comparison CSP2/CSP2_env/env-d9b9114564458d9d-741b3de822f2aaca6c6caa4325c4afce/include/kj/async-inl.h @ 69:33d812a61356

planemo upload commit 2e9511a184a1ca667c7be0c6321a36dc4e3d116d
author jpayne
date Tue, 18 Mar 2025 17:55:14 -0400
parents
children
comparison
equal deleted inserted replaced
67:0e9998148a16 69:33d812a61356
1 // Copyright (c) 2013-2014 Sandstorm Development Group, Inc. and contributors
2 // Licensed under the MIT License:
3 //
4 // Permission is hereby granted, free of charge, to any person obtaining a copy
5 // of this software and associated documentation files (the "Software"), to deal
6 // in the Software without restriction, including without limitation the rights
7 // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
8 // copies of the Software, and to permit persons to whom the Software is
9 // furnished to do so, subject to the following conditions:
10 //
11 // The above copyright notice and this permission notice shall be included in
12 // all copies or substantial portions of the Software.
13 //
14 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
17 // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
19 // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
20 // THE SOFTWARE.
21
22 // This file contains extended inline implementation details that are required along with async.h.
23 // We move this all into a separate file to make async.h more readable.
24 //
25 // Non-inline declarations here are defined in async.c++.
26
27 #pragma once
28
29 #ifndef KJ_ASYNC_H_INCLUDED
30 #error "Do not include this directly; include kj/async.h."
31 #include "async.h" // help IDE parse this file
32 #endif
33
34 #if _MSC_VER && KJ_HAS_COROUTINE
35 #include <intrin.h>
36 #endif
37
38 #include <kj/list.h>
39
40 KJ_BEGIN_HEADER
41
42 namespace kj {
43 namespace _ { // private
44
45 template <typename T>
46 class ExceptionOr;
47
48 class ExceptionOrValue {
49 public:
50 ExceptionOrValue(bool, Exception&& exception): exception(kj::mv(exception)) {}
51 KJ_DISALLOW_COPY(ExceptionOrValue);
52
53 void addException(Exception&& exception) {
54 if (this->exception == nullptr) {
55 this->exception = kj::mv(exception);
56 }
57 }
58
59 template <typename T>
60 ExceptionOr<T>& as() { return *static_cast<ExceptionOr<T>*>(this); }
61 template <typename T>
62 const ExceptionOr<T>& as() const { return *static_cast<const ExceptionOr<T>*>(this); }
63
64 Maybe<Exception> exception;
65
66 protected:
67 // Allow subclasses to have move constructor / assignment.
68 ExceptionOrValue() = default;
69 ExceptionOrValue(ExceptionOrValue&& other) = default;
70 ExceptionOrValue& operator=(ExceptionOrValue&& other) = default;
71 };
72
73 template <typename T>
74 class ExceptionOr: public ExceptionOrValue {
75 public:
76 ExceptionOr() = default;
77 ExceptionOr(T&& value): value(kj::mv(value)) {}
78 ExceptionOr(bool, Exception&& exception): ExceptionOrValue(false, kj::mv(exception)) {}
79 ExceptionOr(ExceptionOr&&) = default;
80 ExceptionOr& operator=(ExceptionOr&&) = default;
81
82 Maybe<T> value;
83 };
84
85 template <typename T>
86 inline T convertToReturn(ExceptionOr<T>&& result) {
87 KJ_IF_MAYBE(value, result.value) {
88 KJ_IF_MAYBE(exception, result.exception) {
89 throwRecoverableException(kj::mv(*exception));
90 }
91 return _::returnMaybeVoid(kj::mv(*value));
92 } else KJ_IF_MAYBE(exception, result.exception) {
93 throwFatalException(kj::mv(*exception));
94 } else {
95 // Result contained neither a value nor an exception?
96 KJ_UNREACHABLE;
97 }
98 }
99
100 inline void convertToReturn(ExceptionOr<Void>&& result) {
101 // Override <void> case to use throwRecoverableException().
102
103 if (result.value != nullptr) {
104 KJ_IF_MAYBE(exception, result.exception) {
105 throwRecoverableException(kj::mv(*exception));
106 }
107 } else KJ_IF_MAYBE(exception, result.exception) {
108 throwRecoverableException(kj::mv(*exception));
109 } else {
110 // Result contained neither a value nor an exception?
111 KJ_UNREACHABLE;
112 }
113 }
114
115 class TraceBuilder {
116 // Helper for methods that build a call trace.
117 public:
118 TraceBuilder(ArrayPtr<void*> space)
119 : start(space.begin()), current(space.begin()), limit(space.end()) {}
120
121 inline void add(void* addr) {
122 if (current < limit) {
123 *current++ = addr;
124 }
125 }
126
127 inline bool full() const { return current == limit; }
128
129 ArrayPtr<void*> finish() {
130 return arrayPtr(start, current);
131 }
132
133 String toString();
134
135 private:
136 void** start;
137 void** current;
138 void** limit;
139 };
140
141 struct alignas(void*) PromiseArena {
142 // Space in which a chain of promises may be allocated. See PromiseDisposer.
143 byte bytes[1024];
144 };
145
146 class Event: private AsyncObject {
147 // An event waiting to be executed. Not for direct use by applications -- promises use this
148 // internally.
149
150 public:
151 Event(SourceLocation location);
152 Event(kj::EventLoop& loop, SourceLocation location);
153 ~Event() noexcept(false);
154 KJ_DISALLOW_COPY_AND_MOVE(Event);
155
156 void armDepthFirst();
157 // Enqueue this event so that `fire()` will be called from the event loop soon.
158 //
159 // Events scheduled in this way are executed in depth-first order: if an event callback arms
160 // more events, those events are placed at the front of the queue (in the order in which they
161 // were armed), so that they run immediately after the first event's callback returns.
162 //
163 // Depth-first event scheduling is appropriate for events that represent simple continuations
164 // of a previous event that should be globbed together for performance. Depth-first scheduling
165 // can lead to starvation, so any long-running task must occasionally yield with
166 // `armBreadthFirst()`. (Promise::then() uses depth-first whereas evalLater() uses
167 // breadth-first.)
168 //
169 // To use breadth-first scheduling instead, use `armBreadthFirst()`.
170
171 void armBreadthFirst();
172 // Like `armDepthFirst()` except that the event is placed at the end of the queue.
173
174 void armLast();
175 // Enqueues this event to happen after all other events have run to completion and there is
176 // really nothing left to do except wait for I/O.
177
178 bool isNext();
179 // True if the Event has been armed and is next in line to be fired. This can be used after
180 // calling PromiseNode::onReady(event) to determine if a promise being waited is immediately
181 // ready, in which case continuations may be optimistically run without returning to the event
182 // loop. Note that this optimization is only valid if we know that we would otherwise immediately
183 // return to the event loop without running more application code. So this turns out to be useful
184 // in fairly narrow circumstances, chiefly when a coroutine is about to suspend, but discovers it
185 // doesn't need to.
186 //
187 // Returns false if the event loop is not currently running. This ensures that promise
188 // continuations don't execute except under a call to .wait().
189
190 void disarm();
191 // If the event is armed but hasn't fired, cancel it. (Destroying the event does this
192 // implicitly.)
193
194 virtual void traceEvent(TraceBuilder& builder) = 0;
195 // Build a trace of the callers leading up to this event. `builder` will be populated with
196 // "return addresses" of the promise chain waiting on this event. The return addresses may
197 // actually the addresses of lambdas passed to .then(), but in any case, feeding them into
198 // addr2line should produce useful source code locations.
199 //
200 // `traceEvent()` may be called from an async signal handler while `fire()` is executing. It
201 // must not allocate nor take locks.
202
203 String traceEvent();
204 // Helper that builds a trace and stringifies it.
205
206 protected:
207 virtual Maybe<Own<Event>> fire() = 0;
208 // Fire the event. Possibly returns a pointer to itself, which will be discarded by the
209 // caller. This is the only way that an event can delete itself as a result of firing, as
210 // doing so from within fire() will throw an exception.
211
212 private:
213 friend class kj::EventLoop;
214 EventLoop& loop;
215 Event* next;
216 Event** prev;
217 bool firing = false;
218
219 static constexpr uint MAGIC_LIVE_VALUE = 0x1e366381u;
220 uint live = MAGIC_LIVE_VALUE;
221 SourceLocation location;
222 };
223
224 class PromiseArenaMember {
225 // An object that is allocated in a PromiseArena. `PromiseNode` inherits this, and most
226 // arena-allocated objects are `PromiseNode` subclasses, but `TaskSet::Task`, ForkHub, and
227 // potentially other objects that commonly live on the end of a promise chain can also leverage
228 // this.
229
230 public:
231 virtual void destroy() = 0;
232 // Destroys and frees the node.
233 //
234 // If the node was allocated using allocPromise<T>(), then destroy() must call
235 // freePromise<T>(this). If it was allocated some other way, then it is `destroy()`'s
236 // responsibility to complete any necessary cleanup of memory, e.g. call `delete this`.
237 //
238 // We use this instead of a virtual destructor for two reasons:
239 // 1. Coroutine nodes are not independent objects, they have to call destroy() on the coroutine
240 // handle to delete themselves.
241 // 2. XThreadEvents sometimes leave it up to a different thread to actually delete the object.
242
243 private:
244 PromiseArena* arena = nullptr;
245 // If non-null, then this PromiseNode is the last node allocated within the given arena, and
246 // therefore owns the arena. After this node is destroyed, the arena should be deleted.
247 //
248 // PromiseNodes are allocated within the arena starting from the end, and `PromiseNode`s
249 // allocated this way are required to have `PromiseNode` itself as their leftmost inherited type,
250 // so that the pointers match. Thus, the space in `arena` from its start to the location of the
251 // `PromiseNode` is known to be available for subsequent allocations (which should then take
252 // ownership of the arena).
253
254 friend class PromiseDisposer;
255 };
256
257 class PromiseNode: public PromiseArenaMember, private AsyncObject {
258 // A Promise<T> contains a chain of PromiseNodes tracking the pending transformations.
259 //
260 // To reduce generated code bloat, PromiseNode is not a template. Instead, it makes very hacky
261 // use of pointers to ExceptionOrValue which actually point to ExceptionOr<T>, but are only
262 // so down-cast in the few places that really need to be templated. Luckily this is all
263 // internal implementation details.
264
265 public:
266 virtual void onReady(Event* event) noexcept = 0;
267 // Arms the given event when ready.
268 //
269 // May be called multiple times. If called again before the event was armed, the old event will
270 // never be armed, only the new one. If called again after the event was armed, the new event
271 // will be armed immediately. Can be called with nullptr to un-register the existing event.
272
273 virtual void setSelfPointer(OwnPromiseNode* selfPtr) noexcept;
274 // Tells the node that `selfPtr` is the pointer that owns this node, and will continue to own
275 // this node until it is destroyed or setSelfPointer() is called again. ChainPromiseNode uses
276 // this to shorten redundant chains. The default implementation does nothing; only
277 // ChainPromiseNode should implement this.
278
279 virtual void get(ExceptionOrValue& output) noexcept = 0;
280 // Get the result. `output` points to an ExceptionOr<T> into which the result will be written.
281 // Can only be called once, and only after the node is ready. Must be called directly from the
282 // event loop, with no application code on the stack.
283
284 virtual void tracePromise(TraceBuilder& builder, bool stopAtNextEvent) = 0;
285 // Build a trace of this promise chain, showing what it is currently waiting on.
286 //
287 // Since traces are ordered callee-before-caller, PromiseNode::tracePromise() should typically
288 // recurse to its child first, then after the child returns, add itself to the trace.
289 //
290 // If `stopAtNextEvent` is true, then the trace should stop as soon as it hits a PromiseNode that
291 // also implements Event, and should not trace that node or its children. This is used in
292 // conjunction with Event::traceEvent(). The chain of Events is often more sparse than the chain
293 // of PromiseNodes, because a TransformPromiseNode (which implements .then()) is not itself an
294 // Event. TransformPromiseNode instead tells its child node to directly notify its *parent* node
295 // when it is ready, and then TransformPromiseNode applies the .then() transformation during the
296 // call to .get().
297 //
298 // So, when we trace the chain of Events backwards, we end up hoping over segments of
299 // TransformPromiseNodes (and other similar types). In order to get those added to the trace,
300 // each Event must call back down the PromiseNode chain in the opposite direction, using this
301 // method.
302 //
303 // `tracePromise()` may be called from an async signal handler while `get()` is executing. It
304 // must not allocate nor take locks.
305
306 template <typename T>
307 static OwnPromiseNode from(T&& promise) {
308 // Given a Promise, extract the PromiseNode.
309 return kj::mv(promise.node);
310 }
311 template <typename T>
312 static PromiseNode& from(T& promise) {
313 // Given a Promise, extract the PromiseNode.
314 return *promise.node;
315 }
316 template <typename T>
317 static T to(OwnPromiseNode&& node) {
318 // Construct a Promise from a PromiseNode. (T should be a Promise type.)
319 return T(false, kj::mv(node));
320 }
321
322 protected:
323 class OnReadyEvent {
324 // Helper class for implementing onReady().
325
326 public:
327 void init(Event* newEvent);
328
329 void arm();
330 void armBreadthFirst();
331 // Arms the event if init() has already been called and makes future calls to init()
332 // automatically arm the event.
333
334 inline void traceEvent(TraceBuilder& builder) {
335 if (event != nullptr && !builder.full()) event->traceEvent(builder);
336 }
337
338 private:
339 Event* event = nullptr;
340 };
341 };
342
343 class PromiseDisposer {
344 public:
345 template <typename T>
346 static constexpr bool canArenaAllocate() {
347 // We can only use arena allocation for types that fit in an arena and have pointer-size
348 // alignment. Anything else will need to be allocated as a separate heap object.
349 return sizeof(T) <= sizeof(PromiseArena) && alignof(T) <= alignof(void*);
350 }
351
352 static void dispose(PromiseArenaMember* node) {
353 PromiseArena* arena = node->arena;
354 node->destroy();
355 delete arena; // reminder: `delete` automatically ignores null pointers
356 }
357
358 template <typename T, typename D = PromiseDisposer, typename... Params>
359 static kj::Own<T, D> alloc(Params&&... params) noexcept {
360 // Implements allocPromise().
361 T* ptr;
362 if (!canArenaAllocate<T>()) {
363 // Node too big (or needs weird alignment), fall back to regular heap allocation.
364 ptr = new T(kj::fwd<Params>(params)...);
365 } else {
366 // Start a new arena.
367 //
368 // NOTE: As in append() (below), we don't implement exception-safety because it causes code
369 // bloat and these constructors probably don't throw. Instead this function is noexcept, so
370 // if a constructor does throw, it'll crash rather than leak memory.
371 auto* arena = new PromiseArena;
372 ptr = reinterpret_cast<T*>(arena + 1) - 1;
373 ctor(*ptr, kj::fwd<Params>(params)...);
374 ptr->arena = arena;
375 KJ_IREQUIRE(reinterpret_cast<void*>(ptr) ==
376 reinterpret_cast<void*>(static_cast<PromiseArenaMember*>(ptr)),
377 "PromiseArenaMember must be the leftmost inherited type.");
378 }
379 return kj::Own<T, D>(ptr);
380 }
381
382 template <typename T, typename D = PromiseDisposer, typename... Params>
383 static kj::Own<T, D> append(
384 OwnPromiseNode&& next, Params&&... params) noexcept {
385 // Implements appendPromise().
386
387 PromiseArena* arena = next->arena;
388
389 if (!canArenaAllocate<T>() || arena == nullptr ||
390 reinterpret_cast<byte*>(next.get()) - reinterpret_cast<byte*>(arena) < sizeof(T)) {
391 // No arena available, or not enough space, or weird alignment needed. Start new arena.
392 return alloc<T, D>(kj::mv(next), kj::fwd<Params>(params)...);
393 } else {
394 // Append to arena.
395 //
396 // NOTE: When we call ctor(), it takes ownership of `next`, so we shouldn't assume `next`
397 // still exists after it returns. So we have to remove ownership of the arena before that.
398 // In theory if we wanted this to be exception-safe, we'd also have to arrange to delete
399 // the arena if the constructor throws. However, in practice none of the PromiseNode
400 // constructors throw, so we just mark the whole method noexcept in order to avoid the
401 // code bloat to handle this case.
402 next->arena = nullptr;
403 T* ptr = reinterpret_cast<T*>(next.get()) - 1;
404 ctor(*ptr, kj::mv(next), kj::fwd<Params>(params)...);
405 ptr->arena = arena;
406 KJ_IREQUIRE(reinterpret_cast<void*>(ptr) ==
407 reinterpret_cast<void*>(static_cast<PromiseArenaMember*>(ptr)),
408 "PromiseArenaMember must be the leftmost inherited type.");
409 return kj::Own<T, D>(ptr);
410 }
411 }
412 };
413
414 template <typename T, typename... Params>
415 static kj::Own<T, PromiseDisposer> allocPromise(Params&&... params) {
416 // Allocate a PromiseNode without appending it to any existing promise arena. Space for a new
417 // arena will be allocated.
418 return PromiseDisposer::alloc<T>(kj::fwd<Params>(params)...);
419 }
420
421 template <typename T, bool arena = PromiseDisposer::canArenaAllocate<T>()>
422 struct FreePromiseNode;
423 template <typename T>
424 struct FreePromiseNode<T, true> {
425 static inline void free(T* ptr) {
426 // The object will have been allocated in an arena, so we only want to run the destructor.
427 // The arena's memory will be freed separately.
428 kj::dtor(*ptr);
429 }
430 };
431 template <typename T>
432 struct FreePromiseNode<T, false> {
433 static inline void free(T* ptr) {
434 // The object will have been allocated separately on the heap.
435 return delete ptr;
436 }
437 };
438
439 template <typename T>
440 static void freePromise(T* ptr) {
441 // Free a PromiseNode originally allocated using `allocPromise<T>()`. The implementation of
442 // PromiseNode::destroy() must call this for any type that is allocated using allocPromise().
443 FreePromiseNode<T>::free(ptr);
444 }
445
446 template <typename T, typename... Params>
447 static kj::Own<T, PromiseDisposer> appendPromise(OwnPromiseNode&& next, Params&&... params) {
448 // Append a promise to the arena that currently ends with `next`. `next` is also still passed as
449 // the first parameter to the new object's constructor.
450 //
451 // This is semantically the same as `allocPromise()` except that it may avoid the underlying
452 // memory allocation. `next` must end up being destroyed before the new object (i.e. the new
453 // object must never transfer away ownership of `next`).
454 return PromiseDisposer::append<T>(kj::mv(next), kj::fwd<Params>(params)...);
455 }
456
457 // -------------------------------------------------------------------
458
459 inline ReadyNow::operator Promise<void>() const {
460 return PromiseNode::to<Promise<void>>(readyNow());
461 }
462
463 template <typename T>
464 inline NeverDone::operator Promise<T>() const {
465 return PromiseNode::to<Promise<T>>(neverDone());
466 }
467
468 // -------------------------------------------------------------------
469
470 class ImmediatePromiseNodeBase: public PromiseNode {
471 public:
472 ImmediatePromiseNodeBase();
473 ~ImmediatePromiseNodeBase() noexcept(false);
474
475 void onReady(Event* event) noexcept override;
476 void tracePromise(TraceBuilder& builder, bool stopAtNextEvent) override;
477 };
478
479 template <typename T>
480 class ImmediatePromiseNode final: public ImmediatePromiseNodeBase {
481 // A promise that has already been resolved to an immediate value or exception.
482
483 public:
484 ImmediatePromiseNode(ExceptionOr<T>&& result): result(kj::mv(result)) {}
485 void destroy() override { freePromise(this); }
486
487 void get(ExceptionOrValue& output) noexcept override {
488 output.as<T>() = kj::mv(result);
489 }
490
491 private:
492 ExceptionOr<T> result;
493 };
494
495 class ImmediateBrokenPromiseNode final: public ImmediatePromiseNodeBase {
496 public:
497 ImmediateBrokenPromiseNode(Exception&& exception);
498 void destroy() override;
499
500 void get(ExceptionOrValue& output) noexcept override;
501
502 private:
503 Exception exception;
504 };
505
506 template <typename T, T value>
507 class ConstPromiseNode: public ImmediatePromiseNodeBase {
508 public:
509 void destroy() override {}
510 void get(ExceptionOrValue& output) noexcept override {
511 output.as<T>() = value;
512 }
513 };
514
515 // -------------------------------------------------------------------
516
517 class AttachmentPromiseNodeBase: public PromiseNode {
518 public:
519 AttachmentPromiseNodeBase(OwnPromiseNode&& dependency);
520
521 void onReady(Event* event) noexcept override;
522 void get(ExceptionOrValue& output) noexcept override;
523 void tracePromise(TraceBuilder& builder, bool stopAtNextEvent) override;
524
525 private:
526 OwnPromiseNode dependency;
527
528 void dropDependency();
529
530 template <typename>
531 friend class AttachmentPromiseNode;
532 };
533
534 template <typename Attachment>
535 class AttachmentPromiseNode final: public AttachmentPromiseNodeBase {
536 // A PromiseNode that holds on to some object (usually, an Own<T>, but could be any movable
537 // object) until the promise resolves.
538
539 public:
540 AttachmentPromiseNode(OwnPromiseNode&& dependency, Attachment&& attachment)
541 : AttachmentPromiseNodeBase(kj::mv(dependency)),
542 attachment(kj::mv<Attachment>(attachment)) {}
543 void destroy() override { freePromise(this); }
544
545 ~AttachmentPromiseNode() noexcept(false) {
546 // We need to make sure the dependency is deleted before we delete the attachment because the
547 // dependency may be using the attachment.
548 dropDependency();
549 }
550
551 private:
552 Attachment attachment;
553 };
554
555 // -------------------------------------------------------------------
556
557 #if __GNUC__ >= 8 && !__clang__
558 // GCC 8's class-memaccess warning rightly does not like the memcpy()'s below, but there's no
559 // "legal" way for us to extract the content of a PTMF so too bad.
560 #pragma GCC diagnostic push
561 #pragma GCC diagnostic ignored "-Wclass-memaccess"
562 #if __GNUC__ >= 11
563 // GCC 11's array-bounds is similarly upset with us for digging into "private" implementation
564 // details. But the format is well-defined by the ABI which cannot change so please just let us
565 // do it kthx.
566 #pragma GCC diagnostic ignored "-Warray-bounds"
567 #endif
568 #endif
569
570 template <typename T, typename ReturnType, typename... ParamTypes>
571 void* getMethodStartAddress(T& obj, ReturnType (T::*method)(ParamTypes...));
572 template <typename T, typename ReturnType, typename... ParamTypes>
573 void* getMethodStartAddress(const T& obj, ReturnType (T::*method)(ParamTypes...) const);
574 // Given an object and a pointer-to-method, return the start address of the method's code. The
575 // intent is that this address can be used in a trace; addr2line should map it to the start of
576 // the function's definition. For virtual methods, this does a vtable lookup on `obj` to determine
577 // the address of the specific implementation (otherwise, `obj` wouldn't be needed).
578 //
579 // Note that if the method is overloaded or is a template, you will need to explicitly specify
580 // the param and return types, otherwise the compiler won't know which overload / template
581 // specialization you are requesting.
582
583 class PtmfHelper {
584 // This class is a private helper for GetFunctorStartAddress and getMethodStartAddress(). The
585 // class represents the internal representation of a pointer-to-member-function.
586
587 template <typename... ParamTypes>
588 friend struct GetFunctorStartAddress;
589 template <typename T, typename ReturnType, typename... ParamTypes>
590 friend void* getMethodStartAddress(T& obj, ReturnType (T::*method)(ParamTypes...));
591 template <typename T, typename ReturnType, typename... ParamTypes>
592 friend void* getMethodStartAddress(const T& obj, ReturnType (T::*method)(ParamTypes...) const);
593
594 #if __GNUG__
595
596 void* ptr;
597 ptrdiff_t adj;
598 // Layout of a pointer-to-member-function used by GCC and compatible compilers.
599
600 void* apply(const void* obj) {
601 #if defined(__arm__) || defined(__mips__) || defined(__aarch64__)
602 if (adj & 1) {
603 ptrdiff_t voff = (ptrdiff_t)ptr;
604 #else
605 ptrdiff_t voff = (ptrdiff_t)ptr;
606 if (voff & 1) {
607 voff &= ~1;
608 #endif
609 return *(void**)(*(char**)obj + voff);
610 } else {
611 return ptr;
612 }
613 }
614
615 #define BODY \
616 PtmfHelper result; \
617 static_assert(sizeof(p) == sizeof(result), "unknown ptmf layout"); \
618 memcpy(&result, &p, sizeof(result)); \
619 return result
620
621 #else // __GNUG__
622
623 void* apply(const void* obj) { return nullptr; }
624 // TODO(port): PTMF instruction address extraction
625
626 #define BODY return PtmfHelper{}
627
628 #endif // __GNUG__, else
629
630 template <typename R, typename C, typename... P, typename F>
631 static PtmfHelper from(F p) { BODY; }
632 // Create a PtmfHelper from some arbitrary pointer-to-member-function which is not
633 // overloaded nor a template. In this case the compiler is able to deduce the full function
634 // signature directly given the name since there is only one function with that name.
635
636 template <typename R, typename C, typename... P>
637 static PtmfHelper from(R (C::*p)(NoInfer<P>...)) { BODY; }
638 template <typename R, typename C, typename... P>
639 static PtmfHelper from(R (C::*p)(NoInfer<P>...) const) { BODY; }
640 // Create a PtmfHelper from some poniter-to-member-function which is a template. In this case
641 // the function must match exactly the containing type C, return type R, and parameter types P...
642 // GetFunctorStartAddress normally specifies exactly the correct C and R, but can only make a
643 // guess at P. Luckily, if the function parameters are template parameters then it's not
644 // necessary to be precise about P.
645 #undef BODY
646 };
647
648 #if __GNUC__ >= 8 && !__clang__
649 #pragma GCC diagnostic pop
650 #endif
651
652 template <typename T, typename ReturnType, typename... ParamTypes>
653 void* getMethodStartAddress(T& obj, ReturnType (T::*method)(ParamTypes...)) {
654 return PtmfHelper::from<ReturnType, T, ParamTypes...>(method).apply(&obj);
655 }
656 template <typename T, typename ReturnType, typename... ParamTypes>
657 void* getMethodStartAddress(const T& obj, ReturnType (T::*method)(ParamTypes...) const) {
658 return PtmfHelper::from<ReturnType, T, ParamTypes...>(method).apply(&obj);
659 }
660
661 template <typename... ParamTypes>
662 struct GetFunctorStartAddress {
663 // Given a functor (any object defining operator()), return the start address of the function,
664 // suitable for passing to addr2line to obtain a source file/line for debugging purposes.
665 //
666 // This turns out to be incredibly hard to implement in the presence of overloaded or templated
667 // functors. Therefore, we impose these specific restrictions, specific to our use case:
668 // - Overloading is not allowed, but templating is. (Generally we only intend to support lambdas
669 // anyway.)
670 // - The template parameters to GetFunctorStartAddress specify a hint as to the expected
671 // parameter types. If the functor is templated, its parameters must match exactly these types.
672 // (If it's not templated, ParamTypes are ignored.)
673
674 template <typename Func>
675 static void* apply(Func&& func) {
676 typedef decltype(func(instance<ParamTypes>()...)) ReturnType;
677 return PtmfHelper::from<ReturnType, Decay<Func>, ParamTypes...>(
678 &Decay<Func>::operator()).apply(&func);
679 }
680 };
681
682 template <>
683 struct GetFunctorStartAddress<Void&&>: public GetFunctorStartAddress<> {};
684 // Hack for TransformPromiseNode use case: an input type of `Void` indicates that the function
685 // actually has no parameters.
686
687 class TransformPromiseNodeBase: public PromiseNode {
688 public:
689 TransformPromiseNodeBase(OwnPromiseNode&& dependency, void* continuationTracePtr);
690
691 void onReady(Event* event) noexcept override;
692 void get(ExceptionOrValue& output) noexcept override;
693 void tracePromise(TraceBuilder& builder, bool stopAtNextEvent) override;
694
695 private:
696 OwnPromiseNode dependency;
697 void* continuationTracePtr;
698
699 void dropDependency();
700 void getDepResult(ExceptionOrValue& output);
701
702 virtual void getImpl(ExceptionOrValue& output) = 0;
703
704 template <typename, typename, typename, typename>
705 friend class TransformPromiseNode;
706 };
707
708 template <typename T, typename DepT, typename Func, typename ErrorFunc>
709 class TransformPromiseNode final: public TransformPromiseNodeBase {
710 // A PromiseNode that transforms the result of another PromiseNode through an application-provided
711 // function (implements `then()`).
712
713 public:
714 TransformPromiseNode(OwnPromiseNode&& dependency, Func&& func, ErrorFunc&& errorHandler,
715 void* continuationTracePtr)
716 : TransformPromiseNodeBase(kj::mv(dependency), continuationTracePtr),
717 func(kj::fwd<Func>(func)), errorHandler(kj::fwd<ErrorFunc>(errorHandler)) {}
718 void destroy() override { freePromise(this); }
719
720 ~TransformPromiseNode() noexcept(false) {
721 // We need to make sure the dependency is deleted before we delete the continuations because it
722 // is a common pattern for the continuations to hold ownership of objects that might be in-use
723 // by the dependency.
724 dropDependency();
725 }
726
727 private:
728 Func func;
729 ErrorFunc errorHandler;
730
731 void getImpl(ExceptionOrValue& output) override {
732 ExceptionOr<DepT> depResult;
733 getDepResult(depResult);
734 KJ_IF_MAYBE(depException, depResult.exception) {
735 output.as<T>() = handle(
736 MaybeVoidCaller<Exception, FixVoid<ReturnType<ErrorFunc, Exception>>>::apply(
737 errorHandler, kj::mv(*depException)));
738 } else KJ_IF_MAYBE(depValue, depResult.value) {
739 output.as<T>() = handle(MaybeVoidCaller<DepT, T>::apply(func, kj::mv(*depValue)));
740 }
741 }
742
743 ExceptionOr<T> handle(T&& value) {
744 return kj::mv(value);
745 }
746 ExceptionOr<T> handle(PropagateException::Bottom&& value) {
747 return ExceptionOr<T>(false, value.asException());
748 }
749 };
750
751 // -------------------------------------------------------------------
752
753 class ForkHubBase;
754 using OwnForkHubBase = Own<ForkHubBase, ForkHubBase>;
755
756 class ForkBranchBase: public PromiseNode {
757 public:
758 ForkBranchBase(OwnForkHubBase&& hub);
759 ~ForkBranchBase() noexcept(false);
760
761 void hubReady() noexcept;
762 // Called by the hub to indicate that it is ready.
763
764 // implements PromiseNode ------------------------------------------
765 void onReady(Event* event) noexcept override;
766 void tracePromise(TraceBuilder& builder, bool stopAtNextEvent) override;
767
768 protected:
769 inline ExceptionOrValue& getHubResultRef();
770
771 void releaseHub(ExceptionOrValue& output);
772 // Release the hub. If an exception is thrown, add it to `output`.
773
774 private:
775 OnReadyEvent onReadyEvent;
776
777 OwnForkHubBase hub;
778 ForkBranchBase* next = nullptr;
779 ForkBranchBase** prevPtr = nullptr;
780
781 friend class ForkHubBase;
782 };
783
784 template <typename T> T copyOrAddRef(T& t) { return t; }
785 template <typename T> Own<T> copyOrAddRef(Own<T>& t) { return t->addRef(); }
786 template <typename T> Maybe<Own<T>> copyOrAddRef(Maybe<Own<T>>& t) {
787 return t.map([](Own<T>& ptr) {
788 return ptr->addRef();
789 });
790 }
791
792 template <typename T>
793 class ForkBranch final: public ForkBranchBase {
794 // A PromiseNode that implements one branch of a fork -- i.e. one of the branches that receives
795 // a const reference.
796
797 public:
798 ForkBranch(OwnForkHubBase&& hub): ForkBranchBase(kj::mv(hub)) {}
799 void destroy() override { freePromise(this); }
800
801 void get(ExceptionOrValue& output) noexcept override {
802 ExceptionOr<T>& hubResult = getHubResultRef().template as<T>();
803 KJ_IF_MAYBE(value, hubResult.value) {
804 output.as<T>().value = copyOrAddRef(*value);
805 } else {
806 output.as<T>().value = nullptr;
807 }
808 output.exception = hubResult.exception;
809 releaseHub(output);
810 }
811 };
812
813 template <typename T, size_t index>
814 class SplitBranch final: public ForkBranchBase {
815 // A PromiseNode that implements one branch of a fork -- i.e. one of the branches that receives
816 // a const reference.
817
818 public:
819 SplitBranch(OwnForkHubBase&& hub): ForkBranchBase(kj::mv(hub)) {}
820 void destroy() override { freePromise(this); }
821
822 typedef kj::Decay<decltype(kj::get<index>(kj::instance<T>()))> Element;
823
824 void get(ExceptionOrValue& output) noexcept override {
825 ExceptionOr<T>& hubResult = getHubResultRef().template as<T>();
826 KJ_IF_MAYBE(value, hubResult.value) {
827 output.as<Element>().value = kj::mv(kj::get<index>(*value));
828 } else {
829 output.as<Element>().value = nullptr;
830 }
831 output.exception = hubResult.exception;
832 releaseHub(output);
833 }
834 };
835
836 // -------------------------------------------------------------------
837
838 class ForkHubBase: public PromiseArenaMember, protected Event {
839 public:
840 ForkHubBase(OwnPromiseNode&& inner, ExceptionOrValue& resultRef, SourceLocation location);
841
842 inline ExceptionOrValue& getResultRef() { return resultRef; }
843
844 inline bool isShared() const { return refcount > 1; }
845
846 Own<ForkHubBase, ForkHubBase> addRef() {
847 ++refcount;
848 return Own<ForkHubBase, ForkHubBase>(this);
849 }
850
851 static void dispose(ForkHubBase* obj) {
852 if (--obj->refcount == 0) {
853 PromiseDisposer::dispose(obj);
854 }
855 }
856
857 private:
858 uint refcount = 1;
859 // We manually implement refcounting for ForkHubBase so that we can use it together with
860 // PromiseDisposer's arena allocation.
861
862 OwnPromiseNode inner;
863 ExceptionOrValue& resultRef;
864
865 ForkBranchBase* headBranch = nullptr;
866 ForkBranchBase** tailBranch = &headBranch;
867 // Tail becomes null once the inner promise is ready and all branches have been notified.
868
869 Maybe<Own<Event>> fire() override;
870 void traceEvent(TraceBuilder& builder) override;
871
872 friend class ForkBranchBase;
873 };
874
875 template <typename T>
876 class ForkHub final: public ForkHubBase {
877 // A PromiseNode that implements the hub of a fork. The first call to Promise::fork() replaces
878 // the promise's outer node with a ForkHub, and subsequent calls add branches to that hub (if
879 // possible).
880
881 public:
882 ForkHub(OwnPromiseNode&& inner, SourceLocation location)
883 : ForkHubBase(kj::mv(inner), result, location) {}
884 void destroy() override { freePromise(this); }
885
886 Promise<_::UnfixVoid<T>> addBranch() {
887 return _::PromiseNode::to<Promise<_::UnfixVoid<T>>>(
888 allocPromise<ForkBranch<T>>(addRef()));
889 }
890
891 _::SplitTuplePromise<T> split(SourceLocation location) {
892 return splitImpl(MakeIndexes<tupleSize<T>()>(), location);
893 }
894
895 private:
896 ExceptionOr<T> result;
897
898 template <size_t... indexes>
899 _::SplitTuplePromise<T> splitImpl(Indexes<indexes...>, SourceLocation location) {
900 return kj::tuple(addSplit<indexes>(location)...);
901 }
902
903 template <size_t index>
904 ReducePromises<typename SplitBranch<T, index>::Element> addSplit(SourceLocation location) {
905 return _::PromiseNode::to<ReducePromises<typename SplitBranch<T, index>::Element>>(
906 maybeChain(allocPromise<SplitBranch<T, index>>(addRef()),
907 implicitCast<typename SplitBranch<T, index>::Element*>(nullptr),
908 location));
909 }
910 };
911
912 inline ExceptionOrValue& ForkBranchBase::getHubResultRef() {
913 return hub->getResultRef();
914 }
915
916 // -------------------------------------------------------------------
917
918 class ChainPromiseNode final: public PromiseNode, public Event {
919 // Promise node which reduces Promise<Promise<T>> to Promise<T>.
920 //
921 // `Event` is only a public base class because otherwise we can't cast Own<ChainPromiseNode> to
922 // Own<Event>. Ugh, templates and private...
923
924 public:
925 explicit ChainPromiseNode(OwnPromiseNode inner, SourceLocation location);
926 ~ChainPromiseNode() noexcept(false);
927 void destroy() override;
928
929 void onReady(Event* event) noexcept override;
930 void setSelfPointer(OwnPromiseNode* selfPtr) noexcept override;
931 void get(ExceptionOrValue& output) noexcept override;
932 void tracePromise(TraceBuilder& builder, bool stopAtNextEvent) override;
933
934 private:
935 enum State {
936 STEP1,
937 STEP2
938 };
939
940 State state;
941
942 OwnPromiseNode inner;
943 // In STEP1, a PromiseNode for a Promise<T>.
944 // In STEP2, a PromiseNode for a T.
945
946 Event* onReadyEvent = nullptr;
947 OwnPromiseNode* selfPtr = nullptr;
948
949 Maybe<Own<Event>> fire() override;
950 void traceEvent(TraceBuilder& builder) override;
951 };
952
953 template <typename T>
954 OwnPromiseNode maybeChain(OwnPromiseNode&& node, Promise<T>*, SourceLocation location) {
955 return appendPromise<ChainPromiseNode>(kj::mv(node), location);
956 }
957
958 template <typename T>
959 OwnPromiseNode&& maybeChain(OwnPromiseNode&& node, T*, SourceLocation location) {
960 return kj::mv(node);
961 }
962
963 template <typename T, typename Result = decltype(T::reducePromise(instance<Promise<T>>()))>
964 inline Result maybeReduce(Promise<T>&& promise, bool) {
965 return T::reducePromise(kj::mv(promise));
966 }
967
968 template <typename T>
969 inline Promise<T> maybeReduce(Promise<T>&& promise, ...) {
970 return kj::mv(promise);
971 }
972
973 // -------------------------------------------------------------------
974
975 class ExclusiveJoinPromiseNode final: public PromiseNode {
976 public:
977 ExclusiveJoinPromiseNode(OwnPromiseNode left, OwnPromiseNode right, SourceLocation location);
978 ~ExclusiveJoinPromiseNode() noexcept(false);
979 void destroy() override;
980
981 void onReady(Event* event) noexcept override;
982 void get(ExceptionOrValue& output) noexcept override;
983 void tracePromise(TraceBuilder& builder, bool stopAtNextEvent) override;
984
985 private:
986 class Branch: public Event {
987 public:
988 Branch(ExclusiveJoinPromiseNode& joinNode, OwnPromiseNode dependency,
989 SourceLocation location);
990 ~Branch() noexcept(false);
991
992 bool get(ExceptionOrValue& output);
993 // Returns true if this is the side that finished.
994
995 Maybe<Own<Event>> fire() override;
996 void traceEvent(TraceBuilder& builder) override;
997
998 private:
999 ExclusiveJoinPromiseNode& joinNode;
1000 OwnPromiseNode dependency;
1001
1002 friend class ExclusiveJoinPromiseNode;
1003 };
1004
1005 Branch left;
1006 Branch right;
1007 OnReadyEvent onReadyEvent;
1008 };
1009
1010 // -------------------------------------------------------------------
1011
1012 enum class ArrayJoinBehavior {
1013 LAZY,
1014 EAGER,
1015 };
1016
1017 class ArrayJoinPromiseNodeBase: public PromiseNode {
1018 public:
1019 ArrayJoinPromiseNodeBase(Array<OwnPromiseNode> promises,
1020 ExceptionOrValue* resultParts, size_t partSize,
1021 SourceLocation location,
1022 ArrayJoinBehavior joinBehavior);
1023 ~ArrayJoinPromiseNodeBase() noexcept(false);
1024
1025 void onReady(Event* event) noexcept override final;
1026 void get(ExceptionOrValue& output) noexcept override final;
1027 void tracePromise(TraceBuilder& builder, bool stopAtNextEvent) override final;
1028
1029 protected:
1030 virtual void getNoError(ExceptionOrValue& output) noexcept = 0;
1031 // Called to compile the result only in the case where there were no errors.
1032
1033 private:
1034 const ArrayJoinBehavior joinBehavior;
1035
1036 uint countLeft;
1037 OnReadyEvent onReadyEvent;
1038 bool armed = false;
1039
1040 class Branch final: public Event {
1041 public:
1042 Branch(ArrayJoinPromiseNodeBase& joinNode, OwnPromiseNode dependency,
1043 ExceptionOrValue& output, SourceLocation location);
1044 ~Branch() noexcept(false);
1045
1046 Maybe<Own<Event>> fire() override;
1047 void traceEvent(TraceBuilder& builder) override;
1048
1049 private:
1050 ArrayJoinPromiseNodeBase& joinNode;
1051 OwnPromiseNode dependency;
1052 ExceptionOrValue& output;
1053
1054 friend class ArrayJoinPromiseNodeBase;
1055 };
1056
1057 Array<Branch> branches;
1058 };
1059
1060 template <typename T>
1061 class ArrayJoinPromiseNode final: public ArrayJoinPromiseNodeBase {
1062 public:
1063 ArrayJoinPromiseNode(Array<OwnPromiseNode> promises,
1064 Array<ExceptionOr<T>> resultParts,
1065 SourceLocation location,
1066 ArrayJoinBehavior joinBehavior)
1067 : ArrayJoinPromiseNodeBase(kj::mv(promises), resultParts.begin(), sizeof(ExceptionOr<T>),
1068 location, joinBehavior),
1069 resultParts(kj::mv(resultParts)) {}
1070 void destroy() override { freePromise(this); }
1071
1072 protected:
1073 void getNoError(ExceptionOrValue& output) noexcept override {
1074 auto builder = heapArrayBuilder<T>(resultParts.size());
1075 for (auto& part: resultParts) {
1076 KJ_IASSERT(part.value != nullptr,
1077 "Bug in KJ promise framework: Promise result had neither value no exception.");
1078 builder.add(kj::mv(*_::readMaybe(part.value)));
1079 }
1080 output.as<Array<T>>() = builder.finish();
1081 }
1082
1083 private:
1084 Array<ExceptionOr<T>> resultParts;
1085 };
1086
1087 template <>
1088 class ArrayJoinPromiseNode<void> final: public ArrayJoinPromiseNodeBase {
1089 public:
1090 ArrayJoinPromiseNode(Array<OwnPromiseNode> promises,
1091 Array<ExceptionOr<_::Void>> resultParts,
1092 SourceLocation location,
1093 ArrayJoinBehavior joinBehavior);
1094 ~ArrayJoinPromiseNode();
1095 void destroy() override;
1096
1097 protected:
1098 void getNoError(ExceptionOrValue& output) noexcept override;
1099
1100 private:
1101 Array<ExceptionOr<_::Void>> resultParts;
1102 };
1103
1104 // -------------------------------------------------------------------
1105
1106 class EagerPromiseNodeBase: public PromiseNode, protected Event {
1107 // A PromiseNode that eagerly evaluates its dependency even if its dependent does not eagerly
1108 // evaluate it.
1109
1110 public:
1111 EagerPromiseNodeBase(OwnPromiseNode&& dependency, ExceptionOrValue& resultRef,
1112 SourceLocation location);
1113
1114 void onReady(Event* event) noexcept override;
1115 void tracePromise(TraceBuilder& builder, bool stopAtNextEvent) override;
1116
1117 private:
1118 OwnPromiseNode dependency;
1119 OnReadyEvent onReadyEvent;
1120
1121 ExceptionOrValue& resultRef;
1122
1123 Maybe<Own<Event>> fire() override;
1124 void traceEvent(TraceBuilder& builder) override;
1125 };
1126
1127 template <typename T>
1128 class EagerPromiseNode final: public EagerPromiseNodeBase {
1129 public:
1130 EagerPromiseNode(OwnPromiseNode&& dependency, SourceLocation location)
1131 : EagerPromiseNodeBase(kj::mv(dependency), result, location) {}
1132 void destroy() override { freePromise(this); }
1133
1134 void get(ExceptionOrValue& output) noexcept override {
1135 output.as<T>() = kj::mv(result);
1136 }
1137
1138 private:
1139 ExceptionOr<T> result;
1140 };
1141
1142 template <typename T>
1143 OwnPromiseNode spark(OwnPromiseNode&& node, SourceLocation location) {
1144 // Forces evaluation of the given node to begin as soon as possible, even if no one is waiting
1145 // on it.
1146 return appendPromise<EagerPromiseNode<T>>(kj::mv(node), location);
1147 }
1148
1149 // -------------------------------------------------------------------
1150
1151 class AdapterPromiseNodeBase: public PromiseNode {
1152 public:
1153 void onReady(Event* event) noexcept override;
1154 void tracePromise(TraceBuilder& builder, bool stopAtNextEvent) override;
1155
1156 protected:
1157 inline void setReady() {
1158 onReadyEvent.arm();
1159 }
1160
1161 private:
1162 OnReadyEvent onReadyEvent;
1163 };
1164
1165 template <typename T, typename Adapter>
1166 class AdapterPromiseNode final: public AdapterPromiseNodeBase,
1167 private PromiseFulfiller<UnfixVoid<T>> {
1168 // A PromiseNode that wraps a PromiseAdapter.
1169
1170 public:
1171 template <typename... Params>
1172 AdapterPromiseNode(Params&&... params)
1173 : adapter(static_cast<PromiseFulfiller<UnfixVoid<T>>&>(*this), kj::fwd<Params>(params)...) {}
1174 void destroy() override { freePromise(this); }
1175
1176 void get(ExceptionOrValue& output) noexcept override {
1177 KJ_IREQUIRE(!isWaiting());
1178 output.as<T>() = kj::mv(result);
1179 }
1180
1181 private:
1182 ExceptionOr<T> result;
1183 bool waiting = true;
1184 Adapter adapter;
1185
1186 void fulfill(T&& value) override {
1187 if (waiting) {
1188 waiting = false;
1189 result = ExceptionOr<T>(kj::mv(value));
1190 setReady();
1191 }
1192 }
1193
1194 void reject(Exception&& exception) override {
1195 if (waiting) {
1196 waiting = false;
1197 result = ExceptionOr<T>(false, kj::mv(exception));
1198 setReady();
1199 }
1200 }
1201
1202 bool isWaiting() override {
1203 return waiting;
1204 }
1205 };
1206
1207 // -------------------------------------------------------------------
1208
1209 class FiberBase: public PromiseNode, private Event {
1210 // Base class for the outer PromiseNode representing a fiber.
1211
1212 public:
1213 explicit FiberBase(size_t stackSize, _::ExceptionOrValue& result, SourceLocation location);
1214 explicit FiberBase(const FiberPool& pool, _::ExceptionOrValue& result, SourceLocation location);
1215 ~FiberBase() noexcept(false);
1216
1217 void start() { armDepthFirst(); }
1218 // Call immediately after construction to begin executing the fiber.
1219
1220 class WaitDoneEvent;
1221
1222 void onReady(_::Event* event) noexcept override;
1223 void tracePromise(TraceBuilder& builder, bool stopAtNextEvent) override;
1224
1225 protected:
1226 bool isFinished() { return state == FINISHED; }
1227 void cancel();
1228
1229 private:
1230 enum { WAITING, RUNNING, CANCELED, FINISHED } state;
1231
1232 _::PromiseNode* currentInner = nullptr;
1233 OnReadyEvent onReadyEvent;
1234 Own<FiberStack> stack;
1235 _::ExceptionOrValue& result;
1236
1237 void run();
1238 virtual void runImpl(WaitScope& waitScope) = 0;
1239
1240 Maybe<Own<Event>> fire() override;
1241 void traceEvent(TraceBuilder& builder) override;
1242 // Implements Event. Each time the event is fired, switchToFiber() is called.
1243
1244 friend class FiberStack;
1245 friend void _::waitImpl(_::OwnPromiseNode&& node, _::ExceptionOrValue& result,
1246 WaitScope& waitScope, SourceLocation location);
1247 friend bool _::pollImpl(_::PromiseNode& node, WaitScope& waitScope, SourceLocation location);
1248 };
1249
1250 template <typename Func>
1251 class Fiber final: public FiberBase {
1252 public:
1253 explicit Fiber(size_t stackSize, Func&& func, SourceLocation location)
1254 : FiberBase(stackSize, result, location), func(kj::fwd<Func>(func)) {}
1255 explicit Fiber(const FiberPool& pool, Func&& func, SourceLocation location)
1256 : FiberBase(pool, result, location), func(kj::fwd<Func>(func)) {}
1257 ~Fiber() noexcept(false) { cancel(); }
1258 void destroy() override { freePromise(this); }
1259
1260 typedef FixVoid<decltype(kj::instance<Func&>()(kj::instance<WaitScope&>()))> ResultType;
1261
1262 void get(ExceptionOrValue& output) noexcept override {
1263 KJ_IREQUIRE(isFinished());
1264 output.as<ResultType>() = kj::mv(result);
1265 }
1266
1267 private:
1268 Func func;
1269 ExceptionOr<ResultType> result;
1270
1271 void runImpl(WaitScope& waitScope) override {
1272 result.template as<ResultType>() =
1273 MaybeVoidCaller<WaitScope&, ResultType>::apply(func, waitScope);
1274 }
1275 };
1276
1277 } // namespace _ (private)
1278
1279 // =======================================================================================
1280
1281 template <typename T>
1282 Promise<T>::Promise(_::FixVoid<T> value)
1283 : PromiseBase(_::allocPromise<_::ImmediatePromiseNode<_::FixVoid<T>>>(kj::mv(value))) {}
1284
1285 template <typename T>
1286 Promise<T>::Promise(kj::Exception&& exception)
1287 : PromiseBase(_::allocPromise<_::ImmediateBrokenPromiseNode>(kj::mv(exception))) {}
1288
1289 template <typename T>
1290 template <typename Func, typename ErrorFunc>
1291 PromiseForResult<Func, T> Promise<T>::then(Func&& func, ErrorFunc&& errorHandler,
1292 SourceLocation location) {
1293 typedef _::FixVoid<_::ReturnType<Func, T>> ResultT;
1294
1295 void* continuationTracePtr = _::GetFunctorStartAddress<_::FixVoid<T>&&>::apply(func);
1296 _::OwnPromiseNode intermediate =
1297 _::appendPromise<_::TransformPromiseNode<ResultT, _::FixVoid<T>, Func, ErrorFunc>>(
1298 kj::mv(node), kj::fwd<Func>(func), kj::fwd<ErrorFunc>(errorHandler),
1299 continuationTracePtr);
1300 auto result = _::PromiseNode::to<_::ChainPromises<_::ReturnType<Func, T>>>(
1301 _::maybeChain(kj::mv(intermediate), implicitCast<ResultT*>(nullptr), location));
1302 return _::maybeReduce(kj::mv(result), false);
1303 }
1304
1305 namespace _ { // private
1306
1307 template <typename T>
1308 struct IdentityFunc {
1309 inline T operator()(T&& value) const {
1310 return kj::mv(value);
1311 }
1312 };
1313 template <typename T>
1314 struct IdentityFunc<Promise<T>> {
1315 inline Promise<T> operator()(T&& value) const {
1316 return kj::mv(value);
1317 }
1318 };
1319 template <>
1320 struct IdentityFunc<void> {
1321 inline void operator()() const {}
1322 };
1323 template <>
1324 struct IdentityFunc<Promise<void>> {
1325 Promise<void> operator()() const;
1326 // This can't be inline because it will make the translation unit depend on kj-async. Awkwardly,
1327 // Cap'n Proto relies on being able to include this header without creating such a link-time
1328 // dependency.
1329 };
1330
1331 } // namespace _ (private)
1332
1333 template <typename T>
1334 template <typename ErrorFunc>
1335 Promise<T> Promise<T>::catch_(ErrorFunc&& errorHandler, SourceLocation location) {
1336 // then()'s ErrorFunc can only return a Promise if Func also returns a Promise. In this case,
1337 // Func is being filled in automatically. We want to make sure ErrorFunc can return a Promise,
1338 // but we don't want the extra overhead of promise chaining if ErrorFunc doesn't actually
1339 // return a promise. So we make our Func return match ErrorFunc.
1340 typedef _::IdentityFunc<decltype(errorHandler(instance<Exception&&>()))> Func;
1341 typedef _::FixVoid<_::ReturnType<Func, T>> ResultT;
1342
1343 // The reason catch_() isn't simply implemented in terms of then() is because we want the trace
1344 // pointer to be based on ErrorFunc rather than Func.
1345 void* continuationTracePtr = _::GetFunctorStartAddress<kj::Exception&&>::apply(errorHandler);
1346 _::OwnPromiseNode intermediate =
1347 _::appendPromise<_::TransformPromiseNode<ResultT, _::FixVoid<T>, Func, ErrorFunc>>(
1348 kj::mv(node), Func(), kj::fwd<ErrorFunc>(errorHandler), continuationTracePtr);
1349 auto result = _::PromiseNode::to<_::ChainPromises<_::ReturnType<Func, T>>>(
1350 _::maybeChain(kj::mv(intermediate), implicitCast<ResultT*>(nullptr), location));
1351 return _::maybeReduce(kj::mv(result), false);
1352 }
1353
1354 template <typename T>
1355 T Promise<T>::wait(WaitScope& waitScope, SourceLocation location) {
1356 _::ExceptionOr<_::FixVoid<T>> result;
1357 _::waitImpl(kj::mv(node), result, waitScope, location);
1358 return convertToReturn(kj::mv(result));
1359 }
1360
1361 template <typename T>
1362 bool Promise<T>::poll(WaitScope& waitScope, SourceLocation location) {
1363 return _::pollImpl(*node, waitScope, location);
1364 }
1365
1366 template <typename T>
1367 ForkedPromise<T> Promise<T>::fork(SourceLocation location) {
1368 return ForkedPromise<T>(false,
1369 _::PromiseDisposer::alloc<_::ForkHub<_::FixVoid<T>>, _::ForkHubBase>(kj::mv(node), location));
1370 }
1371
1372 template <typename T>
1373 Promise<T> ForkedPromise<T>::addBranch() {
1374 return hub->addBranch();
1375 }
1376
1377 template <typename T>
1378 bool ForkedPromise<T>::hasBranches() {
1379 return hub->isShared();
1380 }
1381
1382 template <typename T>
1383 _::SplitTuplePromise<T> Promise<T>::split(SourceLocation location) {
1384 return _::PromiseDisposer::alloc<_::ForkHub<_::FixVoid<T>>, _::ForkHubBase>(
1385 kj::mv(node), location)->split(location);
1386 }
1387
1388 template <typename T>
1389 Promise<T> Promise<T>::exclusiveJoin(Promise<T>&& other, SourceLocation location) {
1390 return Promise(false, _::appendPromise<_::ExclusiveJoinPromiseNode>(
1391 kj::mv(node), kj::mv(other.node), location));
1392 }
1393
1394 template <typename T>
1395 template <typename... Attachments>
1396 Promise<T> Promise<T>::attach(Attachments&&... attachments) {
1397 return Promise(false, _::appendPromise<_::AttachmentPromiseNode<Tuple<Attachments...>>>(
1398 kj::mv(node), kj::tuple(kj::fwd<Attachments>(attachments)...)));
1399 }
1400
1401 template <typename T>
1402 template <typename ErrorFunc>
1403 Promise<T> Promise<T>::eagerlyEvaluate(ErrorFunc&& errorHandler, SourceLocation location) {
1404 // See catch_() for commentary.
1405 return Promise(false, _::spark<_::FixVoid<T>>(then(
1406 _::IdentityFunc<decltype(errorHandler(instance<Exception&&>()))>(),
1407 kj::fwd<ErrorFunc>(errorHandler)).node, location));
1408 }
1409
1410 template <typename T>
1411 Promise<T> Promise<T>::eagerlyEvaluate(decltype(nullptr), SourceLocation location) {
1412 return Promise(false, _::spark<_::FixVoid<T>>(kj::mv(node), location));
1413 }
1414
1415 template <typename T>
1416 kj::String Promise<T>::trace() {
1417 return PromiseBase::trace();
1418 }
1419
1420 template <typename T, T value>
1421 inline Promise<T> constPromise() {
1422 static _::ConstPromiseNode<T, value> NODE;
1423 return _::PromiseNode::to<Promise<T>>(_::OwnPromiseNode(&NODE));
1424 }
1425
1426 template <typename Func>
1427 inline PromiseForResult<Func, void> evalLater(Func&& func) {
1428 return _::yield().then(kj::fwd<Func>(func), _::PropagateException());
1429 }
1430
1431 template <typename Func>
1432 inline PromiseForResult<Func, void> evalLast(Func&& func) {
1433 return _::yieldHarder().then(kj::fwd<Func>(func), _::PropagateException());
1434 }
1435
1436 template <typename Func>
1437 inline PromiseForResult<Func, void> evalNow(Func&& func) {
1438 PromiseForResult<Func, void> result = nullptr;
1439 KJ_IF_MAYBE(e, kj::runCatchingExceptions([&]() {
1440 result = func();
1441 })) {
1442 result = kj::mv(*e);
1443 }
1444 return result;
1445 }
1446
1447 template <typename Func>
1448 struct RetryOnDisconnect_ {
1449 static inline PromiseForResult<Func, void> apply(Func&& func) {
1450 return evalLater([func = kj::mv(func)]() mutable -> PromiseForResult<Func, void> {
1451 auto promise = evalNow(func);
1452 return promise.catch_([func = kj::mv(func)](kj::Exception&& e) mutable -> PromiseForResult<Func, void> {
1453 if (e.getType() == kj::Exception::Type::DISCONNECTED) {
1454 return func();
1455 } else {
1456 return kj::mv(e);
1457 }
1458 });
1459 });
1460 }
1461 };
1462 template <typename Func>
1463 struct RetryOnDisconnect_<Func&> {
1464 // Specialization for references. Needed because the syntax for capturing references in a
1465 // lambda is different. :(
1466 static inline PromiseForResult<Func, void> apply(Func& func) {
1467 auto promise = evalLater(func);
1468 return promise.catch_([&func](kj::Exception&& e) -> PromiseForResult<Func, void> {
1469 if (e.getType() == kj::Exception::Type::DISCONNECTED) {
1470 return func();
1471 } else {
1472 return kj::mv(e);
1473 }
1474 });
1475 }
1476 };
1477
1478 template <typename Func>
1479 inline PromiseForResult<Func, void> retryOnDisconnect(Func&& func) {
1480 return RetryOnDisconnect_<Func>::apply(kj::fwd<Func>(func));
1481 }
1482
1483 template <typename Func>
1484 inline PromiseForResult<Func, WaitScope&> startFiber(
1485 size_t stackSize, Func&& func, SourceLocation location) {
1486 typedef _::FixVoid<_::ReturnType<Func, WaitScope&>> ResultT;
1487
1488 auto intermediate = _::allocPromise<_::Fiber<Func>>(
1489 stackSize, kj::fwd<Func>(func), location);
1490 intermediate->start();
1491 auto result = _::PromiseNode::to<_::ChainPromises<_::ReturnType<Func, WaitScope&>>>(
1492 _::maybeChain(kj::mv(intermediate), implicitCast<ResultT*>(nullptr), location));
1493 return _::maybeReduce(kj::mv(result), false);
1494 }
1495
1496 template <typename Func>
1497 inline PromiseForResult<Func, WaitScope&> FiberPool::startFiber(
1498 Func&& func, SourceLocation location) const {
1499 typedef _::FixVoid<_::ReturnType<Func, WaitScope&>> ResultT;
1500
1501 auto intermediate = _::allocPromise<_::Fiber<Func>>(
1502 *this, kj::fwd<Func>(func), location);
1503 intermediate->start();
1504 auto result = _::PromiseNode::to<_::ChainPromises<_::ReturnType<Func, WaitScope&>>>(
1505 _::maybeChain(kj::mv(intermediate), implicitCast<ResultT*>(nullptr), location));
1506 return _::maybeReduce(kj::mv(result), false);
1507 }
1508
1509 template <typename T>
1510 template <typename ErrorFunc>
1511 void Promise<T>::detach(ErrorFunc&& errorHandler) {
1512 return _::detach(then([](T&&) {}, kj::fwd<ErrorFunc>(errorHandler)));
1513 }
1514
1515 template <>
1516 template <typename ErrorFunc>
1517 void Promise<void>::detach(ErrorFunc&& errorHandler) {
1518 return _::detach(then([]() {}, kj::fwd<ErrorFunc>(errorHandler)));
1519 }
1520
1521 template <typename T>
1522 Promise<Array<T>> joinPromises(Array<Promise<T>>&& promises, SourceLocation location) {
1523 return _::PromiseNode::to<Promise<Array<T>>>(_::allocPromise<_::ArrayJoinPromiseNode<T>>(
1524 KJ_MAP(p, promises) { return _::PromiseNode::from(kj::mv(p)); },
1525 heapArray<_::ExceptionOr<T>>(promises.size()), location,
1526 _::ArrayJoinBehavior::LAZY));
1527 }
1528
1529 template <typename T>
1530 Promise<Array<T>> joinPromisesFailFast(Array<Promise<T>>&& promises, SourceLocation location) {
1531 return _::PromiseNode::to<Promise<Array<T>>>(_::allocPromise<_::ArrayJoinPromiseNode<T>>(
1532 KJ_MAP(p, promises) { return _::PromiseNode::from(kj::mv(p)); },
1533 heapArray<_::ExceptionOr<T>>(promises.size()), location,
1534 _::ArrayJoinBehavior::EAGER));
1535 }
1536
1537 // =======================================================================================
1538
1539 namespace _ { // private
1540
1541 class WeakFulfillerBase: protected kj::Disposer {
1542 protected:
1543 WeakFulfillerBase(): inner(nullptr) {}
1544 virtual ~WeakFulfillerBase() noexcept(false) {}
1545
1546 template <typename T>
1547 inline PromiseFulfiller<T>* getInner() {
1548 return static_cast<PromiseFulfiller<T>*>(inner);
1549 };
1550 template <typename T>
1551 inline void setInner(PromiseFulfiller<T>* ptr) {
1552 inner = ptr;
1553 };
1554
1555 private:
1556 mutable PromiseRejector* inner;
1557
1558 void disposeImpl(void* pointer) const override;
1559 };
1560
1561 template <typename T>
1562 class WeakFulfiller final: public PromiseFulfiller<T>, public WeakFulfillerBase {
1563 // A wrapper around PromiseFulfiller which can be detached.
1564 //
1565 // There are a couple non-trivialities here:
1566 // - If the WeakFulfiller is discarded, we want the promise it fulfills to be implicitly
1567 // rejected.
1568 // - We cannot destroy the WeakFulfiller until the application has discarded it *and* it has been
1569 // detached from the underlying fulfiller, because otherwise the later detach() call will go
1570 // to a dangling pointer. Essentially, WeakFulfiller is reference counted, although the
1571 // refcount never goes over 2 and we manually implement the refcounting because we need to do
1572 // other special things when each side detaches anyway. To this end, WeakFulfiller is its own
1573 // Disposer -- dispose() is called when the application discards its owned pointer to the
1574 // fulfiller and detach() is called when the promise is destroyed.
1575
1576 public:
1577 KJ_DISALLOW_COPY_AND_MOVE(WeakFulfiller);
1578
1579 static kj::Own<WeakFulfiller> make() {
1580 WeakFulfiller* ptr = new WeakFulfiller;
1581 return Own<WeakFulfiller>(ptr, *ptr);
1582 }
1583
1584 void fulfill(FixVoid<T>&& value) override {
1585 if (getInner<T>() != nullptr) {
1586 getInner<T>()->fulfill(kj::mv(value));
1587 }
1588 }
1589
1590 void reject(Exception&& exception) override {
1591 if (getInner<T>() != nullptr) {
1592 getInner<T>()->reject(kj::mv(exception));
1593 }
1594 }
1595
1596 bool isWaiting() override {
1597 return getInner<T>() != nullptr && getInner<T>()->isWaiting();
1598 }
1599
1600 void attach(PromiseFulfiller<T>& newInner) {
1601 setInner<T>(&newInner);
1602 }
1603
1604 void detach(PromiseFulfiller<T>& from) {
1605 if (getInner<T>() == nullptr) {
1606 // Already disposed.
1607 delete this;
1608 } else {
1609 KJ_IREQUIRE(getInner<T>() == &from);
1610 setInner<T>(nullptr);
1611 }
1612 }
1613
1614 private:
1615 WeakFulfiller() {}
1616 };
1617
1618 template <typename T>
1619 class PromiseAndFulfillerAdapter {
1620 public:
1621 PromiseAndFulfillerAdapter(PromiseFulfiller<T>& fulfiller,
1622 WeakFulfiller<T>& wrapper)
1623 : fulfiller(fulfiller), wrapper(wrapper) {
1624 wrapper.attach(fulfiller);
1625 }
1626
1627 ~PromiseAndFulfillerAdapter() noexcept(false) {
1628 wrapper.detach(fulfiller);
1629 }
1630
1631 private:
1632 PromiseFulfiller<T>& fulfiller;
1633 WeakFulfiller<T>& wrapper;
1634 };
1635
1636 } // namespace _ (private)
1637
1638 template <typename T>
1639 template <typename Func>
1640 bool PromiseFulfiller<T>::rejectIfThrows(Func&& func) {
1641 KJ_IF_MAYBE(exception, kj::runCatchingExceptions(kj::mv(func))) {
1642 reject(kj::mv(*exception));
1643 return false;
1644 } else {
1645 return true;
1646 }
1647 }
1648
1649 template <typename Func>
1650 bool PromiseFulfiller<void>::rejectIfThrows(Func&& func) {
1651 KJ_IF_MAYBE(exception, kj::runCatchingExceptions(kj::mv(func))) {
1652 reject(kj::mv(*exception));
1653 return false;
1654 } else {
1655 return true;
1656 }
1657 }
1658
1659 template <typename T, typename Adapter, typename... Params>
1660 _::ReducePromises<T> newAdaptedPromise(Params&&... adapterConstructorParams) {
1661 _::OwnPromiseNode intermediate(
1662 _::allocPromise<_::AdapterPromiseNode<_::FixVoid<T>, Adapter>>(
1663 kj::fwd<Params>(adapterConstructorParams)...));
1664 // We can't capture SourceLocation in this function's arguments since it is a vararg template. :(
1665 return _::PromiseNode::to<_::ReducePromises<T>>(
1666 _::maybeChain(kj::mv(intermediate), implicitCast<T*>(nullptr), SourceLocation()));
1667 }
1668
1669 template <typename T>
1670 PromiseFulfillerPair<T> newPromiseAndFulfiller(SourceLocation location) {
1671 auto wrapper = _::WeakFulfiller<T>::make();
1672
1673 _::OwnPromiseNode intermediate(
1674 _::allocPromise<_::AdapterPromiseNode<
1675 _::FixVoid<T>, _::PromiseAndFulfillerAdapter<T>>>(*wrapper));
1676 auto promise = _::PromiseNode::to<_::ReducePromises<T>>(
1677 _::maybeChain(kj::mv(intermediate), implicitCast<T*>(nullptr), location));
1678
1679 return PromiseFulfillerPair<T> { kj::mv(promise), kj::mv(wrapper) };
1680 }
1681
1682 // =======================================================================================
1683 // cross-thread stuff
1684
1685 namespace _ { // (private)
1686
1687 class XThreadEvent: public PromiseNode, // it's a PromiseNode in the requesting thread
1688 private Event { // it's an event in the target thread
1689 public:
1690 XThreadEvent(ExceptionOrValue& result, const Executor& targetExecutor, EventLoop& loop,
1691 void* funcTracePtr, SourceLocation location);
1692
1693 void tracePromise(TraceBuilder& builder, bool stopAtNextEvent) override;
1694
1695 protected:
1696 void ensureDoneOrCanceled();
1697 // MUST be called in destructor of subclasses to make sure the object is not destroyed while
1698 // still being accessed by the other thread. (This can't be placed in ~XThreadEvent() because
1699 // that destructor doesn't run until the subclass has already been destroyed.)
1700
1701 virtual kj::Maybe<OwnPromiseNode> execute() = 0;
1702 // Run the function. If the function returns a promise, returns the inner PromiseNode, otherwise
1703 // returns null.
1704
1705 // implements PromiseNode ----------------------------------------------------
1706 void onReady(Event* event) noexcept override;
1707
1708 private:
1709 ExceptionOrValue& result;
1710 void* funcTracePtr;
1711
1712 kj::Own<const Executor> targetExecutor;
1713 Maybe<const Executor&> replyExecutor; // If executeAsync() was used.
1714
1715 kj::Maybe<OwnPromiseNode> promiseNode;
1716 // Accessed only in target thread.
1717
1718 ListLink<XThreadEvent> targetLink;
1719 // Membership in one of the linked lists in the target Executor's work list or cancel list. These
1720 // fields are protected by the target Executor's mutex.
1721
1722 enum {
1723 UNUSED,
1724 // Object was never queued on another thread.
1725
1726 QUEUED,
1727 // Target thread has not yet dequeued the event from the state.start list. The requesting
1728 // thread can cancel execution by removing the event from the list.
1729
1730 EXECUTING,
1731 // Target thread has dequeued the event from state.start and moved it to state.executing. To
1732 // cancel, the requesting thread must add the event to the state.cancel list and change the
1733 // state to CANCELING.
1734
1735 CANCELING,
1736 // Requesting thread is trying to cancel this event. The target thread will change the state to
1737 // `DONE` once canceled.
1738
1739 DONE
1740 // Target thread has completed handling this event and will not touch it again. The requesting
1741 // thread can safely delete the object. The `state` is updated to `DONE` using an atomic
1742 // release operation after ensuring that the event will not be touched again, so that the
1743 // requesting can safely skip locking if it observes the state is already DONE.
1744 } state = UNUSED;
1745 // State, which is also protected by `targetExecutor`'s mutex.
1746
1747 ListLink<XThreadEvent> replyLink;
1748 // Membership in `replyExecutor`'s reply list. Protected by `replyExecutor`'s mutex. The
1749 // executing thread places the event in the reply list near the end of the `EXECUTING` state.
1750 // Because the thread cannot lock two mutexes at once, it's possible that the reply executor
1751 // will receive the reply while the event is still listed in the EXECUTING state, but it can
1752 // ignore the state and proceed with the result.
1753
1754 OnReadyEvent onReadyEvent;
1755 // Accessed only in requesting thread.
1756
1757 friend class kj::Executor;
1758
1759 void done();
1760 // Sets the state to `DONE` and notifies the originating thread that this event is done. Do NOT
1761 // call under lock.
1762
1763 void sendReply();
1764 // Notifies the originating thread that this event is done, but doesn't set the state to DONE
1765 // yet. Do NOT call under lock.
1766
1767 void setDoneState();
1768 // Assigns `state` to `DONE`, being careful to use an atomic-release-store if needed. This must
1769 // only be called in the destination thread, and must either be called under lock, or the thread
1770 // must take the lock and release it again shortly after setting the state (because some threads
1771 // may be waiting on the DONE state using a conditional wait on the mutex). After calling
1772 // setDoneState(), the destination thread MUST NOT touch this object ever again; it now belongs
1773 // solely to the requesting thread.
1774
1775 void setDisconnected();
1776 // Sets the result to a DISCONNECTED exception indicating that the target event loop exited.
1777
1778 class DelayedDoneHack;
1779
1780 // implements Event ----------------------------------------------------------
1781 Maybe<Own<Event>> fire() override;
1782 // If called with promiseNode == nullptr, it's time to call execute(). If promiseNode != nullptr,
1783 // then it just indicated readiness and we need to get its result.
1784
1785 void traceEvent(TraceBuilder& builder) override;
1786 };
1787
1788 template <typename Func, typename = _::FixVoid<_::ReturnType<Func, void>>>
1789 class XThreadEventImpl final: public XThreadEvent {
1790 // Implementation for a function that does not return a Promise.
1791 public:
1792 XThreadEventImpl(Func&& func, const Executor& target, EventLoop& loop, SourceLocation location)
1793 : XThreadEvent(result, target, loop, GetFunctorStartAddress<>::apply(func), location),
1794 func(kj::fwd<Func>(func)) {}
1795 ~XThreadEventImpl() noexcept(false) { ensureDoneOrCanceled(); }
1796 void destroy() override { freePromise(this); }
1797
1798 typedef _::FixVoid<_::ReturnType<Func, void>> ResultT;
1799
1800 kj::Maybe<_::OwnPromiseNode> execute() override {
1801 result.value = MaybeVoidCaller<Void, FixVoid<decltype(func())>>::apply(func, Void());
1802 return nullptr;
1803 }
1804
1805 // implements PromiseNode ----------------------------------------------------
1806 void get(ExceptionOrValue& output) noexcept override {
1807 output.as<ResultT>() = kj::mv(result);
1808 }
1809
1810 private:
1811 Func func;
1812 ExceptionOr<ResultT> result;
1813 friend Executor;
1814 };
1815
1816 template <typename Func, typename T>
1817 class XThreadEventImpl<Func, Promise<T>> final: public XThreadEvent {
1818 // Implementation for a function that DOES return a Promise.
1819 public:
1820 XThreadEventImpl(Func&& func, const Executor& target, EventLoop& loop, SourceLocation location)
1821 : XThreadEvent(result, target, loop, GetFunctorStartAddress<>::apply(func), location),
1822 func(kj::fwd<Func>(func)) {}
1823 ~XThreadEventImpl() noexcept(false) { ensureDoneOrCanceled(); }
1824 void destroy() override { freePromise(this); }
1825
1826 typedef _::FixVoid<_::UnwrapPromise<PromiseForResult<Func, void>>> ResultT;
1827
1828 kj::Maybe<_::OwnPromiseNode> execute() override {
1829 auto result = _::PromiseNode::from(func());
1830 KJ_IREQUIRE(result.get() != nullptr);
1831 return kj::mv(result);
1832 }
1833
1834 // implements PromiseNode ----------------------------------------------------
1835 void get(ExceptionOrValue& output) noexcept override {
1836 output.as<ResultT>() = kj::mv(result);
1837 }
1838
1839 private:
1840 Func func;
1841 ExceptionOr<ResultT> result;
1842 friend Executor;
1843 };
1844
1845 } // namespace _ (private)
1846
1847 template <typename Func>
1848 _::UnwrapPromise<PromiseForResult<Func, void>> Executor::executeSync(
1849 Func&& func, SourceLocation location) const {
1850 _::XThreadEventImpl<Func> event(kj::fwd<Func>(func), *this, getLoop(), location);
1851 send(event, true);
1852 return convertToReturn(kj::mv(event.result));
1853 }
1854
1855 template <typename Func>
1856 PromiseForResult<Func, void> Executor::executeAsync(Func&& func, SourceLocation location) const {
1857 // HACK: We call getLoop() here, rather than have XThreadEvent's constructor do it, so that if it
1858 // throws we don't crash due to `allocPromise()` being `noexcept`.
1859 auto event = _::allocPromise<_::XThreadEventImpl<Func>>(
1860 kj::fwd<Func>(func), *this, getLoop(), location);
1861 send(*event, false);
1862 return _::PromiseNode::to<PromiseForResult<Func, void>>(kj::mv(event));
1863 }
1864
1865 // -----------------------------------------------------------------------------
1866
1867 namespace _ { // (private)
1868
1869 template <typename T>
1870 class XThreadFulfiller;
1871
1872 class XThreadPaf: public PromiseNode {
1873 public:
1874 XThreadPaf();
1875 virtual ~XThreadPaf() noexcept(false);
1876 void destroy() override;
1877
1878 // implements PromiseNode ----------------------------------------------------
1879 void onReady(Event* event) noexcept override;
1880 void tracePromise(TraceBuilder& builder, bool stopAtNextEvent) override;
1881
1882 private:
1883 enum {
1884 WAITING,
1885 // Not yet fulfilled, and the waiter is still waiting.
1886 //
1887 // Starting from this state, the state may transition to either FULFILLING or CANCELED
1888 // using an atomic compare-and-swap.
1889
1890 FULFILLING,
1891 // The fulfiller thread atomically transitions the state from WAITING to FULFILLING when it
1892 // wishes to fulfill the promise. By doing so, it guarantees that the `executor` will not
1893 // disappear out from under it. It then fills in the result value, locks the executor mutex,
1894 // adds the object to the executor's list of fulfilled XThreadPafs, changes the state to
1895 // FULFILLED, and finally unlocks the mutex.
1896 //
1897 // If the waiting thread tries to cancel but discovers the object in this state, then it
1898 // must perform a conditional wait on the executor mutex to await the state becoming FULFILLED.
1899 // It can then delete the object.
1900
1901 FULFILLED,
1902 // The fulfilling thread has completed filling in the result value and inserting the object
1903 // into the waiting thread's executor event queue. Moreover, the fulfilling thread no longer
1904 // holds any pointers to this object. The waiting thread is responsible for deleting it.
1905
1906 DISPATCHED,
1907 // The object reached FULFILLED state, and then was dispatched from the waiting thread's
1908 // executor's event queue. Therefore, the object is completely owned by the waiting thread with
1909 // no need to lock anything.
1910
1911 CANCELED
1912 // The waiting thread atomically transitions the state from WAITING to CANCELED if it is no
1913 // longer listening. In this state, it is the fulfiller thread's responsibility to destroy the
1914 // object.
1915 } state;
1916
1917 const Executor& executor;
1918 // Executor of the waiting thread. Only guaranteed to be valid when state is `WAITING` or
1919 // `FULFILLING`. After any other state has been reached, this reference may be invalidated.
1920
1921 ListLink<XThreadPaf> link;
1922 // In the FULFILLING/FULFILLED states, the object is placed in a linked list within the waiting
1923 // thread's executor. In those states, these pointers are guarded by said executor's mutex.
1924
1925 OnReadyEvent onReadyEvent;
1926
1927 class FulfillScope;
1928
1929 static kj::Exception unfulfilledException();
1930 // Construct appropriate exception to use to reject an unfulfilled XThreadPaf.
1931
1932 template <typename T>
1933 friend class XThreadFulfiller;
1934 friend Executor;
1935 };
1936
1937 template <typename T>
1938 class XThreadPafImpl final: public XThreadPaf {
1939 public:
1940 // implements PromiseNode ----------------------------------------------------
1941 void get(ExceptionOrValue& output) noexcept override {
1942 output.as<FixVoid<T>>() = kj::mv(result);
1943 }
1944
1945 private:
1946 ExceptionOr<FixVoid<T>> result;
1947
1948 friend class XThreadFulfiller<T>;
1949 };
1950
1951 class XThreadPaf::FulfillScope {
1952 // Create on stack while setting `XThreadPafImpl<T>::result`.
1953 //
1954 // This ensures that:
1955 // - Only one call is carried out, even if multiple threads try to fulfill concurrently.
1956 // - The waiting thread is correctly signaled.
1957 public:
1958 FulfillScope(XThreadPaf** pointer);
1959 // Atomically nulls out *pointer and takes ownership of the pointer.
1960
1961 ~FulfillScope() noexcept(false);
1962
1963 KJ_DISALLOW_COPY_AND_MOVE(FulfillScope);
1964
1965 bool shouldFulfill() { return obj != nullptr; }
1966
1967 template <typename T>
1968 XThreadPafImpl<T>* getTarget() { return static_cast<XThreadPafImpl<T>*>(obj); }
1969
1970 private:
1971 XThreadPaf* obj;
1972 };
1973
1974 template <typename T>
1975 class XThreadFulfiller final: public CrossThreadPromiseFulfiller<T> {
1976 public:
1977 XThreadFulfiller(XThreadPafImpl<T>* target): target(target) {}
1978
1979 ~XThreadFulfiller() noexcept(false) {
1980 if (target != nullptr) {
1981 reject(XThreadPaf::unfulfilledException());
1982 }
1983 }
1984 void fulfill(FixVoid<T>&& value) const override {
1985 XThreadPaf::FulfillScope scope(&target);
1986 if (scope.shouldFulfill()) {
1987 scope.getTarget<T>()->result = kj::mv(value);
1988 }
1989 }
1990 void reject(Exception&& exception) const override {
1991 XThreadPaf::FulfillScope scope(&target);
1992 if (scope.shouldFulfill()) {
1993 scope.getTarget<T>()->result.addException(kj::mv(exception));
1994 }
1995 }
1996 bool isWaiting() const override {
1997 KJ_IF_MAYBE(t, target) {
1998 #if _MSC_VER && !__clang__
1999 // Just assume 1-byte loads are atomic... on what kind of absurd platform would they not be?
2000 return t->state == XThreadPaf::WAITING;
2001 #else
2002 return __atomic_load_n(&t->state, __ATOMIC_RELAXED) == XThreadPaf::WAITING;
2003 #endif
2004 } else {
2005 return false;
2006 }
2007 }
2008
2009 private:
2010 mutable XThreadPaf* target; // accessed using atomic ops
2011 };
2012
2013 template <typename T>
2014 class XThreadFulfiller<kj::Promise<T>> {
2015 public:
2016 static_assert(sizeof(T) < 0,
2017 "newCrosssThreadPromiseAndFulfiller<Promise<T>>() is not currently supported");
2018 // TODO(someday): Is this worth supporting? Presumably, when someone calls `fulfill(somePromise)`,
2019 // then `somePromise` should be assumed to be a promise owned by the fulfilling thread, not
2020 // the waiting thread.
2021 };
2022
2023 } // namespace _ (private)
2024
2025 template <typename T>
2026 PromiseCrossThreadFulfillerPair<T> newPromiseAndCrossThreadFulfiller() {
2027 kj::Own<_::XThreadPafImpl<T>, _::PromiseDisposer> node(new _::XThreadPafImpl<T>);
2028 auto fulfiller = kj::heap<_::XThreadFulfiller<T>>(node);
2029 return { _::PromiseNode::to<_::ReducePromises<T>>(kj::mv(node)), kj::mv(fulfiller) };
2030 }
2031
2032 } // namespace kj
2033
2034 #if KJ_HAS_COROUTINE
2035
2036 // =======================================================================================
2037 // Coroutines TS integration with kj::Promise<T>.
2038 //
2039 // Here's a simple coroutine:
2040 //
2041 // Promise<Own<AsyncIoStream>> connectToService(Network& n) {
2042 // auto a = co_await n.parseAddress(IP, PORT);
2043 // auto c = co_await a->connect();
2044 // co_return kj::mv(c);
2045 // }
2046 //
2047 // The presence of the co_await and co_return keywords tell the compiler it is a coroutine.
2048 // Although it looks similar to a function, it has a couple large differences. First, everything
2049 // that would normally live in the stack frame lives instead in a heap-based coroutine frame.
2050 // Second, the coroutine has the ability to return from its scope without deallocating this frame
2051 // (to suspend, in other words), and the ability to resume from its last suspension point.
2052 //
2053 // In order to know how to suspend, resume, and return from a coroutine, the compiler looks up a
2054 // coroutine implementation type via a traits class parameterized by the coroutine return and
2055 // parameter types. We'll name our coroutine implementation `kj::_::Coroutine<T>`,
2056
2057 namespace kj::_ { template <typename T> class Coroutine; }
2058
2059 // Specializing the appropriate traits class tells the compiler about `kj::_::Coroutine<T>`.
2060
2061 namespace KJ_COROUTINE_STD_NAMESPACE {
2062
2063 template <class T, class... Args>
2064 struct coroutine_traits<kj::Promise<T>, Args...> {
2065 // `Args...` are the coroutine's parameter types.
2066
2067 using promise_type = kj::_::Coroutine<T>;
2068 // The Coroutines TS calls this the "promise type". This makes sense when thinking of coroutines
2069 // returning `std::future<T>`, since the coroutine implementation would be a wrapper around
2070 // a `std::promise<T>`. It's extremely confusing from a KJ perspective, however, so I call it
2071 // the "coroutine implementation type" instead.
2072 };
2073
2074 } // namespace KJ_COROUTINE_STD_NAMESPACE
2075
2076 // Now when the compiler sees our `connectToService()` coroutine above, it default-constructs a
2077 // `coroutine_traits<Promise<Own<AsyncIoStream>>, Network&>::promise_type`, or
2078 // `kj::_::Coroutine<Own<AsyncIoStream>>`.
2079 //
2080 // The implementation object lives in the heap-allocated coroutine frame. It gets destroyed and
2081 // deallocated when the frame does.
2082
2083 namespace kj::_ {
2084
2085 namespace stdcoro = KJ_COROUTINE_STD_NAMESPACE;
2086
2087 class CoroutineBase: public PromiseNode,
2088 public Event {
2089 public:
2090 CoroutineBase(stdcoro::coroutine_handle<> coroutine, ExceptionOrValue& resultRef,
2091 SourceLocation location);
2092 ~CoroutineBase() noexcept(false);
2093 KJ_DISALLOW_COPY_AND_MOVE(CoroutineBase);
2094 void destroy() override;
2095
2096 auto initial_suspend() { return stdcoro::suspend_never(); }
2097 auto final_suspend() noexcept {
2098 #if _MSC_VER && !defined(__clang__)
2099 // See comment at `finalSuspendCalled`'s definition.
2100 finalSuspendCalled = true;
2101 #endif
2102 return stdcoro::suspend_always();
2103 }
2104 // These adjust the suspension behavior of coroutines immediately upon initiation, and immediately
2105 // after completion.
2106 //
2107 // The initial suspension point could allow us to defer the initial synchronous execution of a
2108 // coroutine -- everything before its first co_await, that is.
2109 //
2110 // The final suspension point is useful to delay deallocation of the coroutine frame to match the
2111 // lifetime of the enclosing promise.
2112
2113 void unhandled_exception();
2114
2115 protected:
2116 class AwaiterBase;
2117
2118 bool isWaiting() { return waiting; }
2119 void scheduleResumption() {
2120 onReadyEvent.arm();
2121 waiting = false;
2122 }
2123
2124 private:
2125 // -------------------------------------------------------
2126 // PromiseNode implementation
2127
2128 void onReady(Event* event) noexcept override;
2129 void tracePromise(TraceBuilder& builder, bool stopAtNextEvent) override;
2130
2131 // -------------------------------------------------------
2132 // Event implementation
2133
2134 Maybe<Own<Event>> fire() override;
2135 void traceEvent(TraceBuilder& builder) override;
2136
2137 stdcoro::coroutine_handle<> coroutine;
2138 ExceptionOrValue& resultRef;
2139
2140 OnReadyEvent onReadyEvent;
2141 bool waiting = true;
2142
2143 bool hasSuspendedAtLeastOnce = false;
2144
2145 #if _MSC_VER && !defined(__clang__)
2146 bool finalSuspendCalled = false;
2147 // MSVC erroneously reports the coroutine as done (that is, `coroutine.done()` returns true)
2148 // seemingly as soon as `return_value()`/`return_void()` are called. This matters in our
2149 // implementation of `unhandled_exception()`, which must arrange to propagate exceptions during
2150 // coroutine frame unwind via the returned promise, even if `return_value()`/`return_void()` have
2151 // already been called. To prove that our assumptions are correct in that function, we want to be
2152 // able to assert that `final_suspend()` has not yet been called. This boolean hack allows us to
2153 // preserve that assertion.
2154 #endif
2155
2156 Maybe<PromiseNode&> promiseNodeForTrace;
2157 // Whenever this coroutine is suspended waiting on another promise, we keep a reference to that
2158 // promise so tracePromise()/traceEvent() can trace into it.
2159
2160 UnwindDetector unwindDetector;
2161
2162 struct DisposalResults {
2163 bool destructorRan = false;
2164 Maybe<Exception> exception;
2165 };
2166 Maybe<DisposalResults&> maybeDisposalResults;
2167 // Only non-null during destruction. Before calling coroutine.destroy(), our disposer sets this
2168 // to point to a DisposalResults on the stack so unhandled_exception() will have some place to
2169 // store unwind exceptions. We can't store them in this Coroutine, because we'll be destroyed once
2170 // coroutine.destroy() has returned. Our disposer then rethrows as needed.
2171 };
2172
2173 template <typename Self, typename T>
2174 class CoroutineMixin;
2175 // CRTP mixin, covered later.
2176
2177 template <typename T>
2178 class Coroutine final: public CoroutineBase,
2179 public CoroutineMixin<Coroutine<T>, T> {
2180 // The standard calls this the `promise_type` object. We can call this the "coroutine
2181 // implementation object" since the word promise means different things in KJ and std styles. This
2182 // is where we implement how a `kj::Promise<T>` is returned from a coroutine, and how that promise
2183 // is later fulfilled. We also fill in a few lifetime-related details.
2184 //
2185 // The implementation object is also where we can customize memory allocation of coroutine frames,
2186 // by implementing a member `operator new(size_t, Args...)` (same `Args...` as in
2187 // coroutine_traits).
2188 //
2189 // We can also customize how await-expressions are transformed within `kj::Promise<T>`-based
2190 // coroutines by implementing an `await_transform(P)` member function, where `P` is some type for
2191 // which we want to implement co_await support, e.g. `kj::Promise<U>`. This feature allows us to
2192 // provide an optimized `kj::EventLoop` integration when the coroutine's return type and the
2193 // await-expression's type are both `kj::Promise` instantiations -- see further comments under
2194 // `await_transform()`.
2195
2196 public:
2197 using Handle = stdcoro::coroutine_handle<Coroutine<T>>;
2198
2199 Coroutine(SourceLocation location = {})
2200 : CoroutineBase(Handle::from_promise(*this), result, location) {}
2201
2202 Promise<T> get_return_object() {
2203 // Called after coroutine frame construction and before initial_suspend() to create the
2204 // coroutine's return object. `this` itself lives inside the coroutine frame, and we arrange for
2205 // the returned Promise<T> to own `this` via a custom Disposer and by always leaving the
2206 // coroutine in a suspended state.
2207 return PromiseNode::to<Promise<T>>(OwnPromiseNode(this));
2208 }
2209
2210 public:
2211 template <typename U>
2212 class Awaiter;
2213
2214 template <typename U>
2215 Awaiter<U> await_transform(kj::Promise<U>& promise) { return Awaiter<U>(kj::mv(promise)); }
2216 template <typename U>
2217 Awaiter<U> await_transform(kj::Promise<U>&& promise) { return Awaiter<U>(kj::mv(promise)); }
2218 // Called when someone writes `co_await promise`, where `promise` is a kj::Promise<U>. We return
2219 // an Awaiter<U>, which implements coroutine suspension and resumption in terms of the KJ async
2220 // event system.
2221 //
2222 // There is another hook we could implement: an `operator co_await()` free function. However, a
2223 // free function would be unaware of the type of the enclosing coroutine. Since Awaiter<U> is a
2224 // member class template of Coroutine<T>, it is able to implement an
2225 // `await_suspend(Coroutine<T>::Handle)` override, providing it type-safe access to our enclosing
2226 // coroutine's PromiseNode. An `operator co_await()` free function would have to implement
2227 // a type-erased `await_suspend(stdcoro::coroutine_handle<void>)` override, and implement
2228 // suspension and resumption in terms of .then(). Yuck!
2229
2230 private:
2231 // -------------------------------------------------------
2232 // PromiseNode implementation
2233
2234 void get(ExceptionOrValue& output) noexcept override {
2235 output.as<FixVoid<T>>() = kj::mv(result);
2236 }
2237
2238 void fulfill(FixVoid<T>&& value) {
2239 // Called by the return_value()/return_void() functions in our mixin class.
2240
2241 if (isWaiting()) {
2242 result = kj::mv(value);
2243 scheduleResumption();
2244 }
2245 }
2246
2247 ExceptionOr<FixVoid<T>> result;
2248
2249 friend class CoroutineMixin<Coroutine<T>, T>;
2250 };
2251
2252 template <typename Self, typename T>
2253 class CoroutineMixin {
2254 public:
2255 void return_value(T value) {
2256 static_cast<Self*>(this)->fulfill(kj::mv(value));
2257 }
2258 };
2259 template <typename Self>
2260 class CoroutineMixin<Self, void> {
2261 public:
2262 void return_void() {
2263 static_cast<Self*>(this)->fulfill(_::Void());
2264 }
2265 };
2266 // The Coroutines spec has no `_::FixVoid<T>` equivalent to unify valueful and valueless co_return
2267 // statements, and programs are ill-formed if the coroutine implementation object (Coroutine<T>) has
2268 // both a `return_value()` and `return_void()`. No amount of EnableIffery can get around it, so
2269 // these return_* functions live in a CRTP mixin.
2270
2271 class CoroutineBase::AwaiterBase {
2272 public:
2273 explicit AwaiterBase(OwnPromiseNode node);
2274 AwaiterBase(AwaiterBase&&);
2275 ~AwaiterBase() noexcept(false);
2276 KJ_DISALLOW_COPY(AwaiterBase);
2277
2278 bool await_ready() const { return false; }
2279 // This could return "`node->get()` is safe to call" instead, which would make suspension-less
2280 // co_awaits possible for immediately-fulfilled promises. However, we need an Event to figure that
2281 // out, and we won't have access to the Coroutine Event until await_suspend() is called. So, we
2282 // must return false here. Fortunately, await_suspend() has a trick up its sleeve to enable
2283 // suspension-less co_awaits.
2284
2285 protected:
2286 void getImpl(ExceptionOrValue& result, void* awaitedAt);
2287 bool awaitSuspendImpl(CoroutineBase& coroutineEvent);
2288
2289 private:
2290 UnwindDetector unwindDetector;
2291 OwnPromiseNode node;
2292
2293 Maybe<CoroutineBase&> maybeCoroutineEvent;
2294 // If we do suspend waiting for our wrapped promise, we store a reference to `node` in our
2295 // enclosing Coroutine for tracing purposes. To guard against any edge cases where an async stack
2296 // trace is generated when an Awaiter was destroyed without Coroutine::fire() having been called,
2297 // we need our own reference to the enclosing Coroutine. (I struggle to think up any such
2298 // scenarios, but perhaps they could occur when destroying a suspended coroutine.)
2299 };
2300
2301 template <typename T>
2302 template <typename U>
2303 class Coroutine<T>::Awaiter: public AwaiterBase {
2304 // Wrapper around a co_await'ed promise and some storage space for the result of that promise.
2305 // The compiler arranges to call our await_suspend() to suspend, which arranges to be woken up
2306 // when the awaited promise is settled. Once that happens, the enclosing coroutine's Event
2307 // implementation resumes the coroutine, which transitively calls await_resume() to unwrap the
2308 // awaited promise result.
2309
2310 public:
2311 explicit Awaiter(Promise<U> promise): AwaiterBase(PromiseNode::from(kj::mv(promise))) {}
2312
2313 KJ_NOINLINE U await_resume() {
2314 // This is marked noinline in order to ensure __builtin_return_address() is accurate for stack
2315 // trace purposes. In my experimentation, this method was not inlined anyway even in opt
2316 // builds, but I want to make sure it doesn't suddenly start being inlined later causing stack
2317 // traces to break. (I also tried always-inline, but this did not appear to cause the compiler
2318 // to inline the method -- perhaps a limitation of coroutines?)
2319 #if __GNUC__
2320 getImpl(result, __builtin_return_address(0));
2321 #elif _MSC_VER
2322 getImpl(result, _ReturnAddress());
2323 #else
2324 #error "please implement for your compiler"
2325 #endif
2326 auto value = kj::_::readMaybe(result.value);
2327 KJ_IASSERT(value != nullptr, "Neither exception nor value present.");
2328 return U(kj::mv(*value));
2329 }
2330
2331 bool await_suspend(Coroutine::Handle coroutine) {
2332 return awaitSuspendImpl(coroutine.promise());
2333 }
2334
2335 private:
2336 ExceptionOr<FixVoid<U>> result;
2337 };
2338
2339 #undef KJ_COROUTINE_STD_NAMESPACE
2340
2341 } // namespace kj::_ (private)
2342
2343 #endif // KJ_HAS_COROUTINE
2344
2345 KJ_END_HEADER