view lexmapr/run_summary.py @ 1:5244e7465767

"planemo upload"
author kkonganti
date Wed, 31 Aug 2022 14:32:14 -0400
parents f5c39d0447be
children
line wrap: on
line source
"""Reports and visualizes results"""

import logging, os, pandas, re, shutil, time
import matplotlib.pyplot as plt
import seaborn as sns
import lexmapr.ontology_reasoner as ontr

logging.getLogger('matplotlib').setLevel(logging.WARNING)


def _split_results(pandas_series, x_col, y_col, split_delim=True):
    '''Format a value count series to a dataframe, spliting |-delimited terms'''
    graph_dic = {}
    for x in pandas_series.items():
        for y in x[0].split('|'):
            try:
                graph_dic[y] += x[1]
            except(KeyError):
                graph_dic[y] = x[1]
    if split_delim:
        graph_pd=pandas.DataFrame({x_col:[':'.join(x.split(':')[:-1]) for x in graph_dic.keys()],
                                   y_col:list(graph_dic.values())})
    else:
        graph_pd=pandas.DataFrame({x_col:list(graph_dic.keys()),
                                   y_col:list(graph_dic.values())})
    return(graph_pd)


def _get_ontols(map_res, match_col, bin_col):
    '''Make instances of Ontology_accessions and group as relevant'''
    red_res = map_res[map_res[bin_col].notna()]
    mapped_terms = _split_results(red_res[match_col].value_counts(), 'x', 'y', split_delim=False)
    mapped_bins = _split_results(red_res[bin_col].value_counts(), 'x', 'y', split_delim=False)
    ontol_sets = {}
    lcp_set = set()
    term_set = set()
    for y in list(mapped_bins['x']):
        ontol_sets[ontr.Ontology_accession.make_instance(y)] = set()
        time.sleep(0.05)
    for x in list(mapped_terms['x']):
        if x == 'No Match':
            continue
        term_ontol = ontr.Ontology_accession.make_instance(x)
        if term_ontol.ancestors == 'not assigned yet':
            term_ontol.get_family('ancestors')
            time.sleep(0.05)
        if term_ontol.ancestors == ['none found']:
            continue
        for y in ontol_sets:
            if y in term_ontol.ancestors:
                ontol_sets[y].add(term_ontol)
    for y in ontol_sets:
       if ontol_sets[y] != set():
          lcp_set.add(y)
          term_set = term_set | ontol_sets[y]
    if len(term_set) > 100:
        term_list = [x.id for x in list(term_set)]
        terms_string = ''
        for a,b,c,d in zip(term_list[::4],term_list[1::4],term_list[2::4],term_list[3::4]):
            terms_string += f'\n\t\t{a}\t{b}\t{c}\t{d}'
        logging.info(f'Not drawing {bin_col} graph with {len(term_list)} child nodes:\n\
                       {terms_string}\n')
        return([],[])
    return(list(lcp_set), list(term_set))


def report_results(out_file, arg_bins):
    '''Print mapping counts to log'''
    mapping_results = pandas.read_csv(out_file, header=0, delimiter='\t')
    match_status = mapping_results['Match_Status (Macro Level)'].value_counts()
    logging.info(f'\t\tNo. unique terms: '+str(len(mapping_results['Sample_Desc'])))
    for x in match_status.items():
        logging.info(f'\t\tNo. {x[0]}: {x[1]}')
    for x in arg_bins:
        logging.info(f'\t\tNo. mapped under {x}: {mapping_results[x].count()}')


def report_cache(term_cache):
    # TODO: add counts for bins?
    '''Print mapping counts to log from cache, only count unique terms'''
    logging.info(f'\t\tNo. unique terms: {len(term_cache)-1}')
    no_match = 0
    full_match = 0
    syno_match = 0
    comp_match = 0
    for x in term_cache:
        if re.search('No Match', term_cache[x]):
            no_match += 1
        if re.search('Full Term Match', term_cache[x]):
            full_match += 1
        if re.search('Synonym Match', term_cache[x]):
            syno_match += 1
        if re.search('Component Match', term_cache[x]):
            comp_match += 1
    logging.info(f'\t\tNo. Unique Full Term Match: {full_match}')
    logging.info(f'\t\tNo. Unique Synonym Match: {syno_match}')
    logging.info(f'\t\tNo. Unique Component Match: {comp_match}')
    logging.info(f'\t\tNo. Unique No Match: {no_match}')
    return({'No Match':no_match, 'Full Term Match':full_match,
            'Synonym Match':syno_match, 'Component Match':comp_match})


def figure_folder():
    '''Prepare figures folder'''
    try:
        shutil.rmtree('lexmapr_figures/')
    except(FileNotFoundError):
        pass
    os.mkdir('lexmapr_figures/')


def visualize_cache(match_counts):
    '''Generate graph'''
    # TODO: add graphing for bins?
    x_col = 'Match status'
    y_col = 'No. samples matched'
    sns_fig = sns.barplot(x=list(match_counts.keys()),
                          y=list(match_counts.values()), ci=None).get_figure()
    plt.xticks(rotation=90)
    plt.tight_layout()
    sns_fig.savefig('lexmapr_figures/mapping_results.png')
    logging.info(f'Did not attempt to make bin graphs')


def visualize_results(out_file, arg_bins):
    '''Generate graphs'''
    map_res = pandas.read_csv(out_file,delimiter='\t')
    x_col = 'Match status'
    y_col = 'No. samples matched'
    match_status = map_res['Match_Status (Macro Level)'].value_counts()
    match_res = _split_results(match_status, x_col, y_col, False)
    match_res = match_res.sort_values(y_col,ascending=False)
    sns_fig = sns.barplot(x=x_col, y=y_col, data=match_res, ci=None).get_figure()
    plt.xticks(rotation=90)
    plt.tight_layout()
    sns_fig.savefig('lexmapr_figures/mapping_results.png')

    if map_res.shape[0] >= 1000:
        logging.info(f'Did not attempt to make bin because too many rows')
        return

    if arg_bins != []:
        x_col = 'Bin'
        bin_counts = {}
        for x in arg_bins:
            bin_counts[x] = sum(map_res[x].value_counts())
            bin_res = _split_results(map_res[x].value_counts(), x_col, y_col)
            if not bin_res.empty:
                bin_res = bin_res.sort_values(y_col,ascending=False)
                plt.clf()
                sns_fig = sns.barplot(x=x_col, y=y_col, data=bin_res, ci=None).get_figure()
                plt.xticks(rotation=90)
                plt.tight_layout()
                plt.savefig(f'lexmapr_figures/{x}_binning.png')

        plt.clf()
        bin_pd = pandas.DataFrame({x_col:list(bin_counts.keys()), 
                                   y_col:list(bin_counts.values())})
        bin_pd = bin_pd.sort_values(y_col,ascending=False)
        sns_fig = sns.barplot(x=x_col, y=y_col, data=bin_pd, ci=None).get_figure()
        plt.xticks(rotation=90)
        plt.tight_layout()
        sns_fig.savefig('lexmapr_figures/binning_results.png')
        
        # TODO: make node colors vary with frequency and color ones that are both top and bottom?
        for x in arg_bins:
            print(f'\tMight generate {x} ontology graph...'.ljust(80),end='\r')
            lcp_list, term_list = _get_ontols(map_res, 'Matched_Components', x)
            if lcp_list != [] and term_list != []:
                bin_package = ontr.Ontology_package('.', list(term_list))
                bin_package.set_lcp(lcp_list)
                bin_package.visualize_terms(f'lexmapr_figures/{x}_terms.png',
                                            show_lcp=True, fill_out=True, trim_nodes=True)