Mercurial > repos > kkonganti > cfsan_lexmapr2
view lexmapr/run_summary.py @ 1:5244e7465767
"planemo upload"
author | kkonganti |
---|---|
date | Wed, 31 Aug 2022 14:32:14 -0400 |
parents | f5c39d0447be |
children |
line wrap: on
line source
"""Reports and visualizes results""" import logging, os, pandas, re, shutil, time import matplotlib.pyplot as plt import seaborn as sns import lexmapr.ontology_reasoner as ontr logging.getLogger('matplotlib').setLevel(logging.WARNING) def _split_results(pandas_series, x_col, y_col, split_delim=True): '''Format a value count series to a dataframe, spliting |-delimited terms''' graph_dic = {} for x in pandas_series.items(): for y in x[0].split('|'): try: graph_dic[y] += x[1] except(KeyError): graph_dic[y] = x[1] if split_delim: graph_pd=pandas.DataFrame({x_col:[':'.join(x.split(':')[:-1]) for x in graph_dic.keys()], y_col:list(graph_dic.values())}) else: graph_pd=pandas.DataFrame({x_col:list(graph_dic.keys()), y_col:list(graph_dic.values())}) return(graph_pd) def _get_ontols(map_res, match_col, bin_col): '''Make instances of Ontology_accessions and group as relevant''' red_res = map_res[map_res[bin_col].notna()] mapped_terms = _split_results(red_res[match_col].value_counts(), 'x', 'y', split_delim=False) mapped_bins = _split_results(red_res[bin_col].value_counts(), 'x', 'y', split_delim=False) ontol_sets = {} lcp_set = set() term_set = set() for y in list(mapped_bins['x']): ontol_sets[ontr.Ontology_accession.make_instance(y)] = set() time.sleep(0.05) for x in list(mapped_terms['x']): if x == 'No Match': continue term_ontol = ontr.Ontology_accession.make_instance(x) if term_ontol.ancestors == 'not assigned yet': term_ontol.get_family('ancestors') time.sleep(0.05) if term_ontol.ancestors == ['none found']: continue for y in ontol_sets: if y in term_ontol.ancestors: ontol_sets[y].add(term_ontol) for y in ontol_sets: if ontol_sets[y] != set(): lcp_set.add(y) term_set = term_set | ontol_sets[y] if len(term_set) > 100: term_list = [x.id for x in list(term_set)] terms_string = '' for a,b,c,d in zip(term_list[::4],term_list[1::4],term_list[2::4],term_list[3::4]): terms_string += f'\n\t\t{a}\t{b}\t{c}\t{d}' logging.info(f'Not drawing {bin_col} graph with {len(term_list)} child nodes:\n\ {terms_string}\n') return([],[]) return(list(lcp_set), list(term_set)) def report_results(out_file, arg_bins): '''Print mapping counts to log''' mapping_results = pandas.read_csv(out_file, header=0, delimiter='\t') match_status = mapping_results['Match_Status (Macro Level)'].value_counts() logging.info(f'\t\tNo. unique terms: '+str(len(mapping_results['Sample_Desc']))) for x in match_status.items(): logging.info(f'\t\tNo. {x[0]}: {x[1]}') for x in arg_bins: logging.info(f'\t\tNo. mapped under {x}: {mapping_results[x].count()}') def report_cache(term_cache): # TODO: add counts for bins? '''Print mapping counts to log from cache, only count unique terms''' logging.info(f'\t\tNo. unique terms: {len(term_cache)-1}') no_match = 0 full_match = 0 syno_match = 0 comp_match = 0 for x in term_cache: if re.search('No Match', term_cache[x]): no_match += 1 if re.search('Full Term Match', term_cache[x]): full_match += 1 if re.search('Synonym Match', term_cache[x]): syno_match += 1 if re.search('Component Match', term_cache[x]): comp_match += 1 logging.info(f'\t\tNo. Unique Full Term Match: {full_match}') logging.info(f'\t\tNo. Unique Synonym Match: {syno_match}') logging.info(f'\t\tNo. Unique Component Match: {comp_match}') logging.info(f'\t\tNo. Unique No Match: {no_match}') return({'No Match':no_match, 'Full Term Match':full_match, 'Synonym Match':syno_match, 'Component Match':comp_match}) def figure_folder(): '''Prepare figures folder''' try: shutil.rmtree('lexmapr_figures/') except(FileNotFoundError): pass os.mkdir('lexmapr_figures/') def visualize_cache(match_counts): '''Generate graph''' # TODO: add graphing for bins? x_col = 'Match status' y_col = 'No. samples matched' sns_fig = sns.barplot(x=list(match_counts.keys()), y=list(match_counts.values()), ci=None).get_figure() plt.xticks(rotation=90) plt.tight_layout() sns_fig.savefig('lexmapr_figures/mapping_results.png') logging.info(f'Did not attempt to make bin graphs') def visualize_results(out_file, arg_bins): '''Generate graphs''' map_res = pandas.read_csv(out_file,delimiter='\t') x_col = 'Match status' y_col = 'No. samples matched' match_status = map_res['Match_Status (Macro Level)'].value_counts() match_res = _split_results(match_status, x_col, y_col, False) match_res = match_res.sort_values(y_col,ascending=False) sns_fig = sns.barplot(x=x_col, y=y_col, data=match_res, ci=None).get_figure() plt.xticks(rotation=90) plt.tight_layout() sns_fig.savefig('lexmapr_figures/mapping_results.png') if map_res.shape[0] >= 1000: logging.info(f'Did not attempt to make bin because too many rows') return if arg_bins != []: x_col = 'Bin' bin_counts = {} for x in arg_bins: bin_counts[x] = sum(map_res[x].value_counts()) bin_res = _split_results(map_res[x].value_counts(), x_col, y_col) if not bin_res.empty: bin_res = bin_res.sort_values(y_col,ascending=False) plt.clf() sns_fig = sns.barplot(x=x_col, y=y_col, data=bin_res, ci=None).get_figure() plt.xticks(rotation=90) plt.tight_layout() plt.savefig(f'lexmapr_figures/{x}_binning.png') plt.clf() bin_pd = pandas.DataFrame({x_col:list(bin_counts.keys()), y_col:list(bin_counts.values())}) bin_pd = bin_pd.sort_values(y_col,ascending=False) sns_fig = sns.barplot(x=x_col, y=y_col, data=bin_pd, ci=None).get_figure() plt.xticks(rotation=90) plt.tight_layout() sns_fig.savefig('lexmapr_figures/binning_results.png') # TODO: make node colors vary with frequency and color ones that are both top and bottom? for x in arg_bins: print(f'\tMight generate {x} ontology graph...'.ljust(80),end='\r') lcp_list, term_list = _get_ontols(map_res, 'Matched_Components', x) if lcp_list != [] and term_list != []: bin_package = ontr.Ontology_package('.', list(term_list)) bin_package.set_lcp(lcp_list) bin_package.visualize_terms(f'lexmapr_figures/{x}_terms.png', show_lcp=True, fill_out=True, trim_nodes=True)