Mercurial > repos > kkonganti > cfsan_lexmapr2
view lexmapr/pipeline_helpers.py @ 1:5244e7465767
"planemo upload"
author | kkonganti |
---|---|
date | Wed, 31 Aug 2022 14:32:14 -0400 |
parents | f5c39d0447be |
children |
line wrap: on
line source
"""Helper functions for main pipeline""" import inflection, re, unicodedata, sqlite3 from collections import OrderedDict from itertools import combinations from dateutil.parser import parse from lexmapr.definitions import synonym_db from nltk import pos_tag from nltk.tokenize import word_tokenize from nltk.tokenize.treebank import TreebankWordDetokenizer def _lookup_correction(sample, lookup_table, lookup_x, micro_status, status_title): '''Apply corections, if available in resource''' sample = ' ' + sample + ' ' for x in lookup_table[lookup_x]: find_x = re.findall(' '+x+' ', sample) if find_x != []: micro_status.append(status_title + x) sample = sample.replace(' '+x+' ', ' '+lookup_table[lookup_x][x]+' ') return(' '.join(sample.split()), micro_status) def _remove_annotated_synonyms(input_annotations): '''Remove annotations to see original phrase''' output_sample = '' copy_char = True for x in input_annotations: if x == '{': copy_char = False elif x == '}': copy_char = True else: if copy_char == True: output_sample += x while re.search(' ', output_sample): output_sample = output_sample.replace(' ', ' ') return(output_sample) def _retrieve_map_id(search_results, c): '''Get resource id from database''' return_list = [] for x in search_results: c.execute('SELECT * FROM non_standard_resource_ids WHERE key=:key', {'key':x[1]}) for y in c.fetchall(): result_dic = {'term':y[1], 'id':y[0], 'status':[]} if not result_dic in return_list: return_list.append(result_dic) return(return_list) def _map_term_helper(term, c): '''Maps term to resource or resource permutation''' c.execute('SELECT * FROM standard_resource_labels WHERE key=:key', {'key':term}) search_results = c.fetchall() if len(search_results) == 0: c.execute('SELECT * FROM standard_resource_permutations WHERE key=:key', {'key':term}) search_results = c.fetchall() if len(search_results) != 0: return(_retrieve_map_id(search_results, c)) else: return(_retrieve_map_id(search_results, c)) return(None) def _ngrams(input_phrase, gram_value): '''Get ngrams with a given value of gram_value''' input_phrase = input_phrase.split() output = [] for i in range(len(input_phrase) - gram_value + 1): output.append(input_phrase[i:i + gram_value]) return(output) def process_sample(sample, lookup_table, micro_status): '''Apply corrections to input sample''' sample, micro_status = _lookup_correction(sample, lookup_table, 'spelling_mistakes', micro_status, 'Spelling Correction Treatment: ') sample, micro_status = _lookup_correction(sample, lookup_table, 'abbreviations', micro_status, 'Abbreviation-Acronym Treatment: ') sample, micro_status = _lookup_correction(sample, lookup_table, 'non_english_words', micro_status, 'Non English Language Words Treatment: ') return(sample, micro_status) def punctuation_treatment(untreated_term): '''Remove punctuations from term''' punctuations_regex_char_class = '[~`!@#$%^*()_\|/{}:;,.<>?]' ret_term = '' for word_token in untreated_term.split(): if word_token.count('-') > 1: ret_term += word_token.replace('-',' ') + ' ' else: ret_term += word_token + ' ' ret_term = ret_term.lower().replace('\"','').replace('\'ve','').replace('\'m','') ret_term = ret_term.replace('\'s','').replace('\'t','').replace('\'ll','').replace('\'re','') ret_term = ret_term.replace('\'','').replace('-','').replace('[','').replace(']','') ret_term = ret_term.replace('&',' and ').replace('+',' and ').replace('=',' is ') ret_term = re.sub(punctuations_regex_char_class, ' ', ret_term).lower() return(' '.join(ret_term.split())) def further_cleanup(sample_text): '''Remove terms indicated to not be relevant and some compound words''' new_text = [] neg_words = [r'no ',r'non',r'not',r'neither',r'nor',r'without'] stt_words = ['animal','cb','chicken','environmental','food','human','large','medium','necropsy', 'organic','other','poultry','product','sausage','small','stool','swab','wild',] end_words = ['aspirate','culture','environmental','fluid','food','intestine','large','meal','medium', 'mixed','necropsy','other','poultry','product','research','sample','sausage','slaughter', 'small','swab','water','wild',] not_replace = ['agriculture','apiculture','aquaculture','aquiculture','aviculture', 'coculture','hemoculture','mariculture','monoculture','sericulture', 'subculture','viniculture','viticulture', 'semifluid','subfluid','superfluid', 'superlarge','reenlarge','enlarge','overlarge','largemouth','larges', 'bonemeal','cornmeal','fishmeal','inchmeal','oatmeal','piecemeal','premeal', 'wholemeal','biosample','ensample','resample','subsample','backwater', 'another','bother','brother','foremother','frother','godmother','grandmother', 'housemother','mother','otherguess','otherness','othernesse','otherwhere', 'otherwhile','otherworld','pother','soother','smoother','smother','stepbrother', 'stepmother','tother', 'byproduct','coproduct','production','productive','subproduct', 'ultrasmall','smaller','smallmouth','smalltime','smallpox','smallpoxe', 'smallsword','smallsholder','mediumship', 'bathwater','bilgewater','blackwater','breakwater','cutwater','deepwater', 'dewater','dishwater','eyewater','firewater','floodwater','freshwater', 'graywater','groundwater','headwater','jerkwater','limewater','meltwater', 'overwater','polywater','rainwater','rosewater','saltwater','seawater', 'shearwater','springwater','tailwater','tidewater','underwater','wastewater', 'semiwild','wildcard','wildcat','wildcatter','wildcatted','wildebeest','wilded', 'wilder','wilderment','wilderness','wildernesse','wildest','wildfire','wildflower', 'wildfowl','wildfowler','wildish','wildland','wildling','wildlife','wildwood', ] found_comp = [] for comp_word in stt_words: found_comp.extend(re.findall(f'({comp_word})(\w+)', sample_text)) for comp_word in end_words: found_comp.extend(re.findall(f'(\w+)({comp_word})', sample_text)) for x in found_comp: if x[0]+x[1] not in not_replace and x[0]+x[1]+'s' not in not_replace: sample_text = sample_text.replace(x[0]+x[1], x[0]+' '+x[1]) for sample_word in sample_text.split(): if len(sample_word) > 1: new_text.append(sample_word.strip()) if 'nor' in new_text: if 'neither' not in new_text: word_ind = new_text.index('nor') new_text.insert(max[0,word_ind-2], 'neither') for neg_word in neg_words: if neg_word in new_text: word_ind = new_text.index(neg_word) del(new_text[word_ind:word_ind+2]) return(' '.join(new_text)) def is_number(input_string): '''Determine whether a string is a number''' try: unicodedata.numeric(input_string) return(True) except(TypeError, ValueError): return(False) def is_date(input_string): '''Determine whether a string is a date or day''' try: parse(input_string) return(True) except(ValueError, OverflowError): return(False) def singularize_token(token, lookup_table, micro_status, c): '''Singularize the string token, if applicable''' if token in lookup_table['inflection_exceptions']: return(token, micro_status) exception_tail_chars_list = ['us', 'ia', 'ta', 'ss'] # TODO: add as, is? for char in exception_tail_chars_list: if token.endswith(char): return(token, micro_status) taxon_names = c.execute('''SELECT * FROM standard_resource_labels WHERE key LIKE :key AND value LIKE :value''', {'key':'% '+token,'value':'NCBITaxon%'}).fetchall() remove_finds = [] for x in taxon_names: if len(x[0].split()) > 2: remove_finds.append(x) for x in remove_finds: taxon_names.remove(x) if taxon_names != []: return(token, micro_status) lemma = inflection.singularize(token) micro_status.append('Inflection (Plural) Treatment: ' + token) return(lemma, micro_status) def get_cleaned_sample(input_sample, token, lookup_table): '''Prepare the cleaned sample phrase using the input token''' if input_sample == '' and token not in lookup_table['stop_words']: return(token) elif token not in lookup_table['stop_words']: return(input_sample + ' ' + token) else: return(input_sample) def get_annotated_sample(annotated_sample, lemma): '''Embed synonyms in the sample, if available''' # TODO: able to annotate permuatations instead of just left to right? synonym_map = {} if not annotated_sample: annotated_sample = lemma else: annotated_sample = f'{annotated_sample} {lemma}' conn_syn = sqlite3.connect(synonym_db) d = conn_syn.cursor() for y in [lemma, _remove_annotated_synonyms(annotated_sample)]: d.execute('SELECT * FROM label_synonyms WHERE key=:key', {'key':y}) for x in d.fetchall(): if not re.search(x[1], annotated_sample): annotated_sample = annotated_sample+' {'+x[1]+'}' synonym_map[y] = x[1] conn_syn.close() return(annotated_sample, synonym_map) def map_term(term, lookup_table, c, consider_suffixes=False): '''Map term to some resource in database''' if consider_suffixes: for suffix in lookup_table['suffixes']: mapping = _map_term_helper(term+' '+suffix, c) if mapping: for x in mapping: x['status'].insert(-2, 'Suffix Addition') return(mapping) else: mapping = _map_term_helper(term, c) if mapping: return(mapping) return([]) def annotation_reduce(annotated_sample, synonym_map): '''Remove annotations on shorter phrases included in longer phrases with annotations''' remove_list = [] for x in list(synonym_map.keys()): for y in list(synonym_map.keys()): if x != y: if x.startswith(y) or x.endswith(y) == True: remove_list.append(y) for x in remove_list: annotated_sample = annotated_sample.replace('{'+synonym_map[x]+'}',' ') return(' '.join(annotated_sample.split())) def get_annotated_synonyms(input_annotations): '''Get list of the annotations''' synonym_list = [] for x in input_annotations.split('{')[1:]: synonym_list.append(x.split('}')[0]) return(synonym_list) def get_gram_chunks(input_phrase, num): '''Make num-gram chunks from input''' input_tokens = input_phrase.split() if len(input_tokens) < 15: return(list(combinations(input_tokens, num))) else: return(_ngrams(input_phrase, num))