Mercurial > repos > kkonganti > cfsan_lexmapr2
diff lexmapr/run_summary.py @ 0:f5c39d0447be
"planemo upload"
author | kkonganti |
---|---|
date | Wed, 31 Aug 2022 14:32:07 -0400 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/lexmapr/run_summary.py Wed Aug 31 14:32:07 2022 -0400 @@ -0,0 +1,173 @@ +"""Reports and visualizes results""" + +import logging, os, pandas, re, shutil, time +import matplotlib.pyplot as plt +import seaborn as sns +import lexmapr.ontology_reasoner as ontr + +logging.getLogger('matplotlib').setLevel(logging.WARNING) + + +def _split_results(pandas_series, x_col, y_col, split_delim=True): + '''Format a value count series to a dataframe, spliting |-delimited terms''' + graph_dic = {} + for x in pandas_series.items(): + for y in x[0].split('|'): + try: + graph_dic[y] += x[1] + except(KeyError): + graph_dic[y] = x[1] + if split_delim: + graph_pd=pandas.DataFrame({x_col:[':'.join(x.split(':')[:-1]) for x in graph_dic.keys()], + y_col:list(graph_dic.values())}) + else: + graph_pd=pandas.DataFrame({x_col:list(graph_dic.keys()), + y_col:list(graph_dic.values())}) + return(graph_pd) + + +def _get_ontols(map_res, match_col, bin_col): + '''Make instances of Ontology_accessions and group as relevant''' + red_res = map_res[map_res[bin_col].notna()] + mapped_terms = _split_results(red_res[match_col].value_counts(), 'x', 'y', split_delim=False) + mapped_bins = _split_results(red_res[bin_col].value_counts(), 'x', 'y', split_delim=False) + ontol_sets = {} + lcp_set = set() + term_set = set() + for y in list(mapped_bins['x']): + ontol_sets[ontr.Ontology_accession.make_instance(y)] = set() + time.sleep(0.05) + for x in list(mapped_terms['x']): + if x == 'No Match': + continue + term_ontol = ontr.Ontology_accession.make_instance(x) + if term_ontol.ancestors == 'not assigned yet': + term_ontol.get_family('ancestors') + time.sleep(0.05) + if term_ontol.ancestors == ['none found']: + continue + for y in ontol_sets: + if y in term_ontol.ancestors: + ontol_sets[y].add(term_ontol) + for y in ontol_sets: + if ontol_sets[y] != set(): + lcp_set.add(y) + term_set = term_set | ontol_sets[y] + if len(term_set) > 100: + term_list = [x.id for x in list(term_set)] + terms_string = '' + for a,b,c,d in zip(term_list[::4],term_list[1::4],term_list[2::4],term_list[3::4]): + terms_string += f'\n\t\t{a}\t{b}\t{c}\t{d}' + logging.info(f'Not drawing {bin_col} graph with {len(term_list)} child nodes:\n\ + {terms_string}\n') + return([],[]) + return(list(lcp_set), list(term_set)) + + +def report_results(out_file, arg_bins): + '''Print mapping counts to log''' + mapping_results = pandas.read_csv(out_file, header=0, delimiter='\t') + match_status = mapping_results['Match_Status (Macro Level)'].value_counts() + logging.info(f'\t\tNo. unique terms: '+str(len(mapping_results['Sample_Desc']))) + for x in match_status.items(): + logging.info(f'\t\tNo. {x[0]}: {x[1]}') + for x in arg_bins: + logging.info(f'\t\tNo. mapped under {x}: {mapping_results[x].count()}') + + +def report_cache(term_cache): + # TODO: add counts for bins? + '''Print mapping counts to log from cache, only count unique terms''' + logging.info(f'\t\tNo. unique terms: {len(term_cache)-1}') + no_match = 0 + full_match = 0 + syno_match = 0 + comp_match = 0 + for x in term_cache: + if re.search('No Match', term_cache[x]): + no_match += 1 + if re.search('Full Term Match', term_cache[x]): + full_match += 1 + if re.search('Synonym Match', term_cache[x]): + syno_match += 1 + if re.search('Component Match', term_cache[x]): + comp_match += 1 + logging.info(f'\t\tNo. Unique Full Term Match: {full_match}') + logging.info(f'\t\tNo. Unique Synonym Match: {syno_match}') + logging.info(f'\t\tNo. Unique Component Match: {comp_match}') + logging.info(f'\t\tNo. Unique No Match: {no_match}') + return({'No Match':no_match, 'Full Term Match':full_match, + 'Synonym Match':syno_match, 'Component Match':comp_match}) + + +def figure_folder(): + '''Prepare figures folder''' + try: + shutil.rmtree('lexmapr_figures/') + except(FileNotFoundError): + pass + os.mkdir('lexmapr_figures/') + + +def visualize_cache(match_counts): + '''Generate graph''' + # TODO: add graphing for bins? + x_col = 'Match status' + y_col = 'No. samples matched' + sns_fig = sns.barplot(x=list(match_counts.keys()), + y=list(match_counts.values()), ci=None).get_figure() + plt.xticks(rotation=90) + plt.tight_layout() + sns_fig.savefig('lexmapr_figures/mapping_results.png') + logging.info(f'Did not attempt to make bin graphs') + + +def visualize_results(out_file, arg_bins): + '''Generate graphs''' + map_res = pandas.read_csv(out_file,delimiter='\t') + x_col = 'Match status' + y_col = 'No. samples matched' + match_status = map_res['Match_Status (Macro Level)'].value_counts() + match_res = _split_results(match_status, x_col, y_col, False) + match_res = match_res.sort_values(y_col,ascending=False) + sns_fig = sns.barplot(x=x_col, y=y_col, data=match_res, ci=None).get_figure() + plt.xticks(rotation=90) + plt.tight_layout() + sns_fig.savefig('lexmapr_figures/mapping_results.png') + + if map_res.shape[0] >= 1000: + logging.info(f'Did not attempt to make bin because too many rows') + return + + if arg_bins != []: + x_col = 'Bin' + bin_counts = {} + for x in arg_bins: + bin_counts[x] = sum(map_res[x].value_counts()) + bin_res = _split_results(map_res[x].value_counts(), x_col, y_col) + if not bin_res.empty: + bin_res = bin_res.sort_values(y_col,ascending=False) + plt.clf() + sns_fig = sns.barplot(x=x_col, y=y_col, data=bin_res, ci=None).get_figure() + plt.xticks(rotation=90) + plt.tight_layout() + plt.savefig(f'lexmapr_figures/{x}_binning.png') + + plt.clf() + bin_pd = pandas.DataFrame({x_col:list(bin_counts.keys()), + y_col:list(bin_counts.values())}) + bin_pd = bin_pd.sort_values(y_col,ascending=False) + sns_fig = sns.barplot(x=x_col, y=y_col, data=bin_pd, ci=None).get_figure() + plt.xticks(rotation=90) + plt.tight_layout() + sns_fig.savefig('lexmapr_figures/binning_results.png') + + # TODO: make node colors vary with frequency and color ones that are both top and bottom? + for x in arg_bins: + print(f'\tMight generate {x} ontology graph...'.ljust(80),end='\r') + lcp_list, term_list = _get_ontols(map_res, 'Matched_Components', x) + if lcp_list != [] and term_list != []: + bin_package = ontr.Ontology_package('.', list(term_list)) + bin_package.set_lcp(lcp_list) + bin_package.visualize_terms(f'lexmapr_figures/{x}_terms.png', + show_lcp=True, fill_out=True, trim_nodes=True)