Mercurial > repos > rliterman > csp2
diff CSP2/bin/screenSNPDiffs.py @ 0:01431fa12065
"planemo upload"
author | rliterman |
---|---|
date | Mon, 02 Dec 2024 10:40:55 -0500 |
parents | |
children | 792274118b2e |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/CSP2/bin/screenSNPDiffs.py Mon Dec 02 10:40:55 2024 -0500 @@ -0,0 +1,647 @@ +#!/usr/bin/env python3 + +import sys +import os +import pandas as pd +import datetime +from pybedtools import BedTool,helpers +import concurrent.futures +import time +import uuid +import traceback +import shutil +import argparse + + +def fetchHeaders(snpdiffs_file): + + with open(snpdiffs_file, 'r') as file: + top_line = file.readline().strip().split('\t')[1:] + + header_cols = [item.split(':')[0] for item in top_line] + header_vals = [item.split(':')[1] for item in top_line] + + header_data = pd.DataFrame(columns = header_cols) + header_data.loc[0] = header_vals + header_data.loc[:, 'File_Path'] = snpdiffs_file + + return header_data + +def processBED(bed_rows,snpdiffs_orientation): + + bed_columns = ['Ref_Contig','Ref_Start','Ref_End','Ref_Length','Ref_Aligned', + 'Query_Contig','Query_Start','Query_End','Query_Length','Query_Aligned', + 'Perc_Iden'] + + reverse_columns = ['Query_Contig','Query_Start','Query_End','Query_Length','Query_Aligned', + 'Ref_Contig','Ref_Start','Ref_End','Ref_Length','Ref_Aligned', + 'Perc_Iden'] + + int_columns = ['Ref_Start', 'Ref_End', 'Ref_Length', 'Ref_Aligned', + 'Query_Start', 'Query_End', 'Query_Length', 'Query_Aligned'] + + float_columns = ['Perc_Iden'] + + if len(bed_rows) > 0: + + bed_df = pd.DataFrame(bed_rows, columns=bed_columns) + + # Swap columns if reversed + if snpdiffs_orientation == -1: + bed_df = bed_df[reverse_columns].copy() + bed_df.columns = bed_columns + + # Remove any rows where Query_Contig or Ref_Contig == "." (Unaligned) + covered_bed_df = bed_df[(bed_df['Ref_Start'] != ".") & (bed_df['Query_Start'] != ".")].copy() + + if covered_bed_df.shape[0] > 0: + for col in int_columns: + covered_bed_df.loc[:, col] = covered_bed_df.loc[:, col].astype(float).astype(int) + for col in float_columns: + covered_bed_df.loc[:, col] = covered_bed_df.loc[:, col].astype(float) + return covered_bed_df + else: + return pd.DataFrame(columns=bed_columns) + else: + return pd.DataFrame(columns=bed_columns) + +def processSNPs(snp_rows,snpdiffs_orientation): + + snp_columns = ['Ref_Contig','Start_Ref','Ref_Pos', + 'Query_Contig','Start_Query','Query_Pos', + 'Ref_Loc','Query_Loc', + 'Ref_Start','Ref_End', + 'Query_Start','Query_End', + 'Ref_Base','Query_Base', + 'Dist_to_Ref_End','Dist_to_Query_End', + 'Ref_Aligned','Query_Aligned', + 'Query_Direction','Perc_Iden','Cat'] + + reverse_columns = ['Query_Contig','Start_Query','Query_Pos', + 'Ref_Contig','Start_Ref','Ref_Pos', + 'Query_Loc','Ref_Loc', + 'Query_Start','Query_End', + 'Ref_Start','Ref_End', + 'Query_Base','Ref_Base', + 'Dist_to_Query_End','Dist_to_Ref_End', + 'Query_Aligned','Ref_Aligned', + 'Query_Direction','Perc_Iden','Cat'] + + return_columns = ['Ref_Contig','Start_Ref','Ref_Pos', + 'Query_Contig','Start_Query','Query_Pos', + 'Ref_Loc','Query_Loc', + 'Ref_Start','Ref_End', + 'Query_Start','Query_End', + 'Ref_Base','Query_Base', + 'Dist_to_Ref_End','Dist_to_Query_End', + 'Ref_Aligned','Query_Aligned', + 'Perc_Iden','Cat'] + + reverse_complement = {'A':'T','T':'A','G':'C','C':'G', + 'a':'T','t':'A','c':'G','g':'C'} + + # Columns to convert to integer + int_columns = ['Start_Ref', 'Ref_Pos', 'Start_Query', 'Query_Pos', + 'Dist_to_Ref_End', 'Dist_to_Query_End', 'Ref_Aligned', 'Query_Aligned'] + + # Columns to convert to float + float_columns = ['Perc_Iden'] + + if len(snp_rows) > 0: + snp_df = pd.DataFrame(snp_rows, columns= snp_columns).copy() + + if snpdiffs_orientation == -1: + snp_df = snp_df[reverse_columns].copy() + snp_df.columns = snp_columns + + # Replace Query_Base and Reference_Base with reverse complement if Query_Direction is -1 and base is in ['A','T','G','C','a','c','t','g'] + snp_df.loc[snp_df['Query_Direction'] == '-1','Query_Base'] = snp_df.loc[snp_df['Query_Direction'] == '-1','Query_Base'].apply(lambda x: reverse_complement[x] if x in reverse_complement else x) + snp_df.loc[snp_df['Query_Direction'] == '-1','Ref_Base'] = snp_df.loc[snp_df['Query_Direction'] == '-1','Ref_Base'].apply(lambda x: reverse_complement[x] if x in reverse_complement else x) + + + for col in int_columns: + snp_df.loc[:, col] = snp_df.loc[:, col].astype(float).astype(int) + for col in float_columns: + snp_df.loc[:, col] = snp_df.loc[:, col].astype(float) + + else: + snp_df = pd.DataFrame(columns = return_columns) + + return snp_df[return_columns] + +def swapHeader(header_data): + + raw_header_cols = [x for x in header_data.columns] + reverse_header_cols = [item.replace('Reference', 'temp').replace('Query', 'Reference').replace('temp', 'Query') for item in raw_header_cols] + reversed_header_data = header_data[reverse_header_cols].copy() + reversed_header_data.columns = raw_header_cols + + return reversed_header_data + +def parseSNPDiffs(snpdiffs_file,snpdiffs_orientation): + + bed_rows = [] + snp_rows = [] + + with open(snpdiffs_file, 'r') as file: + lines = file.readlines() + + for line in lines: + if line[0:2] == "#\t": + pass + elif line[0:3] == "##\t": + bed_rows.append(line.strip().split("\t")[1:]) + else: + snp_rows.append(line.strip().split("\t")) + + bed_df = processBED(bed_rows,snpdiffs_orientation) + snp_df = processSNPs(snp_rows,snpdiffs_orientation) + return (bed_df,snp_df) + +def calculate_total_length(bedtool): + return sum(len(interval) for interval in bedtool) + +def filterSNPs(raw_snp_df,bed_df,log_file, min_len, min_iden, ref_edge, query_edge, density_windows, max_snps): + + if temp_dir != "": + helpers.set_tempdir(temp_dir) + + # Grab raw data + total_snp_count = raw_snp_df.shape[0] + + # Get unique SNPs relative to the reference genome + unique_ref_snps = raw_snp_df['Ref_Loc'].unique() + unique_snp_count = len(unique_ref_snps) + + snp_tally_df = pd.DataFrame() + + with open(log_file,"a+") as log: + log.write(f"\n\t- Raw SNP + indel count: {total_snp_count}\n") + log.write(f"\n\t- Unique SNP positions in reference genome: {unique_snp_count}\n") + + # Set all sites to SNP + raw_snp_df['Filter_Cat'] = "SNP" + + # Filter out SNPs based on --min_len and --min_iden + reject_length = raw_snp_df.loc[(raw_snp_df['Ref_Aligned'] < min_len) & (raw_snp_df['Perc_Iden'] >= min_iden)].copy() + if reject_length.shape[0] > 0: + with open(log_file,"a+") as log: + log.write(f"\t\t- Purged (Alignment Length): {reject_length.shape[0]}\n") + reject_length['Filter_Cat'] = "Purged_Length" + snp_tally_df = pd.concat([snp_tally_df,reject_length]).reset_index(drop=True) + + reject_iden = raw_snp_df.loc[(raw_snp_df['Ref_Aligned'] >= min_len) & (raw_snp_df['Perc_Iden'] < min_iden)].copy() + if reject_iden.shape[0] > 0: + with open(log_file,"a+") as log: + log.write(f"\t\t- Purged (Alignment Identity): {reject_iden.shape[0]}\n") + reject_iden['Filter_Cat'] = "Purged_Identity" + snp_tally_df = pd.concat([snp_tally_df,reject_iden]).reset_index(drop=True) + + reject_lenIden = raw_snp_df.loc[(raw_snp_df['Ref_Aligned'] < min_len) & (raw_snp_df['Perc_Iden'] < min_iden)].copy() + if reject_lenIden.shape[0] > 0: + with open(log_file,"a+") as log: + log.write(f"\t\t- Purged (Alignment Length + Identity): {reject_lenIden.shape[0]}\n") + reject_lenIden['Filter_Cat'] = "Purged_LengthIdentity" + snp_tally_df = pd.concat([snp_tally_df,reject_lenIden]).reset_index(drop=True) + + pass_filter = raw_snp_df.loc[(raw_snp_df['Ref_Aligned'] >= min_len) & (raw_snp_df['Perc_Iden'] >= min_iden)].copy().reset_index(drop=True) + + # Invalid processing + reject_invalid = pass_filter[pass_filter['Cat'] == "Invalid"].copy() + if reject_invalid.shape[0] > 0: + with open(log_file,"a+") as log: + log.write(f"\t\t- Purged (Invalid Base): {reject_invalid.shape[0]}\n") + reject_invalid['Filter_Cat'] = "Purged_Invalid" + snp_tally_df = pd.concat([snp_tally_df,reject_invalid]).reset_index(drop=True) + pass_filter = pass_filter.loc[pass_filter['Cat'] != "Invalid"].copy() + + # Indel processing + reject_indel = pass_filter[pass_filter['Cat'] == "Indel"].copy() + if reject_indel.shape[0] > 0: + with open(log_file,"a+") as log: + log.write(f"\t\t- Purged (Indel): {reject_indel.shape[0]}\n") + reject_indel['Filter_Cat'] = "Purged_Indel" + snp_tally_df = pd.concat([snp_tally_df,reject_indel]).reset_index(drop=True) + pass_filter = pass_filter.loc[pass_filter['Cat'] != "Indel"].copy() + + # Check for heterozygous SNPs + check_heterozygous = pass_filter.groupby('Ref_Loc').filter(lambda x: x['Query_Base'].nunique() > 1) + if check_heterozygous.shape[0] > 0: + reject_heterozygous = pass_filter.loc[pass_filter['Ref_Loc'].isin(check_heterozygous['Ref_Loc'])].copy() + reject_heterozygous['Filter_Cat'] = "Purged_Heterozygous" + with open(log_file,"a+") as log: + log.write(f"\t\t- Purged (Heterozygotes): {reject_heterozygous.shape[0]}\n") + snp_tally_df = pd.concat([snp_tally_df,reject_heterozygous]).reset_index(drop=True) + pass_filter = pass_filter.loc[~pass_filter['Ref_Loc'].isin(check_heterozygous['Ref_Loc'])].copy() + + # Check for duplicate SNPs and take the longest, best hit + check_duplicates = pass_filter.groupby('Ref_Loc').filter(lambda x: x.shape[0] > 1) + if check_duplicates.shape[0] > 0: + reject_duplicate = pass_filter.loc[pass_filter['Ref_Loc'].isin(check_duplicates['Ref_Loc'])].copy() + pass_filter = pass_filter.loc[~pass_filter['Ref_Loc'].isin(check_duplicates['Ref_Loc'])].copy() + + best_snp = reject_duplicate.groupby('Ref_Loc').apply(lambda x: x.sort_values(by=['Ref_Aligned', 'Perc_Iden'], ascending=[False, False]).head(1)) + pass_filter = pd.concat([pass_filter,best_snp]).reset_index(drop=True) + + dup_snps = reject_duplicate[~reject_duplicate.apply(lambda x: x in best_snp, axis=1)] + dup_snps['Filter_Cat'] = "Purged_Duplicate" + + snp_tally_df = pd.concat([snp_tally_df,dup_snps]).reset_index(drop=True) + + with open(log_file,"a+") as log: + log.write(f"\t\t- Purged (Duplicates): {dup_snps.shape[0]}\n") + + # Assert that Ref_Loc and Query_Loc are unique in pass_filter + helpers.cleanup(verbose=False,remove_all = False) + assert pass_filter['Ref_Loc'].nunique() == pass_filter.shape[0] + assert pass_filter['Query_Loc'].nunique() == pass_filter.shape[0] + + # Density filtering + density_locs = [] + ref_locs = pass_filter['Ref_Loc'].tolist() + + if len(density_windows) == 0: + with open(log_file,"a+") as log: + log.write("\n\t- Density filtering disabled...\n") + elif len(ref_locs) > 0: + density_df = pd.DataFrame([item.split('/') for item in ref_locs], columns=['Ref_Contig','Ref_End']) + density_df['Ref_Start'] = density_df['Ref_End'].astype(float).astype(int) - 1 + density_bed = BedTool.from_dataframe(density_df[['Ref_Contig','Ref_Start','Ref_End']]) + + # For each density window, remove all SNPs that fall in a window with > max_snps + for i in range(0,len(density_windows)): + window_df = density_bed.window(density_bed,c=True, w=density_windows[i]).to_dataframe() + problematic_windows = window_df[window_df['name'] > max_snps[i]].copy() + if not problematic_windows.empty: + temp_locs = [] + for _, row in problematic_windows.iterrows(): + purge_window_df = window_df[window_df['chrom'] == row['chrom']].copy() + purge_window_df['Dist'] = abs(purge_window_df['end'] - row['end']) + window_snps = purge_window_df.sort_values(by=['Dist'],ascending=True).head(row['name']) + temp_locs = temp_locs + ["/".join([str(x[0]),str(x[1])]) for x in list(zip(window_snps.chrom, window_snps.end))] + density_locs.extend(list(set(temp_locs))) + + density_locs = list(set(density_locs)) + reject_density = pass_filter[pass_filter['Ref_Loc'].isin(density_locs)].copy() + + if reject_density.shape[0] > 0: + with open(log_file,"a+") as log: + log.write(f"\t\t- Purged (Density): {reject_density.shape[0]}\n") + reject_density['Filter_Cat'] = "Purged_Density" + snp_tally_df = pd.concat([snp_tally_df,reject_density]).reset_index(drop=True) + pass_filter = pass_filter[~pass_filter['Ref_Loc'].isin(density_locs)].copy() + + reject_query_edge = pass_filter[(pass_filter['Dist_to_Query_End'] < query_edge) & (pass_filter['Dist_to_Ref_End'] >= ref_edge)].copy() + reject_ref_edge = pass_filter[(pass_filter['Dist_to_Ref_End'] < ref_edge) & (pass_filter['Dist_to_Query_End'] >= query_edge)].copy() + reject_both_edge = pass_filter[(pass_filter['Dist_to_Query_End'] < query_edge) & (pass_filter['Dist_to_Ref_End'] < ref_edge)].copy() + + if reject_query_edge.shape[0] > 0: + with open(log_file,"a+") as log: + log.write(f"\t\t- Purged (Query Edge): {reject_query_edge.shape[0]}\n") + reject_query_edge['Filter_Cat'] = "Filtered_Query_Edge" + snp_tally_df = pd.concat([snp_tally_df,reject_query_edge]).reset_index(drop=True) + + if reject_ref_edge.shape[0] > 0: + with open(log_file,"a+") as log: + log.write(f"\t\t- Purged (Ref Edge): {reject_ref_edge.shape[0]}\n") + reject_ref_edge['Filter_Cat'] = "Filtered_Ref_Edge" + snp_tally_df = pd.concat([snp_tally_df,reject_ref_edge]).reset_index(drop=True) + + if reject_both_edge.shape[0] > 0: + with open(log_file,"a+") as log: + log.write(f"\t\t- Purged (Both Edge): {reject_both_edge.shape[0]}\n") + reject_both_edge['Filter_Cat'] = "Filtered_Both_Edge" + snp_tally_df = pd.concat([snp_tally_df,reject_both_edge]).reset_index(drop=True) + + pass_filter = pass_filter[(pass_filter['Dist_to_Query_End'] >= query_edge) & (pass_filter['Dist_to_Ref_End'] >= ref_edge)].copy() + + helpers.cleanup(verbose=False,remove_all = False) + + assert snp_tally_df.shape[0] + pass_filter.shape[0] == total_snp_count + return_df = pd.concat([pass_filter,snp_tally_df]).reset_index(drop=True).sort_values(by=['Ref_Loc']) + + return return_df.drop(columns=['Cat']).rename({'Filter_Cat':'Cat'}, axis=1) + + +def screenSNPDiffs(snpdiffs_file,trim_name, min_cov, min_len, min_iden, ref_edge, query_edge, density_windows, max_snps,ref_ids): + + if temp_dir != "": + helpers.set_tempdir(temp_dir) + + screen_start_time = time.time() + + # Set CSP2 variables to NA + csp2_screen_snps = purged_length = purged_identity = purged_invalid = purged_indel = purged_lengthIdentity = purged_duplicate = purged_het = purged_density = filtered_ref_edge = filtered_query_edge = filtered_both_edge = "NA" + + # Ensure snpdiffs file exists + if not os.path.exists(snpdiffs_file) or not snpdiffs_file.endswith('.snpdiffs'): + run_failed = True + sys.exit(f"Invalid snpdiffs file provided: {snpdiffs_file}") + + # Ensure header can be read in + try: + header_data = fetchHeaders(snpdiffs_file) + header_query = header_data['Query_ID'][0].replace(trim_name,'') + header_ref = header_data['Reference_ID'][0].replace(trim_name,'') + except: + run_failed = True + sys.exit(f"Error reading headers from snpdiffs file: {snpdiffs_file}") + + # Check snpdiffs orientation + if ref_ids == []: + snpdiffs_orientation = 1 + query_id = header_query + reference_id = header_ref + elif (header_query not in ref_ids) and (header_ref in ref_ids): + snpdiffs_orientation = 1 + query_id = header_query + reference_id = header_ref + elif (header_query in ref_ids) and (header_ref not in ref_ids): + snpdiffs_orientation = -1 + query_id = header_ref + reference_id = header_query + header_data = swapHeader(header_data) + else: + snpdiffs_orientation = 2 + query_id = header_query + reference_id = header_ref + + # Establish log file + log_file = f"{log_dir}/{query_id}__vs__{reference_id}.log" + with open(log_file,"w+") as log: + log.write("Screening Analysis\n") + log.write(f"Query Isolate: {query_id}\n") + log.write(f"Reference Isolate: {reference_id}\n") + log.write(str(datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S"))+"\n") + log.write("-------------------------------------------------------\n\n") + if ref_ids == []: + log.write("\t- No explicit references set, processing in forward orientation\n") + log.write("-------------------------------------------------------\n\n") + elif snpdiffs_orientation == 1: + log.write("\t- SNPDiffs file is in the forward orientation\n") + log.write("-------------------------------------------------------\n\n") + elif snpdiffs_orientation == -1: + log.write("\t- SNPDiffs file is in the reverse orientation\n") + log.write("-------------------------------------------------------\n\n") + else: + snpdiffs_orientation = 1 + log.write("\t- SNPDiffs file not contain a reference and non-reference sample, processing in forward orientation\n") + log.write("-------------------------------------------------------\n\n") + + + # Set variables from header data + raw_snps = int(header_data['SNPs'][0]) + raw_indels = int(header_data['Indels'][0]) + raw_invalid = int(header_data['Invalid'][0]) + + kmer_similarity = float(header_data['Kmer_Similarity'][0]) + shared_kmers = int(header_data['Shared_Kmers'][0]) + query_unique_kmers = int(header_data['Query_Unique_Kmers'][0]) + reference_unique_kmers = int(header_data['Reference_Unique_Kmers'][0]) + mummer_gsnps = int(header_data['gSNPs'][0]) + mummer_gindels = int(header_data['gIndels'][0]) + + query_bases = int(header_data['Query_Assembly_Bases'][0]) + reference_bases = int(header_data['Reference_Assembly_Bases'][0]) + + query_contigs = int(header_data['Query_Contig_Count'][0]) + reference_contigs = int(header_data['Reference_Contig_Count'][0]) + + raw_query_percent_aligned = float(header_data['Query_Percent_Aligned'][0]) + raw_ref_percent_aligned = float(header_data['Reference_Percent_Aligned'][0]) + + # If the reference is not covered by at least min_cov, STOP + if raw_ref_percent_aligned < min_cov: + query_percent_aligned = raw_query_percent_aligned + reference_percent_aligned = raw_ref_percent_aligned + screen_category = "Low_Coverage" + with open(log_file,"a+") as log: + log.write(f"\t- Reference genome coverage: {raw_ref_percent_aligned}% \n") + log.write(f"\t- Query covers less than --min_cov ({min_cov}%)...Screen halted...\n") + log.write("-------------------------------------------------------\n\n") + + elif raw_snps + raw_indels + raw_invalid > 10000: + query_percent_aligned = raw_query_percent_aligned + reference_percent_aligned = raw_ref_percent_aligned + screen_category = "SNP_Cutoff" + with open(log_file,"a+") as log: + log.write(f"\t- {raw_snps} detected...\n") + log.write("\t- > 10,000 SNPs, indels, or invalid sites detected by MUMmer...Screen halted...\n") + log.write("-------------------------------------------------------\n\n") + + else: + + ##### 02: Read in BED/SNP data ##### + with open(log_file,"a+") as log: + log.write("Step 1: Reading in snpdiffs BED/SNP data...") + try: + bed_df,snp_df = parseSNPDiffs(snpdiffs_file,snpdiffs_orientation) + with open(log_file,"a+") as log: + log.write("Done!\n") + log.write("-------------------------------------------------------\n\n") + except: + with open(log_file,"a+") as log: + log.write(f"Error reading BED/SNP data from file: {snpdiffs_file}") + run_failed = True + sys.exit(f"Error reading BED/SNP data from file: {snpdiffs_file}") + + ##### 03: Filter genome overlaps ##### + with open(log_file,"a+") as log: + log.write("Step 2: Filtering for short overlaps and low percent identity...") + + good_bed_df = bed_df[(bed_df['Ref_Aligned'] >= min_len) & (bed_df['Perc_Iden'] >= min_iden)].copy() + + if good_bed_df.shape[0] == 0: + screen_category = "Low_Quality_Coverage" + with open(log_file,"a+") as log: + log.write(f"\n\t- After filtering based on --min_len ({min_len}) and --min_iden ({min_iden}) , no valid alignments remain...Screen halted...\n") + log.write("-------------------------------------------------------\n\n") + + + else: + # Create a BED file for alignments that pass basic QC + good_query_bed_df = good_bed_df[['Query_Contig','Query_Start','Query_End']].copy() + good_reference_bed_df = good_bed_df[['Ref_Contig','Ref_Start','Ref_End']].copy() + + good_query_aligned = calculate_total_length(BedTool.from_dataframe(good_query_bed_df).sort().merge()) + good_reference_aligned = calculate_total_length(BedTool.from_dataframe(good_reference_bed_df).sort().merge()) + + query_percent_aligned = (good_query_aligned / query_bases) * 100 + reference_percent_aligned = (good_reference_aligned / reference_bases) * 100 + + if reference_percent_aligned < min_cov: + screen_category = "Low_Quality_Coverage" + with open(log_file,"a+") as log: + log.write(f"\n\t- Raw reference genome coverage was {raw_ref_percent_aligned}% \n") + log.write(f"\t- After filtering based on --min_len ({min_len}) and --min_iden ({min_iden}), reference genome coverage was {reference_percent_aligned:.2f}% \n") + log.write(f"\t- Query covers less than --min_cov ({min_cov}%) of reference after filtering...Screen halted...\n") + log.write("-------------------------------------------------------\n\n") + + else: + screen_category = "Pass" + with open(log_file,"a+") as log: + log.write("Done!\n") + log.write(f"\t- Raw reference genome coverage was {raw_ref_percent_aligned}% \n") + log.write(f"\t- After filtering based on --min_len ({min_len}) and --min_iden ({min_iden}), reference genome coverage was {reference_percent_aligned:.2f}% \n") + log.write("-------------------------------------------------------\n\n") + + + # Filter SNPs + with open(log_file,"a+") as log: + log.write("Step 3: Filtering SNPs to get final SNP distances...") + + if raw_snps == 0: + csp2_screen_snps = purged_length = purged_identity = purged_lengthIdentity = purged_indel = purged_invalid = purged_duplicate = purged_het = purged_density = filtered_ref_edge = filtered_query_edge = filtered_both_edge = 0 + with open(log_file,"a+") as log: + log.write("Done!\n") + log.write("\t- No SNPs detected in MUMmer output, no filtering required\n") + log.write("-------------------------------------------------------\n\n") + + else: + filtered_snp_df = filterSNPs(snp_df,bed_df,log_file, min_len, min_iden, ref_edge, query_edge, density_windows, max_snps) + + # Write filtered SNP data to file + snp_file = log_file.replace(".log","_SNPs.tsv") + filtered_snp_df.to_csv(snp_file, sep="\t", index=False) + + csp2_screen_snps = filtered_snp_df[filtered_snp_df.Cat == "SNP"].shape[0] + + purged_length = filtered_snp_df[filtered_snp_df.Cat == "Purged_Length"].shape[0] + purged_identity = filtered_snp_df[filtered_snp_df.Cat == "Purged_Identity"].shape[0] + purged_lengthIdentity = filtered_snp_df[filtered_snp_df.Cat == "Purged_LengthIdentity"].shape[0] + purged_invalid = filtered_snp_df[filtered_snp_df.Cat == "Purged_Invalid"].shape[0] + purged_indel = filtered_snp_df[filtered_snp_df.Cat == "Purged_Indel"].shape[0] + purged_het = filtered_snp_df[filtered_snp_df.Cat == "Purged_Heterozygous"].shape[0] + purged_duplicate = filtered_snp_df[filtered_snp_df.Cat == "Purged_Duplicate"].shape[0] + purged_density = filtered_snp_df[filtered_snp_df.Cat == "Purged_Density"].shape[0] + filtered_query_edge = filtered_snp_df[filtered_snp_df.Cat == "Filtered_Query_Edge"].shape[0] + filtered_ref_edge = filtered_snp_df[filtered_snp_df.Cat == "Filtered_Ref_Edge"].shape[0] + filtered_both_edge = filtered_snp_df[filtered_snp_df.Cat == "Filtered_Both_Edge"].shape[0] + + with open(log_file,"a+") as log: + log.write("Done!\n") + log.write(f"\t- {csp2_screen_snps} SNPs detected between {query_id} and {reference_id} after filtering\n") + log.write(f"\t- SNP data saved to {snp_file}\n") + log.write("-------------------------------------------------------\n\n") + + screen_end_time = time.time() + helpers.cleanup(verbose=False, remove_all=False) + + with open(log_file,"a+") as log: + log.write(f"Screening Time: {screen_end_time - screen_start_time:.2f} seconds\n") + + # Clean up pybedtools temp + helpers.cleanup(verbose=False, remove_all=False) + + return [str(item) for item in [query_id,reference_id,screen_category,csp2_screen_snps, + f"{query_percent_aligned:.2f}",f"{reference_percent_aligned:.2f}", + query_contigs,query_bases,reference_contigs,reference_bases, + raw_snps,purged_length,purged_identity,purged_lengthIdentity,purged_invalid,purged_indel,purged_duplicate,purged_het,purged_density, + filtered_query_edge,filtered_ref_edge,filtered_both_edge, + kmer_similarity,shared_kmers,query_unique_kmers,reference_unique_kmers, + mummer_gsnps,mummer_gindels]] + +# Read in arguments +global run_failed +run_failed = False + +parser = argparse.ArgumentParser() +parser.add_argument("--snpdiffs_file", help="Path to the file containing SNP diffs") +parser.add_argument("--log_dir", help="Path to the log directory") +parser.add_argument("--min_cov", type=float, help="Minimum coverage") +parser.add_argument("--min_len", type=int, help="Minimum length") +parser.add_argument("--min_iden", type=float, help="Minimum identity") +parser.add_argument("--ref_edge", type=int, help="Reference edge") +parser.add_argument("--query_edge", type=int, help="Query edge") +parser.add_argument("--density_windows", help="Density windows (comma-separated)") +parser.add_argument("--max_snps", help="Maximum SNPs (comma-separated)") +parser.add_argument("--trim_name", help="Trim name") +parser.add_argument("--output_file", help="Output file") +parser.add_argument("--ref_id", help="Reference IDs file") +parser.add_argument("--tmp_dir", help="TMP dir") + +args = parser.parse_args() + +snpdiffs_list = [line.strip() for line in open(args.snpdiffs_file, 'r')] +snpdiffs_list = [line for line in snpdiffs_list if line] +for snpdiffs_file in snpdiffs_list: + if not os.path.exists(snpdiffs_file): + run_failed = True + sys.exit("Error: File does not exist: " + snpdiffs_file) + +snpdiffs_list = list(set(snpdiffs_list)) + +log_dir = os.path.normpath(os.path.abspath(args.log_dir)) + +min_cov = args.min_cov +min_len = args.min_len +min_iden = args.min_iden + +ref_edge = args.ref_edge +query_edge = args.query_edge + +input_density = args.density_windows +input_maxsnps = args.max_snps + +if input_density == "0": + density_windows = [] + max_snps = [] +else: + density_windows = [int(x) for x in args.density_windows.split(",")] + max_snps = [int(x) for x in args.max_snps.split(",")] +assert len(density_windows) == len(max_snps) + +trim_name = args.trim_name + +output_file = os.path.abspath(args.output_file) + +if os.stat(args.ref_id).st_size == 0: + ref_ids = [] +else: + ref_ids = [line.strip() for line in open(args.ref_id, 'r')] + +global temp_dir +if args.tmp_dir != "": + random_temp_id = str(uuid.uuid4()) + temp_dir = f"{os.path.normpath(os.path.abspath(args.tmp_dir))}/{random_temp_id}" + try: + os.mkdir(temp_dir) + helpers.set_tempdir(temp_dir) + except OSError as e: + run_failed = True + print(f"Error: Failed to create directory '{temp_dir}': {e}") +else: + temp_dir = "" + +try: + with concurrent.futures.ProcessPoolExecutor() as executor: + results = [executor.submit(screenSNPDiffs,snp_diff_file,trim_name, min_cov, min_len, min_iden, ref_edge, query_edge, density_windows, max_snps,ref_ids) for snp_diff_file in snpdiffs_list] + + # Clean up pybedtools temp + helpers.cleanup(verbose=False,remove_all = False) + + # Combine results into a dataframe + output_columns = ['Query_ID','Reference_ID','Screen_Category','CSP2_Screen_SNPs', + 'Query_Percent_Aligned','Reference_Percent_Aligned', + 'Query_Contigs','Query_Bases','Reference_Contigs','Reference_Bases', + 'Raw_SNPs','Purged_Length','Purged_Identity','Purged_LengthIdentity','Purged_Invalid','Purged_Indel','Purged_Duplicate','Purged_Het','Purged_Density', + 'Filtered_Query_Edge','Filtered_Ref_Edge','Filtered_Both_Edge', + 'Kmer_Similarity','Shared_Kmers','Query_Unique_Kmers','Reference_Unique_Kmers', + 'MUMmer_gSNPs','MUMmer_gIndels'] + + results_df = pd.DataFrame([item.result() for item in results], columns = output_columns) + results_df.to_csv(output_file, sep="\t", index=False) +except: + run_failed = True + print("Exception occurred:\n", traceback.format_exc()) +finally: + helpers.cleanup(verbose=False, remove_all=False) + if temp_dir != "": + shutil.rmtree(temp_dir) + if run_failed: + sys.exit(1) + + + + +