,sorted_bam,mapping_mode): #seqsero2 -a; do mapping and sort print("building database...") subprocess.check_output("bwa index "+database,shell=True, stderr=subprocess.STDOUT) print("mapping...") if mapping_mode=="mem": subprocess.check_output("bwa mem -k 17 -t "+threads+" "+database+" "+fnameA+" "+fnameB+" > "+sam,shell=True, stderr=subprocess.STDOUT) elif mapping_mode=="sam": if fnameB!="": subprocess.check_output("bwa aln -t "+threads+" "+database+" "+fnameA+" > "+for_sai,shell=True, stderr=subprocess.STDOUT) subprocess.check_output("bwa aln -t "+threads+" "+database+" "+fnameB+" > "+rev_sai,shell=True, stderr=subprocess.STDOUT) subprocess.check_output("bwa sampe "+database+" "+for_sai+" "+ rev_sai+" "+fnameA+" "+fnameB+" > "+sam,shell=True, stderr=subprocess.STDOUT) else: subprocess.check_output("bwa aln -t "+threads+" "+database+" "+fnameA+" > "+for_sai,shell=True, stderr=subprocess.STDOUT) subprocess.check_output("bwa samse "+database+" "+for_sai+" "+for_fq+" > "+sam, stderr=subprocess.STDOUT) subprocess.check_output("samtools view -@ "+threads+" -F 4 -Sh "+sam+" > "+bam,shell=True, stderr=subprocess.STDOUT) ### check the version of samtools then use differnt commands samtools_version=subprocess.Popen(["samtools"],stdout=subprocess.PIPE,stderr=subprocess.PIPE) out, err = samtools_version.communicate() version = str(err).split("ersion:")[1].strip().split(" ")[0].strip() print("check samtools version:",version) ### end of samtools version check and its analysis if LooseVersion(version)<=LooseVersion("1.2"): subprocess.check_output("samtools sort -@ "+threads+" -n "+bam+" "+fnameA+"_sorted",shell=True, stderr=subprocess.STDOUT) else: subprocess.check_output("samtools sort -@ "+threads+" -n "+bam+" >"+sorted_bam,shell=True, stderr=subprocess.STDOUT) def extract_mapped_reads_and_do_assembly_and_blast(current_time,sorted_bam,combined_fq,mapped_fq1,mapped_fq2,threads,fnameA,fnameB,database,mapping_mode): #seqsero2 -a; extract, assembly and blast subprocess.check_output("bamToFastq -i "+sorted_bam+" -fq "+combined_fq,shell=True, stderr=subprocess.STDOUT) if fnameB!="": subprocess.check_output("bamToFastq -i "+sorted_bam+" -fq "+mapped_fq1+" -fq2 "+mapped_fq2 ,shell=True, stderr=subprocess.STDOUT)#2> /dev/null if want no output else: pass outdir=current_time+"_temp" print("assembling...") if int(threads)>4: t="4" else: t=threads new_fasta = None if os.path.getsize(combined_fq)>100 and (fnameB=="" or os.path.getsize(mapped_fq1)>100):#if not, then it's "-:-:-" if fnameB!="": subprocess.check_output("spades.py --careful --pe1-s "+combined_fq+" --pe1-1 "+mapped_fq1+" --pe1-2 "+mapped_fq2+" -t "+t+" -o "+outdir,shell=True, stderr=subprocess.STDOUT) else: subprocess.check_output("spades.py --careful --pe1-s "+combined_fq+" -t "+t+" -o "+outdir,shell=True, stderr=subprocess.STDOUT) new_fasta=fnameA+"_"+database+"_"+mapping_mode+".fasta" subprocess.check_output("mv "+outdir+"/contigs.fasta "+new_fasta+ " 2> /dev/null",shell=True, stderr=subprocess.STDOUT) #os.system("mv "+outdir+"/scaffolds.fasta "+new_fasta+ " 2> /dev/null") contigs.fasta subprocess.check_output("rm -rf "+outdir+ " 2> /dev/null",shell=True, stderr=subprocess.STDOUT) print("blasting...","\n") xmlfile="blasted_output.xml"#fnameA+"-extracted_vs_"+database+"_"+mapping_mode+".xml" subprocess.check_output('makeblastdb -in '+new_fasta+' -out '+new_fasta+'_db '+'-dbtype nucl',shell=True, stderr=subprocess.STDOUT) #temp.txt is to forbid the blast result interrupt the output of our program###1/27/2015 subprocess.check_output("blastn -query "+database+" -db "+new_fasta+"_db -out "+xmlfile+" -outfmt 5",shell=True, stderr=subprocess.STDOUT)###1/27/2015; 08272018, remove "-word_size 10" else: xmlfile="NA" return xmlfile,new_fasta def judge_subspecies(fnameA): #seqsero2 -a; judge subspecies on just forward raw reads fastq salmID_output=subprocess.check_output(os.path.join(dirpath, "SalmID/SalmID.py") + ' -i ' +fnameA, shell=True, stderr=subprocess.STDOUT) #out, err = salmID_output.communicate() #out=out.decode("utf-8") out = salmID_output.decode("utf-8") file=open("data_log.txt","a") file.write(out) file.close() salm_species_scores=out.split("\n")[1].split("\t")[6:] salm_species_results=out.split("\n")[0].split("\t")[6:] max_score=0 max_score_index=1 #default is 1, means "I" for i in range(len(salm_species_scores)): if max_score<float(salm_species_scores[i]): max_score=float(salm_species_scores[i]) max_score_index=i prediction=salm_species_results[max_score_index].split(".")[1].strip().split(" ")[0] if float(out.split("\n")[1].split("\t")[4]) > float(out.split("\n")[1].split("\t")[5]): #bongori and enterica compare prediction="bongori" #if not, the prediction would always be enterica, since they are located in the later part if max_score<10: prediction="-" return prediction def judge_subspecies_Kmer(Special_dict): #seqsero2 -k; max_score=0 prediction="-" #default should be I for x in Special_dict: if "mer" in x: if max_score<float(Special_dict[x]): max_score=float(Special_dict[x]) prediction=x.split("_")[-1].strip() if x.split("_")[-1].strip()=="bongori" and float(Special_dict[x])>95:#if bongori already, then no need to test enterica prediction="bongori" break return prediction def main(): #combine SeqSeroK and SeqSero2, also with SalmID args = parse_args() input_file = args.i data_type = args.t analysis_mode = args.m mapping_mode=args.b threads=args.p make_dir=args.d clean_mode=args.c k_size=27 #will change for bug fixing database="H_and_O_and_specific_genes.fasta" if len(sys.argv)==1: subprocess.check_output(dirpath+"/SeqSero2_package.py -h",shell=True, stderr=subprocess.STDOUT)#change name of python file else: request_id = time.strftime("%m_%d_%Y_%H_%M_%S", time.localtime()) request_id += str(random.randint(1, 10000000)) if make_dir is None: make_dir="SeqSero_result_"+request_id if os.path.isdir(make_dir): pass else: subprocess.check_output(["mkdir",make_dir]) #subprocess.check_output("cp "+dirpath+"/"+database+" "+" ".join(input_file)+" "+make_dir,shell=True, stderr=subprocess.STDOUT) subprocess.check_output("ln -srf "+dirpath+"/"+database+" "+" ".join(input_file)+" "+make_dir,shell=True, stderr=subprocess.STDOUT) ############################begin the real analysis if analysis_mode=="a": if data_type in ["1","2","3"]:#use allele mode H1_cont_stat_list = H2_cont_stat_list = [] for_fq,rev_fq=get_input_files(make_dir,input_file,data_type,dirpath) os.chdir(make_dir) ###add a function to tell input files fnameA=for_fq.split("/")[-1] fnameB=rev_fq.split("/")[-1] current_time=time.strftime("%Y_%m_%d_%H_%M_%S", time.localtime()) sam,bam,sorted_bam,mapped_fq1,mapped_fq2,combined_fq,for_sai,rev_sai=get_temp_file_names(fnameA,fnameB) #get temp files id map_and_sort(threads,database,fnameA,fnameB,sam,bam,for_sai,rev_sai,sorted_bam,mapping_mode) #do mapping and sort xmlfile,new_fasta=extract_mapped_reads_and_do_assembly_and_blast(current_time,sorted_bam,combined_fq,mapped_fq1,mapped_fq2,threads,fnameA,fnameB,database,mapping_mode) #extract the mapped reads and do micro assembly and blast if xmlfile=="NA": O_choice,fliC_choice,fljB_choice,special_gene_list,contamination_O,contamination_H=("-","-","-",[],"","") else: Final_list=xml_parse_score_comparision_seqsero(xmlfile) #analyze xml and get parsed results file=open("data_log.txt","a") for x in Final_list: file.write("\t".join(str(y) for y in x)+"\n") file.close() Final_list_passed=[x for x in Final_list if float(x[0].split("_cov_")[1].split("_")[0])>=0.9 and (x[1]>=int(x[0].split("__")[1]) or x[1]>=int(x[0].split("___")[1].split("_")[3]) or x[1]>1000)] O_choice,fliC_choice,fljB_choice,special_gene_list,contamination_O,contamination_H,Otypes_uniq,H1_cont_stat_list,H2_cont_stat_list=predict_O_and_H_types(Final_list,Final_list_passed,new_fasta) #predict O, fliC and fljB subspecies=judge_subspecies(fnameA) #predict subspecies ###output predict_form,predict_sero,star,star_line,claim=seqsero_from_formula_to_serotypes(O_choice,fliC_choice,fljB_choice,special_gene_list,subspecies) claim="" #04132019, disable claim for new report requirement contamination_report="" H_list=["fliC_"+x for x in H1_cont_stat_list if len(x)>0]+["fljB_"+x for x in H2_cont_stat_list if len(x)>0] if contamination_O!="" and contamination_H=="": contamination_report="#Potential inter-serotype contamination detected from O antigen signals. All O-antigens detected:"+"\t".join(Otypes_uniq)+"." elif contamination_O=="" and contamination_H!="": contamination_report="#Potential inter-serotype contamination detected or potential thrid H phase from H antigen signals. All H-antigens detected:"+"\t".join(H_list)+"." elif contamination_O!="" and contamination_H!="": contamination_report="#Potential inter-serotype contamination detected from both O and H antigen signals.All O-antigens detected:"+"\t".join(Otypes_uniq)+". All H-antigens detected:"+"\t".join(H_list)+"." if contamination_report!="": #contamination_report="potential inter-serotype contamination detected (please refer below antigen signal report for details)." #above contamination_reports are for back-up and bug fixing #web-based mode need to be re-used, 04132019 contamination_report="Co-existence of multiple serotypes detected, indicating potential inter-serotype contamination. See 'Extracted_antigen_alleles.fasta' for detected serotype determinant alleles." #claim="\n"+open("Extracted_antigen_alleles.fasta","r").read()#used to store H and O antigen sequeences #04132019, need to change if using web-version if contamination_report+star_line+claim=="": #0413, new output style note="" else: note="Note:" if clean_mode: subprocess.check_output("rm -rf ../"+make_dir,shell=True, stderr=subprocess.STDOUT) make_dir="none-output-directory due to '-c' flag" else: #new_file=open("Seqsero_result.txt","w") if O_choice=="": O_choice="-" result = OrderedDict( sample_name = input_file[0], O_antigen_prediction = O_choice, H1_antigen_prediction = fliC_choice, H2_antigen_prediction = fljB_choice, predicted_antigenic_profile = predict_form, predicted_subspecies = subspecies, predicted_serotype = "{}{}".format(predict_sero, star), note=claim.replace('\n','') ) result['*'] = star_line.replace('\t', ' ').replace('\n','') with open("Seqsero_result.tsv","w") as new_file: #new_file.write("Output_directory:"+make_dir+"\nInput files:\t"+input_file+"\n"+"O antigen prediction:\t"+O_choice+"\n"+"H1 antigen prediction(fliC):\t"+highest_fliC+"\n"+"H2 antigen prediction(fljB):\t"+highest_fljB+"\n"+"Predicted antigenic profile:\t"+predict_form+"\n"+"Predicted subspecies:\t"+subspecies+"\n"+"Predicted serotype(s):\t"+predict_sero+star+"\n"+star+star_line+claim+"\n")#+## #new_file.close() wrtr = DictWriter(new_file, delimiter='\t', fieldnames=result.keys()) wrtr.writeheader() wrtr.writerow(result) # new_file.write("Output_directory:"+make_dir+"\nInput files:\t"+for_fq+" "+rev_fq+"\n"+"O antigen prediction:\t"+O_choice+"\n"+"H1 antigen prediction(fliC):\t"+fliC_choice+"\n"+"H2 antigen prediction(fljB):\t"+fljB_choice+"\n"+"Predicted antigenic profile:\t"+predict_form+"\n"+"Predicted subspecies:\t"+subspecies+"\n"+"Predicted serotype(s):\t"+predict_sero+star+"\n"+contamination_report+star+star_line+claim+"\n")#+## # new_file.close() #subprocess.check_output("cat Seqsero_result.txt",shell=True, stderr=subprocess.STDOUT) #subprocess.call("rm H_and_O_and_specific_genes.fasta* *.sra *.bam *.sam *.fastq *.gz *.fq temp.txt *.xml "+fnameA+"*_db* 2> /dev/null",shell=True, stderr=subprocess.STDOUT) subprocess.call("rm H_and_O_and_specific_genes.fasta* *.sra *.bam *.sam *.fastq *.gz *.fq temp.txt "+fnameA+"*_db* 2> /dev/null",shell=True, stderr=subprocess.STDOUT) print("Output_directory:"+make_dir+"\nInput files:\t"+for_fq+" "+rev_fq+"\n"+"O antigen prediction:\t"+O_choice+"\n"+"H1 antigen prediction(fliC):\t"+fliC_choice+"\n"+"H2 antigen prediction(fljB):\t"+fljB_choice+"\n"+"Predicted antigenic profile:\t"+predict_form+"\n"+"Predicted subspecies:\t"+subspecies+"\n"+"Predicted serotype(s):\t"+predict_sero+star+"\n"+contamination_report+star+star_line+claim+"\n")#+## else: print("Allele modes only support raw reads datatype, i.e. '-t 1 or 2 or 3'; please use '-m k'") elif analysis_mode=="k": ex_dir = os.path.dirname(os.path.realpath(__file__)) #output_mode = args.mode for_fq,rev_fq=get_input_files(make_dir,input_file,data_type,dirpath) input_file = for_fq #-k will just use forward because not all reads were used os.chdir(make_dir) f = open(ex_dir + '/antigens.pickle', 'rb') lib_dict = pickle.load(f) f.close input_Ks = get_input_K(input_file,lib_dict,data_type,k_size) O_dict,H_dict,Special_dict = get_kmer_dict(lib_dict,input_Ks) highest_O,highest_fliC,highest_fljB = call_O_and_H_type(O_dict,H_dict,Special_dict,make_dir) subspecies = judge_subspecies_Kmer(Special_dict) if subspecies=="IIb" or subspecies=="IIa": subspecies="II" predict_form,predict_sero,star,star_line,claim = seqsero_from_formula_to_serotypes( highest_O.split('-')[1], highest_fliC, highest_fljB, Special_dict,subspecies) claim="" #no claim any more based on new output requirement if star_line+claim=="": #0413, new output style note="" else: note="Note:" if clean_mode: subprocess.check_output("rm -rf ../"+make_dir,shell=True, stderr=subprocess.STDOUT) make_dir="none-output-directory due to '-c' flag" else: if highest_O.split('-')[-1]=="": O_choice="-" else: O_choice=highest_O.split('-')[-1] #print("Output_directory:"+make_dir+"\tInput_file:"+input_file+"\tPredicted subpecies:"+subspecies + '\tPredicted antigenic profile:' + predict_form + '\tPredicted serotype(s):' + predict_sero) result = OrderedDict( sample_name = input_file, O_antigen_prediction = O_choice, H1_antigen_prediction = highest_fliC, H2_antigen_prediction = highest_fljB, predicted_antigenic_profile = predict_form, predicted_subspecies = subspecies, predicted_serotype = "{}{}".format(predict_sero, star), note=claim.replace('\n','') ) result['*'] = star_line.replace('\t', ' ').replace('\n','') with open("Seqsero_result.tsv","w") as new_file: #new_file.write("Output_directory:"+make_dir+"\nInput files:\t"+input_file+"\n"+"O antigen prediction:\t"+O_choice+"\n"+"H1 antigen prediction(fliC):\t"+highest_fliC+"\n"+"H2 antigen prediction(fljB):\t"+highest_fljB+"\n"+"Predicted antigenic profile:\t"+predict_form+"\n"+"Predicted subspecies:\t"+subspecies+"\n"+"Predicted serotype(s):\t"+predict_sero+star+"\n"+star+star_line+claim+"\n")#+## #new_file.close() wrtr = DictWriter(new_file, delimiter='\t', fieldnames=result.keys()) wrtr.writeheader() wrtr.writerow(result) subprocess.call("rm *.fasta* *.fastq *.gz *.fq temp.txt *.sra 2> /dev/null",shell=True, stderr=subprocess.STDOUT) print("Output_directory:"+make_dir+"\nInput files:\t"+input_file+"\n"+"O antigen prediction:\t"+O_choice+"\n"+"H1 antigen prediction(fliC):\t"+highest_fliC+"\n"+"H2 antigen prediction(fljB):\t"+highest_fljB+"\n"+"Predicted antigenic profile:\t"+predict_form+"\n"+"Predicted subspecies:\t"+subspecies+"\n"+"Predicted serotype(s):\t"+predict_sero+star+"\n"+star+star_line+claim+"\n")#+## return 0 if __name__ == '__main__': try: quit(main()) except subprocess.CalledProcessError as e: print(str(e.output)) print(e) quit(e.returncode)