Mercurial > repos > rliterman > csp2
comparison CSP2/CSP2_env/env-d9b9114564458d9d-741b3de822f2aaca6c6caa4325c4afce/lib/python3.8/site-packages/Bio/MaxEntropy.py @ 69:33d812a61356
planemo upload commit 2e9511a184a1ca667c7be0c6321a36dc4e3d116d
author | jpayne |
---|---|
date | Tue, 18 Mar 2025 17:55:14 -0400 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
67:0e9998148a16 | 69:33d812a61356 |
---|---|
1 # Copyright 2001 by Jeffrey Chang. All rights reserved. | |
2 # | |
3 # This file is part of the Biopython distribution and governed by your | |
4 # choice of the "Biopython License Agreement" or the "BSD 3-Clause License". | |
5 # Please see the LICENSE file that should have been included as part of this | |
6 # package. | |
7 """Maximum Entropy code. | |
8 | |
9 Uses Improved Iterative Scaling. | |
10 """ | |
11 # TODO Define terminology | |
12 | |
13 from functools import reduce | |
14 import warnings | |
15 | |
16 try: | |
17 import numpy as np | |
18 except ImportError: | |
19 from Bio import MissingPythonDependencyError | |
20 | |
21 raise MissingPythonDependencyError( | |
22 "Please install NumPy if you want to use Bio.MaxEntropy. " | |
23 "See http://www.numpy.org/" | |
24 ) from None | |
25 | |
26 | |
27 from Bio import BiopythonDeprecationWarning | |
28 | |
29 warnings.warn( | |
30 "The 'Bio.MaxEntropy' module is deprecated and will be removed in a future " | |
31 "release of Biopython. Consider using scikit-learn instead.", | |
32 BiopythonDeprecationWarning, | |
33 ) | |
34 | |
35 | |
36 class MaxEntropy: | |
37 """Hold information for a Maximum Entropy classifier. | |
38 | |
39 Members: | |
40 classes List of the possible classes of data. | |
41 alphas List of the weights for each feature. | |
42 feature_fns List of the feature functions. | |
43 | |
44 Car data from example Naive Bayes Classifier example by Eric Meisner November 22, 2003 | |
45 http://www.inf.u-szeged.hu/~ormandi/teaching | |
46 | |
47 >>> from Bio.MaxEntropy import train, classify | |
48 >>> xcar = [ | |
49 ... ['Red', 'Sports', 'Domestic'], | |
50 ... ['Red', 'Sports', 'Domestic'], | |
51 ... ['Red', 'Sports', 'Domestic'], | |
52 ... ['Yellow', 'Sports', 'Domestic'], | |
53 ... ['Yellow', 'Sports', 'Imported'], | |
54 ... ['Yellow', 'SUV', 'Imported'], | |
55 ... ['Yellow', 'SUV', 'Imported'], | |
56 ... ['Yellow', 'SUV', 'Domestic'], | |
57 ... ['Red', 'SUV', 'Imported'], | |
58 ... ['Red', 'Sports', 'Imported']] | |
59 >>> ycar = ['Yes','No','Yes','No','Yes','No','Yes','No','No','Yes'] | |
60 | |
61 Requires some rules or features | |
62 | |
63 >>> def udf1(ts, cl): | |
64 ... return ts[0] != 'Red' | |
65 ... | |
66 >>> def udf2(ts, cl): | |
67 ... return ts[1] != 'Sports' | |
68 ... | |
69 >>> def udf3(ts, cl): | |
70 ... return ts[2] != 'Domestic' | |
71 ... | |
72 >>> user_functions = [udf1, udf2, udf3] # must be an iterable type | |
73 >>> xe = train(xcar, ycar, user_functions) | |
74 >>> for xv, yv in zip(xcar, ycar): | |
75 ... xc = classify(xe, xv) | |
76 ... print('Pred: %s gives %s y is %s' % (xv, xc, yv)) | |
77 ... | |
78 Pred: ['Red', 'Sports', 'Domestic'] gives No y is Yes | |
79 Pred: ['Red', 'Sports', 'Domestic'] gives No y is No | |
80 Pred: ['Red', 'Sports', 'Domestic'] gives No y is Yes | |
81 Pred: ['Yellow', 'Sports', 'Domestic'] gives No y is No | |
82 Pred: ['Yellow', 'Sports', 'Imported'] gives No y is Yes | |
83 Pred: ['Yellow', 'SUV', 'Imported'] gives No y is No | |
84 Pred: ['Yellow', 'SUV', 'Imported'] gives No y is Yes | |
85 Pred: ['Yellow', 'SUV', 'Domestic'] gives No y is No | |
86 Pred: ['Red', 'SUV', 'Imported'] gives No y is No | |
87 Pred: ['Red', 'Sports', 'Imported'] gives No y is Yes | |
88 """ | |
89 | |
90 def __init__(self): | |
91 """Initialize the class.""" | |
92 self.classes = [] | |
93 self.alphas = [] | |
94 self.feature_fns = [] | |
95 | |
96 | |
97 def calculate(me, observation): | |
98 """Calculate the log of the probability for each class. | |
99 | |
100 me is a MaxEntropy object that has been trained. observation is a vector | |
101 representing the observed data. The return value is a list of | |
102 unnormalized log probabilities for each class. | |
103 """ | |
104 scores = [] | |
105 assert len(me.feature_fns) == len(me.alphas) | |
106 for klass in me.classes: | |
107 lprob = 0.0 | |
108 for fn, alpha in zip(me.feature_fns, me.alphas): | |
109 lprob += fn(observation, klass) * alpha | |
110 scores.append(lprob) | |
111 return scores | |
112 | |
113 | |
114 def classify(me, observation): | |
115 """Classify an observation into a class.""" | |
116 scores = calculate(me, observation) | |
117 max_score, klass = scores[0], me.classes[0] | |
118 for i in range(1, len(scores)): | |
119 if scores[i] > max_score: | |
120 max_score, klass = scores[i], me.classes[i] | |
121 return klass | |
122 | |
123 | |
124 def _eval_feature_fn(fn, xs, classes): | |
125 """Evaluate a feature function on every instance of the training set and class (PRIVATE). | |
126 | |
127 fn is a callback function that takes two parameters: a | |
128 training instance and a class. Return a dictionary of (training | |
129 set index, class index) -> non-zero value. Values of 0 are not | |
130 stored in the dictionary. | |
131 """ | |
132 values = {} | |
133 for i in range(len(xs)): | |
134 for j in range(len(classes)): | |
135 f = fn(xs[i], classes[j]) | |
136 if f != 0: | |
137 values[(i, j)] = f | |
138 return values | |
139 | |
140 | |
141 def _calc_empirical_expects(xs, ys, classes, features): | |
142 """Calculate the expectation of each function from the data (PRIVATE). | |
143 | |
144 This is the constraint for the maximum entropy distribution. Return a | |
145 list of expectations, parallel to the list of features. | |
146 """ | |
147 # E[f_i] = SUM_x,y P(x, y) f(x, y) | |
148 # = 1/N f(x, y) | |
149 class2index = {} | |
150 for index, key in enumerate(classes): | |
151 class2index[key] = index | |
152 ys_i = [class2index[y] for y in ys] | |
153 | |
154 expect = [] | |
155 N = len(xs) | |
156 for feature in features: | |
157 s = 0 | |
158 for i in range(N): | |
159 s += feature.get((i, ys_i[i]), 0) | |
160 expect.append(s / N) | |
161 return expect | |
162 | |
163 | |
164 def _calc_model_expects(xs, classes, features, alphas): | |
165 """Calculate the expectation of each feature from the model (PRIVATE). | |
166 | |
167 This is not used in maximum entropy training, but provides a good function | |
168 for debugging. | |
169 """ | |
170 # SUM_X P(x) SUM_Y P(Y|X) F(X, Y) | |
171 # = 1/N SUM_X SUM_Y P(Y|X) F(X, Y) | |
172 p_yx = _calc_p_class_given_x(xs, classes, features, alphas) | |
173 | |
174 expects = [] | |
175 for feature in features: | |
176 sum = 0.0 | |
177 for (i, j), f in feature.items(): | |
178 sum += p_yx[i][j] * f | |
179 expects.append(sum / len(xs)) | |
180 return expects | |
181 | |
182 | |
183 def _calc_p_class_given_x(xs, classes, features, alphas): | |
184 """Calculate conditional probability P(y|x) (PRIVATE). | |
185 | |
186 y is the class and x is an instance from the training set. | |
187 Return a XSxCLASSES matrix of probabilities. | |
188 """ | |
189 prob_yx = np.zeros((len(xs), len(classes))) | |
190 | |
191 # Calculate log P(y, x). | |
192 assert len(features) == len(alphas) | |
193 for feature, alpha in zip(features, alphas): | |
194 for (x, y), f in feature.items(): | |
195 prob_yx[x][y] += alpha * f | |
196 # Take an exponent to get P(y, x) | |
197 prob_yx = np.exp(prob_yx) | |
198 # Divide out the probability over each class, so we get P(y|x). | |
199 for i in range(len(xs)): | |
200 z = sum(prob_yx[i]) | |
201 prob_yx[i] = prob_yx[i] / z | |
202 return prob_yx | |
203 | |
204 | |
205 def _calc_f_sharp(N, nclasses, features): | |
206 """Calculate a matrix of f sharp values (PRIVATE).""" | |
207 # f#(x, y) = SUM_i feature(x, y) | |
208 f_sharp = np.zeros((N, nclasses)) | |
209 for feature in features: | |
210 for (i, j), f in feature.items(): | |
211 f_sharp[i][j] += f | |
212 return f_sharp | |
213 | |
214 | |
215 def _iis_solve_delta( | |
216 N, feature, f_sharp, empirical, prob_yx, max_newton_iterations, newton_converge | |
217 ): | |
218 """Solve delta using Newton's method (PRIVATE).""" | |
219 # SUM_x P(x) * SUM_c P(c|x) f_i(x, c) e^[delta_i * f#(x, c)] = 0 | |
220 delta = 0.0 | |
221 iters = 0 | |
222 while iters < max_newton_iterations: # iterate for Newton's method | |
223 f_newton = df_newton = 0.0 # evaluate the function and derivative | |
224 for (i, j), f in feature.items(): | |
225 prod = prob_yx[i][j] * f * np.exp(delta * f_sharp[i][j]) | |
226 f_newton += prod | |
227 df_newton += prod * f_sharp[i][j] | |
228 f_newton, df_newton = empirical - f_newton / N, -df_newton / N | |
229 | |
230 ratio = f_newton / df_newton | |
231 delta -= ratio | |
232 if np.fabs(ratio) < newton_converge: # converged | |
233 break | |
234 iters = iters + 1 | |
235 else: | |
236 raise RuntimeError("Newton's method did not converge") | |
237 return delta | |
238 | |
239 | |
240 def _train_iis( | |
241 xs, | |
242 classes, | |
243 features, | |
244 f_sharp, | |
245 alphas, | |
246 e_empirical, | |
247 max_newton_iterations, | |
248 newton_converge, | |
249 ): | |
250 """Do one iteration of hill climbing to find better alphas (PRIVATE).""" | |
251 # This is a good function to parallelize. | |
252 | |
253 # Pre-calculate P(y|x) | |
254 p_yx = _calc_p_class_given_x(xs, classes, features, alphas) | |
255 | |
256 N = len(xs) | |
257 newalphas = alphas[:] | |
258 for i in range(len(alphas)): | |
259 delta = _iis_solve_delta( | |
260 N, | |
261 features[i], | |
262 f_sharp, | |
263 e_empirical[i], | |
264 p_yx, | |
265 max_newton_iterations, | |
266 newton_converge, | |
267 ) | |
268 newalphas[i] += delta | |
269 return newalphas | |
270 | |
271 | |
272 def train( | |
273 training_set, | |
274 results, | |
275 feature_fns, | |
276 update_fn=None, | |
277 max_iis_iterations=10000, | |
278 iis_converge=1.0e-5, | |
279 max_newton_iterations=100, | |
280 newton_converge=1.0e-10, | |
281 ): | |
282 """Train a maximum entropy classifier, returns MaxEntropy object. | |
283 | |
284 Train a maximum entropy classifier on a training set. | |
285 training_set is a list of observations. results is a list of the | |
286 class assignments for each observation. feature_fns is a list of | |
287 the features. These are callback functions that take an | |
288 observation and class and return a 1 or 0. update_fn is a | |
289 callback function that is called at each training iteration. It is | |
290 passed a MaxEntropy object that encapsulates the current state of | |
291 the training. | |
292 | |
293 The maximum number of iterations and the convergence criterion for IIS | |
294 are given by max_iis_iterations and iis_converge, respectively, while | |
295 max_newton_iterations and newton_converge are the maximum number | |
296 of iterations and the convergence criterion for Newton's method. | |
297 """ | |
298 if not training_set: | |
299 raise ValueError("No data in the training set.") | |
300 if len(training_set) != len(results): | |
301 raise ValueError("training_set and results should be parallel lists.") | |
302 | |
303 # Rename variables for convenience. | |
304 xs, ys = training_set, results | |
305 | |
306 # Get a list of all the classes that need to be trained. | |
307 classes = sorted(set(results)) | |
308 | |
309 # Cache values for all features. | |
310 features = [_eval_feature_fn(fn, training_set, classes) for fn in feature_fns] | |
311 # Cache values for f#. | |
312 f_sharp = _calc_f_sharp(len(training_set), len(classes), features) | |
313 | |
314 # Pre-calculate the empirical expectations of the features. | |
315 e_empirical = _calc_empirical_expects(xs, ys, classes, features) | |
316 | |
317 # Now train the alpha parameters to weigh each feature. | |
318 alphas = [0.0] * len(features) | |
319 iters = 0 | |
320 while iters < max_iis_iterations: | |
321 nalphas = _train_iis( | |
322 xs, | |
323 classes, | |
324 features, | |
325 f_sharp, | |
326 alphas, | |
327 e_empirical, | |
328 max_newton_iterations, | |
329 newton_converge, | |
330 ) | |
331 diff = [np.fabs(x - y) for x, y in zip(alphas, nalphas)] | |
332 diff = reduce(np.add, diff, 0) | |
333 alphas = nalphas | |
334 | |
335 me = MaxEntropy() | |
336 me.alphas, me.classes, me.feature_fns = alphas, classes, feature_fns | |
337 if update_fn is not None: | |
338 update_fn(me) | |
339 | |
340 if diff < iis_converge: # converged | |
341 break | |
342 else: | |
343 raise RuntimeError("IIS did not converge") | |
344 | |
345 return me | |
346 | |
347 | |
348 if __name__ == "__main__": | |
349 from Bio._utils import run_doctest | |
350 | |
351 run_doctest(verbose=0) |