comparison CSP2/CSP2_env/env-d9b9114564458d9d-741b3de822f2aaca6c6caa4325c4afce/lib/python3.8/site-packages/Bio/MarkovModel.py @ 69:33d812a61356

planemo upload commit 2e9511a184a1ca667c7be0c6321a36dc4e3d116d
author jpayne
date Tue, 18 Mar 2025 17:55:14 -0400
parents
children
comparison
equal deleted inserted replaced
67:0e9998148a16 69:33d812a61356
1 # Copyright 2002 by Jeffrey Chang.
2 # All rights reserved.
3 #
4 # This file is part of the Biopython distribution and governed by your
5 # choice of the "Biopython License Agreement" or the "BSD 3-Clause License".
6 # Please see the LICENSE file that should have been included as part of this
7 # package.
8 """A state-emitting MarkovModel.
9
10 Note terminology similar to Manning and Schutze is used.
11
12
13 Functions:
14 train_bw Train a markov model using the Baum-Welch algorithm.
15 train_visible Train a visible markov model using MLE.
16 find_states Find the a state sequence that explains some observations.
17
18 load Load a MarkovModel.
19 save Save a MarkovModel.
20
21 Classes:
22 MarkovModel Holds the description of a markov model
23 """
24
25 import warnings
26 from Bio import BiopythonDeprecationWarning
27
28 warnings.warn(
29 "The 'Bio.MarkovModel' module is deprecated and will be removed in a "
30 "future release of Biopython. Consider using the hmmlearn package instead.",
31 BiopythonDeprecationWarning,
32 )
33
34
35 try:
36 import numpy as np
37 except ImportError:
38 from Bio import MissingPythonDependencyError
39
40 raise MissingPythonDependencyError(
41 "Please install NumPy if you want to use Bio.MarkovModel. "
42 "See http://www.numpy.org/"
43 ) from None
44
45 logaddexp = np.logaddexp
46
47
48 def itemindex(values):
49 """Return a dictionary of values with their sequence offset as keys."""
50 d = {}
51 entries = enumerate(values[::-1])
52 n = len(values) - 1
53 for index, key in entries:
54 d[key] = n - index
55 return d
56
57
58 np.random.seed()
59
60 VERY_SMALL_NUMBER = 1e-300
61 LOG0 = np.log(VERY_SMALL_NUMBER)
62
63
64 class MarkovModel:
65 """Create a state-emitting MarkovModel object."""
66
67 def __init__(
68 self, states, alphabet, p_initial=None, p_transition=None, p_emission=None
69 ):
70 """Initialize the class."""
71 self.states = states
72 self.alphabet = alphabet
73 self.p_initial = p_initial
74 self.p_transition = p_transition
75 self.p_emission = p_emission
76
77 def __str__(self):
78 """Create a string representation of the MarkovModel object."""
79 from io import StringIO
80
81 handle = StringIO()
82 save(self, handle)
83 handle.seek(0)
84 return handle.read()
85
86
87 def _readline_and_check_start(handle, start):
88 """Read the first line and evaluate that begisn with the correct start (PRIVATE)."""
89 line = handle.readline()
90 if not line.startswith(start):
91 raise ValueError(f"I expected {start!r} but got {line!r}")
92 return line
93
94
95 def load(handle):
96 """Parse a file handle into a MarkovModel object."""
97 # Load the states.
98 line = _readline_and_check_start(handle, "STATES:")
99 states = line.split()[1:]
100
101 # Load the alphabet.
102 line = _readline_and_check_start(handle, "ALPHABET:")
103 alphabet = line.split()[1:]
104
105 mm = MarkovModel(states, alphabet)
106 N, M = len(states), len(alphabet)
107
108 # Load the initial probabilities.
109 mm.p_initial = np.zeros(N)
110 line = _readline_and_check_start(handle, "INITIAL:")
111 for i in range(len(states)):
112 line = _readline_and_check_start(handle, f" {states[i]}:")
113 mm.p_initial[i] = float(line.split()[-1])
114
115 # Load the transition.
116 mm.p_transition = np.zeros((N, N))
117 line = _readline_and_check_start(handle, "TRANSITION:")
118 for i in range(len(states)):
119 line = _readline_and_check_start(handle, f" {states[i]}:")
120 mm.p_transition[i, :] = [float(v) for v in line.split()[1:]]
121
122 # Load the emission.
123 mm.p_emission = np.zeros((N, M))
124 line = _readline_and_check_start(handle, "EMISSION:")
125 for i in range(len(states)):
126 line = _readline_and_check_start(handle, f" {states[i]}:")
127 mm.p_emission[i, :] = [float(v) for v in line.split()[1:]]
128
129 return mm
130
131
132 def save(mm, handle):
133 """Save MarkovModel object into handle."""
134 # This will fail if there are spaces in the states or alphabet.
135 w = handle.write
136 w(f"STATES: {' '.join(mm.states)}\n")
137 w(f"ALPHABET: {' '.join(mm.alphabet)}\n")
138 w("INITIAL:\n")
139 for i in range(len(mm.p_initial)):
140 w(f" {mm.states[i]}: {mm.p_initial[i]:g}\n")
141 w("TRANSITION:\n")
142 for i in range(len(mm.p_transition)):
143 w(f" {mm.states[i]}: {' '.join(str(x) for x in mm.p_transition[i])}\n")
144 w("EMISSION:\n")
145 for i in range(len(mm.p_emission)):
146 w(f" {mm.states[i]}: {' '.join(str(x) for x in mm.p_emission[i])}\n")
147
148
149 # XXX allow them to specify starting points
150 def train_bw(
151 states,
152 alphabet,
153 training_data,
154 pseudo_initial=None,
155 pseudo_transition=None,
156 pseudo_emission=None,
157 update_fn=None,
158 ):
159 """Train a MarkovModel using the Baum-Welch algorithm.
160
161 Train a MarkovModel using the Baum-Welch algorithm. states is a list
162 of strings that describe the names of each state. alphabet is a
163 list of objects that indicate the allowed outputs. training_data
164 is a list of observations. Each observation is a list of objects
165 from the alphabet.
166
167 pseudo_initial, pseudo_transition, and pseudo_emission are
168 optional parameters that you can use to assign pseudo-counts to
169 different matrices. They should be matrices of the appropriate
170 size that contain numbers to add to each parameter matrix, before
171 normalization.
172
173 update_fn is an optional callback that takes parameters
174 (iteration, log_likelihood). It is called once per iteration.
175 """
176 N, M = len(states), len(alphabet)
177 if not training_data:
178 raise ValueError("No training data given.")
179 if pseudo_initial is not None:
180 pseudo_initial = np.asarray(pseudo_initial)
181 if pseudo_initial.shape != (N,):
182 raise ValueError("pseudo_initial not shape len(states)")
183 if pseudo_transition is not None:
184 pseudo_transition = np.asarray(pseudo_transition)
185 if pseudo_transition.shape != (N, N):
186 raise ValueError("pseudo_transition not shape len(states) X len(states)")
187 if pseudo_emission is not None:
188 pseudo_emission = np.asarray(pseudo_emission)
189 if pseudo_emission.shape != (N, M):
190 raise ValueError("pseudo_emission not shape len(states) X len(alphabet)")
191
192 # Training data is given as a list of members of the alphabet.
193 # Replace those with indexes into the alphabet list for easier
194 # computation.
195 training_outputs = []
196 indexes = itemindex(alphabet)
197 for outputs in training_data:
198 training_outputs.append([indexes[x] for x in outputs])
199
200 # Do some sanity checking on the outputs.
201 lengths = [len(x) for x in training_outputs]
202 if min(lengths) == 0:
203 raise ValueError("I got training data with outputs of length 0")
204
205 # Do the training with baum welch.
206 x = _baum_welch(
207 N,
208 M,
209 training_outputs,
210 pseudo_initial=pseudo_initial,
211 pseudo_transition=pseudo_transition,
212 pseudo_emission=pseudo_emission,
213 update_fn=update_fn,
214 )
215 p_initial, p_transition, p_emission = x
216 return MarkovModel(states, alphabet, p_initial, p_transition, p_emission)
217
218
219 MAX_ITERATIONS = 1000
220
221
222 def _baum_welch(
223 N,
224 M,
225 training_outputs,
226 p_initial=None,
227 p_transition=None,
228 p_emission=None,
229 pseudo_initial=None,
230 pseudo_transition=None,
231 pseudo_emission=None,
232 update_fn=None,
233 ):
234 """Implement the Baum-Welch algorithm to evaluate unknown parameters in the MarkovModel object (PRIVATE)."""
235 if p_initial is None:
236 p_initial = _random_norm(N)
237 else:
238 p_initial = _copy_and_check(p_initial, (N,))
239
240 if p_transition is None:
241 p_transition = _random_norm((N, N))
242 else:
243 p_transition = _copy_and_check(p_transition, (N, N))
244 if p_emission is None:
245 p_emission = _random_norm((N, M))
246 else:
247 p_emission = _copy_and_check(p_emission, (N, M))
248
249 # Do all the calculations in log space to avoid underflows.
250 lp_initial = np.log(p_initial)
251 lp_transition = np.log(p_transition)
252 lp_emission = np.log(p_emission)
253 if pseudo_initial is not None:
254 lpseudo_initial = np.log(pseudo_initial)
255 else:
256 lpseudo_initial = None
257 if pseudo_transition is not None:
258 lpseudo_transition = np.log(pseudo_transition)
259 else:
260 lpseudo_transition = None
261 if pseudo_emission is not None:
262 lpseudo_emission = np.log(pseudo_emission)
263 else:
264 lpseudo_emission = None
265
266 # Iterate through each sequence of output, updating the parameters
267 # to the HMM. Stop when the log likelihoods of the sequences
268 # stops varying.
269 prev_llik = None
270 for i in range(MAX_ITERATIONS):
271 llik = LOG0
272 for outputs in training_outputs:
273 llik += _baum_welch_one(
274 N,
275 M,
276 outputs,
277 lp_initial,
278 lp_transition,
279 lp_emission,
280 lpseudo_initial,
281 lpseudo_transition,
282 lpseudo_emission,
283 )
284 if update_fn is not None:
285 update_fn(i, llik)
286 if prev_llik is not None and np.fabs(prev_llik - llik) < 0.1:
287 break
288 prev_llik = llik
289 else:
290 raise RuntimeError("HMM did not converge in %d iterations" % MAX_ITERATIONS)
291
292 # Return everything back in normal space.
293 return [np.exp(_) for _ in (lp_initial, lp_transition, lp_emission)]
294
295
296 def _baum_welch_one(
297 N,
298 M,
299 outputs,
300 lp_initial,
301 lp_transition,
302 lp_emission,
303 lpseudo_initial,
304 lpseudo_transition,
305 lpseudo_emission,
306 ):
307 """Execute one step for Baum-Welch algorithm (PRIVATE).
308
309 Do one iteration of Baum-Welch based on a sequence of output.
310 Changes the value for lp_initial, lp_transition and lp_emission in place.
311 """
312 T = len(outputs)
313 fmat = _forward(N, T, lp_initial, lp_transition, lp_emission, outputs)
314 bmat = _backward(N, T, lp_transition, lp_emission, outputs)
315
316 # Calculate the probability of traversing each arc for any given
317 # transition.
318 lp_arc = np.zeros((N, N, T))
319 for t in range(T):
320 k = outputs[t]
321 lp_traverse = np.zeros((N, N)) # P going over one arc.
322 for i in range(N):
323 for j in range(N):
324 # P(getting to this arc)
325 # P(making this transition)
326 # P(emitting this character)
327 # P(going to the end)
328 lp = (
329 fmat[i][t]
330 + lp_transition[i][j]
331 + lp_emission[i][k]
332 + bmat[j][t + 1]
333 )
334 lp_traverse[i][j] = lp
335 # Normalize the probability for this time step.
336 lp_arc[:, :, t] = lp_traverse - _logsum(lp_traverse)
337
338 # Sum of all the transitions out of state i at time t.
339 lp_arcout_t = np.zeros((N, T))
340 for t in range(T):
341 for i in range(N):
342 lp_arcout_t[i][t] = _logsum(lp_arc[i, :, t])
343
344 # Sum of all the transitions out of state i.
345 lp_arcout = np.zeros(N)
346 for i in range(N):
347 lp_arcout[i] = _logsum(lp_arcout_t[i, :])
348
349 # UPDATE P_INITIAL.
350 lp_initial = lp_arcout_t[:, 0]
351 if lpseudo_initial is not None:
352 lp_initial = _logvecadd(lp_initial, lpseudo_initial)
353 lp_initial = lp_initial - _logsum(lp_initial)
354
355 # UPDATE P_TRANSITION. p_transition[i][j] is the sum of all the
356 # transitions from i to j, normalized by the sum of the
357 # transitions out of i.
358 for i in range(N):
359 for j in range(N):
360 lp_transition[i][j] = _logsum(lp_arc[i, j, :]) - lp_arcout[i]
361 if lpseudo_transition is not None:
362 lp_transition[i] = _logvecadd(lp_transition[i], lpseudo_transition)
363 lp_transition[i] = lp_transition[i] - _logsum(lp_transition[i])
364
365 # UPDATE P_EMISSION. lp_emission[i][k] is the sum of all the
366 # transitions out of i when k is observed, divided by the sum of
367 # the transitions out of i.
368 for i in range(N):
369 ksum = np.zeros(M) + LOG0 # ksum[k] is the sum of all i with k.
370 for t in range(T):
371 k = outputs[t]
372 for j in range(N):
373 ksum[k] = logaddexp(ksum[k], lp_arc[i, j, t])
374 ksum = ksum - _logsum(ksum) # Normalize
375 if lpseudo_emission is not None:
376 ksum = _logvecadd(ksum, lpseudo_emission[i])
377 ksum = ksum - _logsum(ksum) # Renormalize
378 lp_emission[i, :] = ksum
379
380 # Calculate the log likelihood of the output based on the forward
381 # matrix. Since the parameters of the HMM has changed, the log
382 # likelihoods are going to be a step behind, and we might be doing
383 # one extra iteration of training. The alternative is to rerun
384 # the _forward algorithm and calculate from the clean one, but
385 # that may be more expensive than overshooting the training by one
386 # step.
387 return _logsum(fmat[:, T])
388
389
390 def _forward(N, T, lp_initial, lp_transition, lp_emission, outputs):
391 """Implement forward algorithm (PRIVATE).
392
393 Calculate a Nx(T+1) matrix, where the last column is the total
394 probability of the output.
395 """
396 matrix = np.zeros((N, T + 1))
397
398 # Initialize the first column to be the initial values.
399 matrix[:, 0] = lp_initial
400 for t in range(1, T + 1):
401 k = outputs[t - 1]
402 for j in range(N):
403 # The probability of the state is the sum of the
404 # transitions from all the states from time t-1.
405 lprob = LOG0
406 for i in range(N):
407 lp = matrix[i][t - 1] + lp_transition[i][j] + lp_emission[i][k]
408 lprob = logaddexp(lprob, lp)
409 matrix[j][t] = lprob
410 return matrix
411
412
413 def _backward(N, T, lp_transition, lp_emission, outputs):
414 """Implement backward algorithm (PRIVATE)."""
415 matrix = np.zeros((N, T + 1))
416 for t in range(T - 1, -1, -1):
417 k = outputs[t]
418 for i in range(N):
419 # The probability of the state is the sum of the
420 # transitions from all the states from time t+1.
421 lprob = LOG0
422 for j in range(N):
423 lp = matrix[j][t + 1] + lp_transition[i][j] + lp_emission[i][k]
424 lprob = logaddexp(lprob, lp)
425 matrix[i][t] = lprob
426 return matrix
427
428
429 def train_visible(
430 states,
431 alphabet,
432 training_data,
433 pseudo_initial=None,
434 pseudo_transition=None,
435 pseudo_emission=None,
436 ):
437 """Train a visible MarkovModel using maximum likelihoood estimates for each of the parameters.
438
439 Train a visible MarkovModel using maximum likelihoood estimates
440 for each of the parameters. states is a list of strings that
441 describe the names of each state. alphabet is a list of objects
442 that indicate the allowed outputs. training_data is a list of
443 (outputs, observed states) where outputs is a list of the emission
444 from the alphabet, and observed states is a list of states from
445 states.
446
447 pseudo_initial, pseudo_transition, and pseudo_emission are
448 optional parameters that you can use to assign pseudo-counts to
449 different matrices. They should be matrices of the appropriate
450 size that contain numbers to add to each parameter matrix.
451 """
452 N, M = len(states), len(alphabet)
453 if pseudo_initial is not None:
454 pseudo_initial = np.asarray(pseudo_initial)
455 if pseudo_initial.shape != (N,):
456 raise ValueError("pseudo_initial not shape len(states)")
457 if pseudo_transition is not None:
458 pseudo_transition = np.asarray(pseudo_transition)
459 if pseudo_transition.shape != (N, N):
460 raise ValueError("pseudo_transition not shape len(states) X len(states)")
461 if pseudo_emission is not None:
462 pseudo_emission = np.asarray(pseudo_emission)
463 if pseudo_emission.shape != (N, M):
464 raise ValueError("pseudo_emission not shape len(states) X len(alphabet)")
465
466 # Training data is given as a list of members of the alphabet.
467 # Replace those with indexes into the alphabet list for easier
468 # computation.
469 training_states, training_outputs = [], []
470 states_indexes = itemindex(states)
471 outputs_indexes = itemindex(alphabet)
472 for toutputs, tstates in training_data:
473 if len(tstates) != len(toutputs):
474 raise ValueError("states and outputs not aligned")
475 training_states.append([states_indexes[x] for x in tstates])
476 training_outputs.append([outputs_indexes[x] for x in toutputs])
477
478 x = _mle(
479 N,
480 M,
481 training_outputs,
482 training_states,
483 pseudo_initial,
484 pseudo_transition,
485 pseudo_emission,
486 )
487 p_initial, p_transition, p_emission = x
488
489 return MarkovModel(states, alphabet, p_initial, p_transition, p_emission)
490
491
492 def _mle(
493 N,
494 M,
495 training_outputs,
496 training_states,
497 pseudo_initial,
498 pseudo_transition,
499 pseudo_emission,
500 ):
501 """Implement Maximum likelihood estimation algorithm (PRIVATE)."""
502 # p_initial is the probability that a sequence of states starts
503 # off with a particular one.
504 p_initial = np.zeros(N)
505 if pseudo_initial:
506 p_initial = p_initial + pseudo_initial
507 for states in training_states:
508 p_initial[states[0]] += 1
509 p_initial = _normalize(p_initial)
510
511 # p_transition is the probability that a state leads to the next
512 # one. C(i,j)/C(i) where i and j are states.
513 p_transition = np.zeros((N, N))
514 if pseudo_transition:
515 p_transition = p_transition + pseudo_transition
516 for states in training_states:
517 for n in range(len(states) - 1):
518 i, j = states[n], states[n + 1]
519 p_transition[i, j] += 1
520 for i in range(len(p_transition)):
521 p_transition[i, :] = p_transition[i, :] / sum(p_transition[i, :])
522
523 # p_emission is the probability of an output given a state.
524 # C(s,o)|C(s) where o is an output and s is a state.
525 p_emission = np.zeros((N, M))
526 if pseudo_emission:
527 p_emission = p_emission + pseudo_emission
528 p_emission = np.ones((N, M))
529 for outputs, states in zip(training_outputs, training_states):
530 for o, s in zip(outputs, states):
531 p_emission[s, o] += 1
532 for i in range(len(p_emission)):
533 p_emission[i, :] = p_emission[i, :] / sum(p_emission[i, :])
534
535 return p_initial, p_transition, p_emission
536
537
538 def _argmaxes(vector, allowance=None):
539 """Return indices of the maximum values aong the vector (PRIVATE)."""
540 return [np.argmax(vector)]
541
542
543 def find_states(markov_model, output):
544 """Find states in the given Markov model output.
545
546 Returns a list of (states, score) tuples.
547 """
548 mm = markov_model
549 N = len(mm.states)
550
551 # _viterbi does calculations in log space. Add a tiny bit to the
552 # matrices so that the logs will not break.
553 lp_initial = np.log(mm.p_initial + VERY_SMALL_NUMBER)
554 lp_transition = np.log(mm.p_transition + VERY_SMALL_NUMBER)
555 lp_emission = np.log(mm.p_emission + VERY_SMALL_NUMBER)
556 # Change output into a list of indexes into the alphabet.
557 indexes = itemindex(mm.alphabet)
558 output = [indexes[x] for x in output]
559
560 # Run the viterbi algorithm.
561 results = _viterbi(N, lp_initial, lp_transition, lp_emission, output)
562
563 for i in range(len(results)):
564 states, score = results[i]
565 results[i] = [mm.states[x] for x in states], np.exp(score)
566 return results
567
568
569 def _viterbi(N, lp_initial, lp_transition, lp_emission, output):
570 """Implement Viterbi algorithm to find most likely states for a given input (PRIVATE)."""
571 T = len(output)
572 # Store the backtrace in a NxT matrix.
573 backtrace = [] # list of indexes of states in previous timestep.
574 for i in range(N):
575 backtrace.append([None] * T)
576
577 # Store the best scores.
578 scores = np.zeros((N, T))
579 scores[:, 0] = lp_initial + lp_emission[:, output[0]]
580 for t in range(1, T):
581 k = output[t]
582 for j in range(N):
583 # Find the most likely place it came from.
584 i_scores = scores[:, t - 1] + lp_transition[:, j] + lp_emission[j, k]
585 indexes = _argmaxes(i_scores)
586 scores[j, t] = i_scores[indexes[0]]
587 backtrace[j][t] = indexes
588
589 # Do the backtrace. First, find a good place to start. Then,
590 # we'll follow the backtrace matrix to find the list of states.
591 # In the event of ties, there may be multiple paths back through
592 # the matrix, which implies a recursive solution. We'll simulate
593 # it by keeping our own stack.
594 in_process = [] # list of (t, states, score)
595 results = [] # return values. list of (states, score)
596 indexes = _argmaxes(scores[:, T - 1]) # pick the first place
597 for i in indexes:
598 in_process.append((T - 1, [i], scores[i][T - 1]))
599 while in_process:
600 t, states, score = in_process.pop()
601 if t == 0:
602 results.append((states, score))
603 else:
604 indexes = backtrace[states[0]][t]
605 for i in indexes:
606 in_process.append((t - 1, [i] + states, score))
607 return results
608
609
610 def _normalize(matrix):
611 """Normalize matrix object (PRIVATE)."""
612 if len(matrix.shape) == 1:
613 matrix = matrix / sum(matrix)
614 elif len(matrix.shape) == 2:
615 # Normalize by rows.
616 for i in range(len(matrix)):
617 matrix[i, :] = matrix[i, :] / sum(matrix[i, :])
618 else:
619 raise ValueError("I cannot handle matrixes of that shape")
620 return matrix
621
622
623 def _uniform_norm(shape):
624 """Normalize a uniform matrix (PRIVATE)."""
625 matrix = np.ones(shape)
626 return _normalize(matrix)
627
628
629 def _random_norm(shape):
630 """Normalize a random matrix (PRIVATE)."""
631 matrix = np.random.random(shape)
632 return _normalize(matrix)
633
634
635 def _copy_and_check(matrix, desired_shape):
636 """Copy a matrix and check its dimension. Normalize at the end (PRIVATE)."""
637 # Copy the matrix.
638 matrix = np.array(matrix, copy=1)
639 # Check the dimensions.
640 if matrix.shape != desired_shape:
641 raise ValueError("Incorrect dimension")
642 # Make sure it's normalized.
643 if len(matrix.shape) == 1:
644 if np.fabs(sum(matrix) - 1.0) > 0.01:
645 raise ValueError("matrix not normalized to 1.0")
646 elif len(matrix.shape) == 2:
647 for i in range(len(matrix)):
648 if np.fabs(sum(matrix[i]) - 1.0) > 0.01:
649 raise ValueError("matrix %d not normalized to 1.0" % i)
650 else:
651 raise ValueError("I don't handle matrices > 2 dimensions")
652 return matrix
653
654
655 def _logsum(matrix):
656 """Implement logsum for a matrix object (PRIVATE)."""
657 if len(matrix.shape) > 1:
658 vec = np.reshape(matrix, (np.prod(matrix.shape),))
659 else:
660 vec = matrix
661 sum = LOG0
662 for num in vec:
663 sum = logaddexp(sum, num)
664 return sum
665
666
667 def _logvecadd(logvec1, logvec2):
668 """Implement a log sum for two vector objects (PRIVATE)."""
669 assert len(logvec1) == len(logvec2), "vectors aren't the same length"
670 sumvec = np.zeros(len(logvec1))
671 for i in range(len(logvec1)):
672 sumvec[i] = logaddexp(logvec1[i], logvec2[i])
673 return sumvec
674
675
676 def _exp_logsum(numbers):
677 """Return the exponential of a logsum (PRIVATE)."""
678 sum = _logsum(numbers)
679 return np.exp(sum)