Mercurial > repos > rliterman > csp2
diff CSP2/CSP2_env/env-d9b9114564458d9d-741b3de822f2aaca6c6caa4325c4afce/include/kj/common.h @ 69:33d812a61356
planemo upload commit 2e9511a184a1ca667c7be0c6321a36dc4e3d116d
author | jpayne |
---|---|
date | Tue, 18 Mar 2025 17:55:14 -0400 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/CSP2/CSP2_env/env-d9b9114564458d9d-741b3de822f2aaca6c6caa4325c4afce/include/kj/common.h Tue Mar 18 17:55:14 2025 -0400 @@ -0,0 +1,2045 @@ +// Copyright (c) 2013-2014 Sandstorm Development Group, Inc. and contributors +// Licensed under the MIT License: +// +// Permission is hereby granted, free of charge, to any person obtaining a copy +// of this software and associated documentation files (the "Software"), to deal +// in the Software without restriction, including without limitation the rights +// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +// copies of the Software, and to permit persons to whom the Software is +// furnished to do so, subject to the following conditions: +// +// The above copyright notice and this permission notice shall be included in +// all copies or substantial portions of the Software. +// +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN +// THE SOFTWARE. + +// Header that should be #included by everyone. +// +// This defines very simple utilities that are widely applicable. + +#pragma once + +#if defined(__GNUC__) || defined(__clang__) +#define KJ_BEGIN_SYSTEM_HEADER _Pragma("GCC system_header") +#elif defined(_MSC_VER) +#define KJ_BEGIN_SYSTEM_HEADER __pragma(warning(push, 0)) +#define KJ_END_SYSTEM_HEADER __pragma(warning(pop)) +#endif + +#ifndef KJ_BEGIN_SYSTEM_HEADER +#define KJ_BEGIN_SYSTEM_HEADER +#endif + +#ifndef KJ_END_SYSTEM_HEADER +#define KJ_END_SYSTEM_HEADER +#endif + +#if !defined(KJ_HEADER_WARNINGS) || !KJ_HEADER_WARNINGS +#define KJ_BEGIN_HEADER KJ_BEGIN_SYSTEM_HEADER +#define KJ_END_HEADER KJ_END_SYSTEM_HEADER +#else +#define KJ_BEGIN_HEADER +#define KJ_END_HEADER +#endif + +#ifdef __has_cpp_attribute +#define KJ_HAS_CPP_ATTRIBUTE(x) __has_cpp_attribute(x) +#else +#define KJ_HAS_CPP_ATTRIBUTE(x) 0 +#endif + +#ifdef __has_feature +#define KJ_HAS_COMPILER_FEATURE(x) __has_feature(x) +#else +#define KJ_HAS_COMPILER_FEATURE(x) 0 +#endif + +#if defined(_MSVC_LANG) && !defined(__clang__) +#define KJ_CPP_STD _MSVC_LANG +#else +#define KJ_CPP_STD __cplusplus +#endif + +KJ_BEGIN_HEADER + +#ifndef KJ_NO_COMPILER_CHECK +// Technically, __cplusplus should be 201402L for C++14, but GCC 4.9 -- which is supported -- still +// had it defined to 201300L even with -std=c++14. +#if KJ_CPP_STD < 201300L && !__CDT_PARSER__ + #error "This code requires C++14. Either your compiler does not support it or it is not enabled." + #ifdef __GNUC__ + // Compiler claims compatibility with GCC, so presumably supports -std. + #error "Pass -std=c++14 on the compiler command line to enable C++14." + #endif +#endif + +#ifdef __GNUC__ + #if __clang__ + #if __clang_major__ < 5 + #warning "This library requires at least Clang 5.0." + #elif KJ_CPP_STD >= 201402L && !__has_include(<initializer_list>) + #warning "Your compiler supports C++14 but your C++ standard library does not. If your "\ + "system has libc++ installed (as should be the case on e.g. Mac OSX), try adding "\ + "-stdlib=libc++ to your CXXFLAGS." + #endif + #else + #if __GNUC__ < 5 + #warning "This library requires at least GCC 5.0." + #endif + #endif +#elif defined(_MSC_VER) + #if _MSC_VER < 1910 && !defined(__clang__) + #error "You need Visual Studio 2017 or better to compile this code." + #endif +#else + #warning "I don't recognize your compiler. As of this writing, Clang, GCC, and Visual Studio "\ + "are the only known compilers with enough C++14 support for this library. "\ + "#define KJ_NO_COMPILER_CHECK to make this warning go away." +#endif +#endif + +#include <stddef.h> +#include <cstring> +#include <initializer_list> +#include <string.h> + +#if __linux__ && KJ_CPP_STD > 201200L +// Hack around stdlib bug with C++14 that exists on some Linux systems. +// Apparently in this mode the C library decides not to define gets() but the C++ library still +// tries to import it into the std namespace. This bug has been fixed at the source but is still +// widely present in the wild e.g. on Ubuntu 14.04. +#undef _GLIBCXX_HAVE_GETS +#endif + +#if _WIN32 +// Windows likes to define macros for min() and max(). We just can't deal with this. +// If windows.h was included already, undef these. +#undef min +#undef max +// If windows.h was not included yet, define the macro that prevents min() and max() from being +// defined. +#ifndef NOMINMAX +#define NOMINMAX 1 +#endif +#endif + +#if defined(_MSC_VER) +#include <intrin.h> // __popcnt +#endif + +// ======================================================================================= + +namespace kj { + +typedef unsigned int uint; +typedef unsigned char byte; + +// ======================================================================================= +// Common macros, especially for common yet compiler-specific features. + +// Detect whether RTTI and exceptions are enabled, assuming they are unless we have specific +// evidence to the contrary. Clients can always define KJ_NO_RTTI or KJ_NO_EXCEPTIONS explicitly +// to override these checks. + +// TODO: Ideally we'd use __cpp_exceptions/__cpp_rtti not being defined as the first pass since +// that is the standard compliant way. However, it's unclear how to use those macros (or any +// others) to distinguish between the compiler supporting feature detection and the feature being +// disabled vs the compiler not supporting feature detection at all. +#if defined(__has_feature) + #if !defined(KJ_NO_RTTI) && !__has_feature(cxx_rtti) + #define KJ_NO_RTTI 1 + #endif + #if !defined(KJ_NO_EXCEPTIONS) && !__has_feature(cxx_exceptions) + #define KJ_NO_EXCEPTIONS 1 + #endif +#elif defined(__GNUC__) + #if !defined(KJ_NO_RTTI) && !__GXX_RTTI + #define KJ_NO_RTTI 1 + #endif + #if !defined(KJ_NO_EXCEPTIONS) && !__EXCEPTIONS + #define KJ_NO_EXCEPTIONS 1 + #endif +#elif defined(_MSC_VER) + #if !defined(KJ_NO_RTTI) && !defined(_CPPRTTI) + #define KJ_NO_RTTI 1 + #endif + #if !defined(KJ_NO_EXCEPTIONS) && !defined(_CPPUNWIND) + #define KJ_NO_EXCEPTIONS 1 + #endif +#endif + +#if !defined(KJ_DEBUG) && !defined(KJ_NDEBUG) +// Heuristically decide whether to enable debug mode. If DEBUG or NDEBUG is defined, use that. +// Otherwise, fall back to checking whether optimization is enabled. +#if defined(DEBUG) || defined(_DEBUG) +#define KJ_DEBUG +#elif defined(NDEBUG) +#define KJ_NDEBUG +#elif __OPTIMIZE__ +#define KJ_NDEBUG +#else +#define KJ_DEBUG +#endif +#endif + +#define KJ_DISALLOW_COPY(classname) \ + classname(const classname&) = delete; \ + classname& operator=(const classname&) = delete +// Deletes the implicit copy constructor and assignment operator. This inhibits the compiler from +// generating the implicit move constructor and assignment operator for this class, but allows the +// code author to supply them, if they make sense to implement. +// +// This macro should not be your first choice. Instead, prefer using KJ_DISALLOW_COPY_AND_MOVE, and only use +// this macro when you have determined that you must implement move semantics for your type. + +#define KJ_DISALLOW_COPY_AND_MOVE(classname) \ + classname(const classname&) = delete; \ + classname& operator=(const classname&) = delete; \ + classname(classname&&) = delete; \ + classname& operator=(classname&&) = delete +// Deletes the implicit copy and move constructors and assignment operators. This is useful in cases +// where the code author wants to provide an additional compile-time guard against subsequent +// maintainers casually adding move operations. This is particularly useful when implementing RAII +// classes that are intended to be completely immobile. + +#ifdef __GNUC__ +#define KJ_LIKELY(condition) __builtin_expect(condition, true) +#define KJ_UNLIKELY(condition) __builtin_expect(condition, false) +// Branch prediction macros. Evaluates to the condition given, but also tells the compiler that we +// expect the condition to be true/false enough of the time that it's worth hard-coding branch +// prediction. +#else +#define KJ_LIKELY(condition) (condition) +#define KJ_UNLIKELY(condition) (condition) +#endif + +#if defined(KJ_DEBUG) || __NO_INLINE__ +#define KJ_ALWAYS_INLINE(...) inline __VA_ARGS__ +// Don't force inline in debug mode. +#else +#if defined(_MSC_VER) && !defined(__clang__) +#define KJ_ALWAYS_INLINE(...) __forceinline __VA_ARGS__ +#else +#define KJ_ALWAYS_INLINE(...) inline __VA_ARGS__ __attribute__((always_inline)) +#endif +// Force a function to always be inlined. Apply only to the prototype, not to the definition. +#endif + +#if defined(_MSC_VER) && !defined(__clang__) +#define KJ_NOINLINE __declspec(noinline) +#else +#define KJ_NOINLINE __attribute__((noinline)) +#endif + +#if defined(_MSC_VER) && !__clang__ +#define KJ_NORETURN(prototype) __declspec(noreturn) prototype +#define KJ_UNUSED +#define KJ_WARN_UNUSED_RESULT +// TODO(msvc): KJ_WARN_UNUSED_RESULT can use _Check_return_ on MSVC, but it's a prefix, so +// wrapping the whole prototype is needed. http://msdn.microsoft.com/en-us/library/jj159529.aspx +// Similarly, KJ_UNUSED could use __pragma(warning(suppress:...)), but again that's a prefix. +#else +#define KJ_NORETURN(prototype) prototype __attribute__((noreturn)) +#define KJ_UNUSED __attribute__((unused)) +#define KJ_WARN_UNUSED_RESULT __attribute__((warn_unused_result)) +#endif + +#if KJ_HAS_CPP_ATTRIBUTE(clang::lifetimebound) +// If this is generating too many false-positives, the user is responsible for disabling the +// problematic warning at the compiler switch level or by suppressing the place where the +// false-positive is reported through compiler-specific pragmas if available. +#define KJ_LIFETIMEBOUND [[clang::lifetimebound]] +#else +#define KJ_LIFETIMEBOUND +#endif +// Annotation that indicates the returned value is referencing a resource owned by this type (e.g. +// cStr() on a std::string). Unfortunately this lifetime can only be superficial currently & cannot +// track further. For example, there's no way to get `array.asPtr().slice(5, 6))` to warn if the +// last slice exceeds the lifetime of `array`. That's because in the general case `ArrayPtr::slice` +// can't have the lifetime bound annotation since it's not wrong to do something like: +// ArrayPtr<char> doSomething(ArrayPtr<char> foo) { +// ... +// return foo.slice(5, 6); +// } +// If `ArrayPtr::slice` had a lifetime bound then the compiler would warn about this perfectly +// legitimate method. Really there needs to be 2 more annotations. One to inherit the lifetime bound +// and another to inherit the lifetime bound from a parameter (which really could be the same thing +// by allowing a syntax like `[[clang::lifetimebound(*this)]]`. +// https://clang.llvm.org/docs/AttributeReference.html#lifetimebound + +#if __clang__ +#define KJ_UNUSED_MEMBER __attribute__((unused)) +// Inhibits "unused" warning for member variables. Only Clang produces such a warning, while GCC +// complains if the attribute is set on members. +#else +#define KJ_UNUSED_MEMBER +#endif + +#if KJ_CPP_STD > 201703L || (__clang__ && __clang_major__ >= 9 && KJ_CPP_STD >= 201103L) +// Technically this was only added to C++20 but Clang allows it for >= C++11 and spelunking the +// attributes manual indicates it first came in with Clang 9. +#define KJ_NO_UNIQUE_ADDRESS [[no_unique_address]] +#else +#define KJ_NO_UNIQUE_ADDRESS +#endif + +#if KJ_HAS_COMPILER_FEATURE(thread_sanitizer) || defined(__SANITIZE_THREAD__) +#define KJ_DISABLE_TSAN __attribute__((no_sanitize("thread"), noinline)) +#else +#define KJ_DISABLE_TSAN +#endif + +#if __clang__ +#define KJ_DEPRECATED(reason) \ + __attribute__((deprecated(reason))) +#define KJ_UNAVAILABLE(reason) \ + __attribute__((unavailable(reason))) +#elif __GNUC__ +#define KJ_DEPRECATED(reason) \ + __attribute__((deprecated)) +#define KJ_UNAVAILABLE(reason) = delete +// If the `unavailable` attribute is not supproted, just mark the method deleted, which at least +// makes it a compile-time error to try to call it. Note that on Clang, marking a method deleted +// *and* unavailable unfortunately defeats the purpose of the unavailable annotation, as the +// generic "deleted" error is reported instead. +#else +#define KJ_DEPRECATED(reason) +#define KJ_UNAVAILABLE(reason) = delete +// TODO(msvc): Again, here, MSVC prefers a prefix, __declspec(deprecated). +#endif + +#if KJ_TESTING_KJ // defined in KJ's own unit tests; others should not define this +#undef KJ_DEPRECATED +#define KJ_DEPRECATED(reason) +#endif + +namespace _ { // private + +KJ_NORETURN(void inlineRequireFailure( + const char* file, int line, const char* expectation, const char* macroArgs, + const char* message = nullptr)); + +KJ_NORETURN(void unreachable()); + +} // namespace _ (private) + +#if _MSC_VER && !defined(__clang__) && (!defined(_MSVC_TRADITIONAL) || _MSVC_TRADITIONAL) +#define KJ_MSVC_TRADITIONAL_CPP 1 +#endif + +#ifdef KJ_DEBUG +#if KJ_MSVC_TRADITIONAL_CPP +#define KJ_IREQUIRE(condition, ...) \ + if (KJ_LIKELY(condition)); else ::kj::_::inlineRequireFailure( \ + __FILE__, __LINE__, #condition, "" #__VA_ARGS__, __VA_ARGS__) +// Version of KJ_DREQUIRE() which is safe to use in headers that are #included by users. Used to +// check preconditions inside inline methods. KJ_IREQUIRE is particularly useful in that +// it will be enabled depending on whether the application is compiled in debug mode rather than +// whether libkj is. +#else +#define KJ_IREQUIRE(condition, ...) \ + if (KJ_LIKELY(condition)); else ::kj::_::inlineRequireFailure( \ + __FILE__, __LINE__, #condition, #__VA_ARGS__, ##__VA_ARGS__) +// Version of KJ_DREQUIRE() which is safe to use in headers that are #included by users. Used to +// check preconditions inside inline methods. KJ_IREQUIRE is particularly useful in that +// it will be enabled depending on whether the application is compiled in debug mode rather than +// whether libkj is. +#endif +#else +#define KJ_IREQUIRE(condition, ...) +#endif + +#define KJ_IASSERT KJ_IREQUIRE + +#define KJ_UNREACHABLE ::kj::_::unreachable(); +// Put this on code paths that cannot be reached to suppress compiler warnings about missing +// returns. + +#if __clang__ +#define KJ_CLANG_KNOWS_THIS_IS_UNREACHABLE_BUT_GCC_DOESNT +#else +#define KJ_CLANG_KNOWS_THIS_IS_UNREACHABLE_BUT_GCC_DOESNT KJ_UNREACHABLE +#endif + +#if __clang__ +#define KJ_KNOWN_UNREACHABLE(code) \ + do { \ + _Pragma("clang diagnostic push") \ + _Pragma("clang diagnostic ignored \"-Wunreachable-code\"") \ + code; \ + _Pragma("clang diagnostic pop") \ + } while (false) +// Suppress "unreachable code" warnings on intentionally unreachable code. +#else +// TODO(someday): Add support for non-clang compilers. +#define KJ_KNOWN_UNREACHABLE(code) do {code;} while(false) +#endif + +#if KJ_HAS_CPP_ATTRIBUTE(fallthrough) +#define KJ_FALLTHROUGH [[fallthrough]] +#else +#define KJ_FALLTHROUGH +#endif + +// #define KJ_STACK_ARRAY(type, name, size, minStack, maxStack) +// +// Allocate an array, preferably on the stack, unless it is too big. On GCC this will use +// variable-sized arrays. For other compilers we could just use a fixed-size array. `minStack` +// is the stack array size to use if variable-width arrays are not supported. `maxStack` is the +// maximum stack array size if variable-width arrays *are* supported. +#if __GNUC__ && !__clang__ +#define KJ_STACK_ARRAY(type, name, size, minStack, maxStack) \ + size_t name##_size = (size); \ + bool name##_isOnStack = name##_size <= (maxStack); \ + type name##_stack[kj::max(1, name##_isOnStack ? name##_size : 0)]; \ + ::kj::Array<type> name##_heap = name##_isOnStack ? \ + nullptr : kj::heapArray<type>(name##_size); \ + ::kj::ArrayPtr<type> name = name##_isOnStack ? \ + kj::arrayPtr(name##_stack, name##_size) : name##_heap +#else +#define KJ_STACK_ARRAY(type, name, size, minStack, maxStack) \ + size_t name##_size = (size); \ + bool name##_isOnStack = name##_size <= (minStack); \ + type name##_stack[minStack]; \ + ::kj::Array<type> name##_heap = name##_isOnStack ? \ + nullptr : kj::heapArray<type>(name##_size); \ + ::kj::ArrayPtr<type> name = name##_isOnStack ? \ + kj::arrayPtr(name##_stack, name##_size) : name##_heap +#endif + +#define KJ_CONCAT_(x, y) x##y +#define KJ_CONCAT(x, y) KJ_CONCAT_(x, y) +#define KJ_UNIQUE_NAME(prefix) KJ_CONCAT(prefix, __LINE__) +// Create a unique identifier name. We use concatenate __LINE__ rather than __COUNTER__ so that +// the name can be used multiple times in the same macro. + +#if _MSC_VER && !defined(__clang__) + +#define KJ_CONSTEXPR(...) __VA_ARGS__ +// Use in cases where MSVC barfs on constexpr. A replacement keyword (e.g. "const") can be +// provided, or just leave blank to remove the keyword entirely. +// +// TODO(msvc): Remove this hack once MSVC fully supports constexpr. + +#ifndef __restrict__ +#define __restrict__ __restrict +// TODO(msvc): Would it be better to define a KJ_RESTRICT macro? +#endif + +#pragma warning(disable: 4521 4522) +// This warning complains when there are two copy constructors, one for a const reference and +// one for a non-const reference. It is often quite necessary to do this in wrapper templates, +// therefore this warning is dumb and we disable it. + +#pragma warning(disable: 4458) +// Warns when a parameter name shadows a class member. Unfortunately my code does this a lot, +// since I don't use a special name format for members. + +#else // _MSC_VER +#define KJ_CONSTEXPR(...) constexpr +#endif + +// ======================================================================================= +// Template metaprogramming helpers. + +#define KJ_HAS_TRIVIAL_CONSTRUCTOR __is_trivially_constructible +#if __GNUC__ && !__clang__ +#define KJ_HAS_NOTHROW_CONSTRUCTOR __has_nothrow_constructor +#define KJ_HAS_TRIVIAL_DESTRUCTOR __has_trivial_destructor +#else +#define KJ_HAS_NOTHROW_CONSTRUCTOR __is_nothrow_constructible +#define KJ_HAS_TRIVIAL_DESTRUCTOR __is_trivially_destructible +#endif + +template <typename T> struct NoInfer_ { typedef T Type; }; +template <typename T> using NoInfer = typename NoInfer_<T>::Type; +// Use NoInfer<T>::Type in place of T for a template function parameter to prevent inference of +// the type based on the parameter value. + +template <typename T> struct RemoveConst_ { typedef T Type; }; +template <typename T> struct RemoveConst_<const T> { typedef T Type; }; +template <typename T> using RemoveConst = typename RemoveConst_<T>::Type; + +template <typename> struct IsLvalueReference_ { static constexpr bool value = false; }; +template <typename T> struct IsLvalueReference_<T&> { static constexpr bool value = true; }; +template <typename T> +inline constexpr bool isLvalueReference() { return IsLvalueReference_<T>::value; } + +template <typename T> struct Decay_ { typedef T Type; }; +template <typename T> struct Decay_<T&> { typedef typename Decay_<T>::Type Type; }; +template <typename T> struct Decay_<T&&> { typedef typename Decay_<T>::Type Type; }; +template <typename T> struct Decay_<T[]> { typedef typename Decay_<T*>::Type Type; }; +template <typename T> struct Decay_<const T[]> { typedef typename Decay_<const T*>::Type Type; }; +template <typename T, size_t s> struct Decay_<T[s]> { typedef typename Decay_<T*>::Type Type; }; +template <typename T, size_t s> struct Decay_<const T[s]> { typedef typename Decay_<const T*>::Type Type; }; +template <typename T> struct Decay_<const T> { typedef typename Decay_<T>::Type Type; }; +template <typename T> struct Decay_<volatile T> { typedef typename Decay_<T>::Type Type; }; +template <typename T> using Decay = typename Decay_<T>::Type; + +template <bool b> struct EnableIf_; +template <> struct EnableIf_<true> { typedef void Type; }; +template <bool b> using EnableIf = typename EnableIf_<b>::Type; +// Use like: +// +// template <typename T, typename = EnableIf<isValid<T>()>> +// void func(T&& t); + +template <typename...> struct VoidSfinae_ { using Type = void; }; +template <typename... Ts> using VoidSfinae = typename VoidSfinae_<Ts...>::Type; +// Note: VoidSfinae is std::void_t from C++17. + +template <typename T> +T instance() noexcept; +// Like std::declval, but doesn't transform T into an rvalue reference. If you want that, specify +// instance<T&&>(). + +struct DisallowConstCopy { + // Inherit from this, or declare a member variable of this type, to prevent the class from being + // copyable from a const reference -- instead, it will only be copyable from non-const references. + // This is useful for enforcing transitive constness of contained pointers. + // + // For example, say you have a type T which contains a pointer. T has non-const methods which + // modify the value at that pointer, but T's const methods are designed to allow reading only. + // Unfortunately, if T has a regular copy constructor, someone can simply make a copy of T and + // then use it to modify the pointed-to value. However, if T inherits DisallowConstCopy, then + // callers will only be able to copy non-const instances of T. Ideally, there is some + // parallel type ImmutableT which is like a version of T that only has const methods, and can + // be copied from a const T. + // + // Note that due to C++ rules about implicit copy constructors and assignment operators, any + // type that contains or inherits from a type that disallows const copies will also automatically + // disallow const copies. Hey, cool, that's exactly what we want. + +#if CAPNP_DEBUG_TYPES + // Alas! Declaring a defaulted non-const copy constructor tickles a bug which causes GCC and + // Clang to disagree on ABI, using different calling conventions to pass this type, leading to + // immediate segfaults. See: + // https://bugs.llvm.org/show_bug.cgi?id=23764 + // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=58074 + // + // Because of this, we can't use this technique. We guard it by CAPNP_DEBUG_TYPES so that it + // still applies to the Cap'n Proto developers during internal testing. + + DisallowConstCopy() = default; + DisallowConstCopy(DisallowConstCopy&) = default; + DisallowConstCopy(DisallowConstCopy&&) = default; + DisallowConstCopy& operator=(DisallowConstCopy&) = default; + DisallowConstCopy& operator=(DisallowConstCopy&&) = default; +#endif +}; + +#if _MSC_VER && !defined(__clang__) + +#define KJ_CPCAP(obj) obj=::kj::cp(obj) +// TODO(msvc): MSVC refuses to invoke non-const versions of copy constructors in by-value lambda +// captures. Wrap your captured object in this macro to force the compiler to perform a copy. +// Example: +// +// struct Foo: DisallowConstCopy {}; +// Foo foo; +// auto lambda = [KJ_CPCAP(foo)] {}; + +#else + +#define KJ_CPCAP(obj) obj +// Clang and gcc both already perform copy capturing correctly with non-const copy constructors. + +#endif + +template <typename T> +struct DisallowConstCopyIfNotConst: public DisallowConstCopy { + // Inherit from this when implementing a template that contains a pointer to T and which should + // enforce transitive constness. If T is a const type, this has no effect. Otherwise, it is + // an alias for DisallowConstCopy. +}; + +template <typename T> +struct DisallowConstCopyIfNotConst<const T> {}; + +template <typename T> struct IsConst_ { static constexpr bool value = false; }; +template <typename T> struct IsConst_<const T> { static constexpr bool value = true; }; +template <typename T> constexpr bool isConst() { return IsConst_<T>::value; } + +template <typename T> struct EnableIfNotConst_ { typedef T Type; }; +template <typename T> struct EnableIfNotConst_<const T>; +template <typename T> using EnableIfNotConst = typename EnableIfNotConst_<T>::Type; + +template <typename T> struct EnableIfConst_; +template <typename T> struct EnableIfConst_<const T> { typedef T Type; }; +template <typename T> using EnableIfConst = typename EnableIfConst_<T>::Type; + +template <typename T> struct RemoveConstOrDisable_ { struct Type; }; +template <typename T> struct RemoveConstOrDisable_<const T> { typedef T Type; }; +template <typename T> using RemoveConstOrDisable = typename RemoveConstOrDisable_<T>::Type; + +template <typename T> struct IsReference_ { static constexpr bool value = false; }; +template <typename T> struct IsReference_<T&> { static constexpr bool value = true; }; +template <typename T> constexpr bool isReference() { return IsReference_<T>::value; } + +template <typename From, typename To> +struct PropagateConst_ { typedef To Type; }; +template <typename From, typename To> +struct PropagateConst_<const From, To> { typedef const To Type; }; +template <typename From, typename To> +using PropagateConst = typename PropagateConst_<From, To>::Type; + +namespace _ { // private + +template <typename T> +T refIfLvalue(T&&); + +} // namespace _ (private) + +#define KJ_DECLTYPE_REF(exp) decltype(::kj::_::refIfLvalue(exp)) +// Like decltype(exp), but if exp is an lvalue, produces a reference type. +// +// int i; +// decltype(i) i1(i); // i1 has type int. +// KJ_DECLTYPE_REF(i + 1) i2(i + 1); // i2 has type int. +// KJ_DECLTYPE_REF(i) i3(i); // i3 has type int&. +// KJ_DECLTYPE_REF(kj::mv(i)) i4(kj::mv(i)); // i4 has type int. + +template <typename T, typename U> struct IsSameType_ { static constexpr bool value = false; }; +template <typename T> struct IsSameType_<T, T> { static constexpr bool value = true; }; +template <typename T, typename U> constexpr bool isSameType() { return IsSameType_<T, U>::value; } + +template <typename T> constexpr bool isIntegral() { return false; } +template <> constexpr bool isIntegral<char>() { return true; } +template <> constexpr bool isIntegral<signed char>() { return true; } +template <> constexpr bool isIntegral<short>() { return true; } +template <> constexpr bool isIntegral<int>() { return true; } +template <> constexpr bool isIntegral<long>() { return true; } +template <> constexpr bool isIntegral<long long>() { return true; } +template <> constexpr bool isIntegral<unsigned char>() { return true; } +template <> constexpr bool isIntegral<unsigned short>() { return true; } +template <> constexpr bool isIntegral<unsigned int>() { return true; } +template <> constexpr bool isIntegral<unsigned long>() { return true; } +template <> constexpr bool isIntegral<unsigned long long>() { return true; } + +template <typename T> +struct CanConvert_ { + static int sfinae(T); + static bool sfinae(...); +}; + +template <typename T, typename U> +constexpr bool canConvert() { + return sizeof(CanConvert_<U>::sfinae(instance<T>())) == sizeof(int); +} + +#if __GNUC__ && !__clang__ && __GNUC__ < 5 +template <typename T> +constexpr bool canMemcpy() { + // Returns true if T can be copied using memcpy instead of using the copy constructor or + // assignment operator. + + // GCC 4 does not have __is_trivially_constructible and friends, and there doesn't seem to be + // any reliable alternative. __has_trivial_copy() and __has_trivial_assign() return the right + // thing at one point but later on they changed such that a deleted copy constructor was + // considered "trivial" (apparently technically correct, though useless). So, on GCC 4 we give up + // and assume we can't memcpy() at all, and must explicitly copy-construct everything. + return false; +} +#define KJ_ASSERT_CAN_MEMCPY(T) +#else +template <typename T> +constexpr bool canMemcpy() { + // Returns true if T can be copied using memcpy instead of using the copy constructor or + // assignment operator. + + return __is_trivially_constructible(T, const T&) && __is_trivially_assignable(T, const T&); +} +#define KJ_ASSERT_CAN_MEMCPY(T) \ + static_assert(kj::canMemcpy<T>(), "this code expects this type to be memcpy()-able"); +#endif + +template <typename T> +class Badge { + // A pattern for marking individual methods such that they can only be called from a specific + // caller class: Make the method public but give it a parameter of type `Badge<Caller>`. Only + // `Caller` can construct one, so only `Caller` can call the method. + // + // // We only allow calls from the class `Bar`. + // void foo(Badge<Bar>) + // + // The call site looks like: + // + // foo({}); + // + // This pattern also works well for declaring private constructors, but still being able to use + // them with `kj::heap()`, etc. + // + // Idea from: https://awesomekling.github.io/Serenity-C++-patterns-The-Badge/ + // + // Note that some forms of this idea make the copy constructor private as well, in order to + // prohibit `Badge<NotMe>(*(Badge<NotMe>*)nullptr)`. However, that would prevent badges from + // being passed through forwarding functions like `kj::heap()`, which would ruin one of the main + // use cases for this pattern in KJ. In any case, dereferencing a null pointer is UB; there are + // plenty of other ways to get access to private members if you're willing to go UB. For one-off + // debugging purposes, you might as well use `#define private public` at the top of the file. +private: + Badge() {} + friend T; +}; + +// ======================================================================================= +// Equivalents to std::move() and std::forward(), since these are very commonly needed and the +// std header <utility> pulls in lots of other stuff. +// +// We use abbreviated names mv and fwd because these helpers (especially mv) are so commonly used +// that the cost of typing more letters outweighs the cost of being slightly harder to understand +// when first encountered. + +template<typename T> constexpr T&& mv(T& t) noexcept { return static_cast<T&&>(t); } +template<typename T> constexpr T&& fwd(NoInfer<T>& t) noexcept { return static_cast<T&&>(t); } + +template<typename T> constexpr T cp(T& t) noexcept { return t; } +template<typename T> constexpr T cp(const T& t) noexcept { return t; } +// Useful to force a copy, particularly to pass into a function that expects T&&. + +template <typename T, typename U, bool takeT, bool uOK = true> struct ChooseType_; +template <typename T, typename U> struct ChooseType_<T, U, true, true> { typedef T Type; }; +template <typename T, typename U> struct ChooseType_<T, U, true, false> { typedef T Type; }; +template <typename T, typename U> struct ChooseType_<T, U, false, true> { typedef U Type; }; + +template <typename T, typename U> +using WiderType = typename ChooseType_<T, U, sizeof(T) >= sizeof(U)>::Type; + +template <typename T, typename U> +inline constexpr auto min(T&& a, U&& b) -> WiderType<Decay<T>, Decay<U>> { + return a < b ? WiderType<Decay<T>, Decay<U>>(a) : WiderType<Decay<T>, Decay<U>>(b); +} + +template <typename T, typename U> +inline constexpr auto max(T&& a, U&& b) -> WiderType<Decay<T>, Decay<U>> { + return a > b ? WiderType<Decay<T>, Decay<U>>(a) : WiderType<Decay<T>, Decay<U>>(b); +} + +template <typename T, size_t s> +inline constexpr size_t size(T (&arr)[s]) { return s; } +template <typename T> +inline constexpr size_t size(T&& arr) { return arr.size(); } +// Returns the size of the parameter, whether the parameter is a regular C array or a container +// with a `.size()` method. + +class MaxValue_ { +private: + template <typename T> + inline constexpr T maxSigned() const { + return (1ull << (sizeof(T) * 8 - 1)) - 1; + } + template <typename T> + inline constexpr T maxUnsigned() const { + return ~static_cast<T>(0u); + } + +public: +#define _kJ_HANDLE_TYPE(T) \ + inline constexpr operator signed T() const { return MaxValue_::maxSigned < signed T>(); } \ + inline constexpr operator unsigned T() const { return MaxValue_::maxUnsigned<unsigned T>(); } + _kJ_HANDLE_TYPE(char) + _kJ_HANDLE_TYPE(short) + _kJ_HANDLE_TYPE(int) + _kJ_HANDLE_TYPE(long) + _kJ_HANDLE_TYPE(long long) +#undef _kJ_HANDLE_TYPE + + inline constexpr operator char() const { + // `char` is different from both `signed char` and `unsigned char`, and may be signed or + // unsigned on different platforms. Ugh. + return char(-1) < 0 ? MaxValue_::maxSigned<char>() + : MaxValue_::maxUnsigned<char>(); + } +}; + +class MinValue_ { +private: + template <typename T> + inline constexpr T minSigned() const { + return 1ull << (sizeof(T) * 8 - 1); + } + template <typename T> + inline constexpr T minUnsigned() const { + return 0u; + } + +public: +#define _kJ_HANDLE_TYPE(T) \ + inline constexpr operator signed T() const { return MinValue_::minSigned < signed T>(); } \ + inline constexpr operator unsigned T() const { return MinValue_::minUnsigned<unsigned T>(); } + _kJ_HANDLE_TYPE(char) + _kJ_HANDLE_TYPE(short) + _kJ_HANDLE_TYPE(int) + _kJ_HANDLE_TYPE(long) + _kJ_HANDLE_TYPE(long long) +#undef _kJ_HANDLE_TYPE + + inline constexpr operator char() const { + // `char` is different from both `signed char` and `unsigned char`, and may be signed or + // unsigned on different platforms. Ugh. + return char(-1) < 0 ? MinValue_::minSigned<char>() + : MinValue_::minUnsigned<char>(); + } +}; + +static KJ_CONSTEXPR(const) MaxValue_ maxValue = MaxValue_(); +// A special constant which, when cast to an integer type, takes on the maximum possible value of +// that type. This is useful to use as e.g. a parameter to a function because it will be robust +// in the face of changes to the parameter's type. +// +// `char` is not supported, but `signed char` and `unsigned char` are. + +static KJ_CONSTEXPR(const) MinValue_ minValue = MinValue_(); +// A special constant which, when cast to an integer type, takes on the minimum possible value +// of that type. This is useful to use as e.g. a parameter to a function because it will be robust +// in the face of changes to the parameter's type. +// +// `char` is not supported, but `signed char` and `unsigned char` are. + +template <typename T> +inline bool operator==(T t, MaxValue_) { return t == Decay<T>(maxValue); } +template <typename T> +inline bool operator==(T t, MinValue_) { return t == Decay<T>(minValue); } + +template <uint bits> +inline constexpr unsigned long long maxValueForBits() { + // Get the maximum integer representable in the given number of bits. + + // 1ull << 64 is unfortunately undefined. + return (bits == 64 ? 0 : (1ull << bits)) - 1; +} + +struct ThrowOverflow { + // Functor which throws an exception complaining about integer overflow. Usually this is used + // with the interfaces in units.h, but is defined here because Cap'n Proto wants to avoid + // including units.h when not using CAPNP_DEBUG_TYPES. + [[noreturn]] void operator()() const; +}; + +#if __GNUC__ || __clang__ || _MSC_VER +inline constexpr float inf() { return __builtin_huge_valf(); } +inline constexpr float nan() { return __builtin_nanf(""); } + +#else +#error "Not sure how to support your compiler." +#endif + +inline constexpr bool isNaN(float f) { return f != f; } +inline constexpr bool isNaN(double f) { return f != f; } + +inline int popCount(unsigned int x) { +#if defined(_MSC_VER) && !defined(__clang__) + return __popcnt(x); + // Note: __popcnt returns unsigned int, but the value is clearly guaranteed to fit into an int +#else + return __builtin_popcount(x); +#endif +} + +// ======================================================================================= +// Useful fake containers + +template <typename T> +class Range { +public: + inline constexpr Range(const T& begin, const T& end): begin_(begin), end_(end) {} + inline explicit constexpr Range(const T& end): begin_(0), end_(end) {} + + class Iterator { + public: + Iterator() = default; + inline Iterator(const T& value): value(value) {} + + inline const T& operator* () const { return value; } + inline const T& operator[](size_t index) const { return value + index; } + inline Iterator& operator++() { ++value; return *this; } + inline Iterator operator++(int) { return Iterator(value++); } + inline Iterator& operator--() { --value; return *this; } + inline Iterator operator--(int) { return Iterator(value--); } + inline Iterator& operator+=(ptrdiff_t amount) { value += amount; return *this; } + inline Iterator& operator-=(ptrdiff_t amount) { value -= amount; return *this; } + inline Iterator operator+ (ptrdiff_t amount) const { return Iterator(value + amount); } + inline Iterator operator- (ptrdiff_t amount) const { return Iterator(value - amount); } + inline ptrdiff_t operator- (const Iterator& other) const { return value - other.value; } + + inline bool operator==(const Iterator& other) const { return value == other.value; } + inline bool operator!=(const Iterator& other) const { return value != other.value; } + inline bool operator<=(const Iterator& other) const { return value <= other.value; } + inline bool operator>=(const Iterator& other) const { return value >= other.value; } + inline bool operator< (const Iterator& other) const { return value < other.value; } + inline bool operator> (const Iterator& other) const { return value > other.value; } + + private: + T value; + }; + + inline Iterator begin() const { return Iterator(begin_); } + inline Iterator end() const { return Iterator(end_); } + + inline auto size() const -> decltype(instance<T>() - instance<T>()) { return end_ - begin_; } + +private: + T begin_; + T end_; +}; + +template <typename T, typename U> +inline constexpr Range<WiderType<Decay<T>, Decay<U>>> range(T begin, U end) { + return Range<WiderType<Decay<T>, Decay<U>>>(begin, end); +} + +template <typename T> +inline constexpr Range<Decay<T>> range(T begin, T end) { return Range<Decay<T>>(begin, end); } +// Returns a fake iterable container containing all values of T from `begin` (inclusive) to `end` +// (exclusive). Example: +// +// // Prints 1, 2, 3, 4, 5, 6, 7, 8, 9. +// for (int i: kj::range(1, 10)) { print(i); } + +template <typename T> +inline constexpr Range<Decay<T>> zeroTo(T end) { return Range<Decay<T>>(end); } +// Returns a fake iterable container containing all values of T from zero (inclusive) to `end` +// (exclusive). Example: +// +// // Prints 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. +// for (int i: kj::zeroTo(10)) { print(i); } + +template <typename T> +inline constexpr Range<size_t> indices(T&& container) { + // Shortcut for iterating over the indices of a container: + // + // for (size_t i: kj::indices(myArray)) { handle(myArray[i]); } + + return range<size_t>(0, kj::size(container)); +} + +template <typename T> +class Repeat { +public: + inline constexpr Repeat(const T& value, size_t count): value(value), count(count) {} + + class Iterator { + public: + Iterator() = default; + inline Iterator(const T& value, size_t index): value(value), index(index) {} + + inline const T& operator* () const { return value; } + inline const T& operator[](ptrdiff_t index) const { return value; } + inline Iterator& operator++() { ++index; return *this; } + inline Iterator operator++(int) { return Iterator(value, index++); } + inline Iterator& operator--() { --index; return *this; } + inline Iterator operator--(int) { return Iterator(value, index--); } + inline Iterator& operator+=(ptrdiff_t amount) { index += amount; return *this; } + inline Iterator& operator-=(ptrdiff_t amount) { index -= amount; return *this; } + inline Iterator operator+ (ptrdiff_t amount) const { return Iterator(value, index + amount); } + inline Iterator operator- (ptrdiff_t amount) const { return Iterator(value, index - amount); } + inline ptrdiff_t operator- (const Iterator& other) const { return index - other.index; } + + inline bool operator==(const Iterator& other) const { return index == other.index; } + inline bool operator!=(const Iterator& other) const { return index != other.index; } + inline bool operator<=(const Iterator& other) const { return index <= other.index; } + inline bool operator>=(const Iterator& other) const { return index >= other.index; } + inline bool operator< (const Iterator& other) const { return index < other.index; } + inline bool operator> (const Iterator& other) const { return index > other.index; } + + private: + T value; + size_t index; + }; + + inline Iterator begin() const { return Iterator(value, 0); } + inline Iterator end() const { return Iterator(value, count); } + + inline size_t size() const { return count; } + inline const T& operator[](ptrdiff_t) const { return value; } + +private: + T value; + size_t count; +}; + +template <typename T> +inline constexpr Repeat<Decay<T>> repeat(T&& value, size_t count) { + // Returns a fake iterable which contains `count` repeats of `value`. Useful for e.g. creating + // a bunch of spaces: `kj::repeat(' ', indent * 2)` + + return Repeat<Decay<T>>(value, count); +} + +template <typename Inner, class Mapping> +class MappedIterator: private Mapping { + // An iterator that wraps some other iterator and maps the values through a mapping function. + // The type `Mapping` must define a method `map()` which performs this mapping. + +public: + template <typename... Params> + MappedIterator(Inner inner, Params&&... params) + : Mapping(kj::fwd<Params>(params)...), inner(inner) {} + + inline auto operator->() const { return &Mapping::map(*inner); } + inline decltype(auto) operator* () const { return Mapping::map(*inner); } + inline decltype(auto) operator[](size_t index) const { return Mapping::map(inner[index]); } + inline MappedIterator& operator++() { ++inner; return *this; } + inline MappedIterator operator++(int) { return MappedIterator(inner++, *this); } + inline MappedIterator& operator--() { --inner; return *this; } + inline MappedIterator operator--(int) { return MappedIterator(inner--, *this); } + inline MappedIterator& operator+=(ptrdiff_t amount) { inner += amount; return *this; } + inline MappedIterator& operator-=(ptrdiff_t amount) { inner -= amount; return *this; } + inline MappedIterator operator+ (ptrdiff_t amount) const { + return MappedIterator(inner + amount, *this); + } + inline MappedIterator operator- (ptrdiff_t amount) const { + return MappedIterator(inner - amount, *this); + } + inline ptrdiff_t operator- (const MappedIterator& other) const { return inner - other.inner; } + + inline bool operator==(const MappedIterator& other) const { return inner == other.inner; } + inline bool operator!=(const MappedIterator& other) const { return inner != other.inner; } + inline bool operator<=(const MappedIterator& other) const { return inner <= other.inner; } + inline bool operator>=(const MappedIterator& other) const { return inner >= other.inner; } + inline bool operator< (const MappedIterator& other) const { return inner < other.inner; } + inline bool operator> (const MappedIterator& other) const { return inner > other.inner; } + +private: + Inner inner; +}; + +template <typename Inner, typename Mapping> +class MappedIterable: private Mapping { + // An iterable that wraps some other iterable and maps the values through a mapping function. + // The type `Mapping` must define a method `map()` which performs this mapping. + +public: + template <typename... Params> + MappedIterable(Inner inner, Params&&... params) + : Mapping(kj::fwd<Params>(params)...), inner(inner) {} + + typedef Decay<decltype(instance<Inner>().begin())> InnerIterator; + typedef MappedIterator<InnerIterator, Mapping> Iterator; + typedef Decay<decltype(instance<const Inner>().begin())> InnerConstIterator; + typedef MappedIterator<InnerConstIterator, Mapping> ConstIterator; + + inline Iterator begin() { return { inner.begin(), (Mapping&)*this }; } + inline Iterator end() { return { inner.end(), (Mapping&)*this }; } + inline ConstIterator begin() const { return { inner.begin(), (const Mapping&)*this }; } + inline ConstIterator end() const { return { inner.end(), (const Mapping&)*this }; } + +private: + Inner inner; +}; + +// ======================================================================================= +// Manually invoking constructors and destructors +// +// ctor(x, ...) and dtor(x) invoke x's constructor or destructor, respectively. + +// We want placement new, but we don't want to #include <new>. operator new cannot be defined in +// a namespace, and defining it globally conflicts with the definition in <new>. So we have to +// define a dummy type and an operator new that uses it. + +namespace _ { // private +struct PlacementNew {}; +} // namespace _ (private) +} // namespace kj + +inline void* operator new(size_t, kj::_::PlacementNew, void* __p) noexcept { + return __p; +} + +inline void operator delete(void*, kj::_::PlacementNew, void* __p) noexcept {} + +namespace kj { + +template <typename T, typename... Params> +inline void ctor(T& location, Params&&... params) { + new (_::PlacementNew(), &location) T(kj::fwd<Params>(params)...); +} + +template <typename T> +inline void dtor(T& location) { + location.~T(); +} + +// ======================================================================================= +// Maybe +// +// Use in cases where you want to indicate that a value may be null. Using Maybe<T&> instead of T* +// forces the caller to handle the null case in order to satisfy the compiler, thus reliably +// preventing null pointer dereferences at runtime. +// +// Maybe<T> can be implicitly constructed from T and from nullptr. +// To read the value of a Maybe<T>, do: +// +// KJ_IF_MAYBE(value, someFuncReturningMaybe()) { +// doSomething(*value); +// } else { +// maybeWasNull(); +// } +// +// KJ_IF_MAYBE's first parameter is a variable name which will be defined within the following +// block. The variable will behave like a (guaranteed non-null) pointer to the Maybe's value, +// though it may or may not actually be a pointer. +// +// Note that Maybe<T&> actually just wraps a pointer, whereas Maybe<T> wraps a T and a boolean +// indicating nullness. + +template <typename T> +class Maybe; + +namespace _ { // private + +template <typename T> +class NullableValue { + // Class whose interface behaves much like T*, but actually contains an instance of T and a + // boolean flag indicating nullness. + +public: + inline NullableValue(NullableValue&& other) + : isSet(other.isSet) { + if (isSet) { + ctor(value, kj::mv(other.value)); + } + } + inline NullableValue(const NullableValue& other) + : isSet(other.isSet) { + if (isSet) { + ctor(value, other.value); + } + } + inline NullableValue(NullableValue& other) + : isSet(other.isSet) { + if (isSet) { + ctor(value, other.value); + } + } + inline ~NullableValue() +#if _MSC_VER && !defined(__clang__) + // TODO(msvc): MSVC has a hard time with noexcept specifier expressions that are more complex + // than `true` or `false`. We had a workaround for VS2015, but VS2017 regressed. + noexcept(false) +#else + noexcept(noexcept(instance<T&>().~T())) +#endif + { + if (isSet) { + dtor(value); + } + } + + inline T& operator*() & { return value; } + inline const T& operator*() const & { return value; } + inline T&& operator*() && { return kj::mv(value); } + inline const T&& operator*() const && { return kj::mv(value); } + inline T* operator->() { return &value; } + inline const T* operator->() const { return &value; } + inline operator T*() { return isSet ? &value : nullptr; } + inline operator const T*() const { return isSet ? &value : nullptr; } + + template <typename... Params> + inline T& emplace(Params&&... params) { + if (isSet) { + isSet = false; + dtor(value); + } + ctor(value, kj::fwd<Params>(params)...); + isSet = true; + return value; + } + + inline NullableValue(): isSet(false) {} + inline NullableValue(T&& t) + : isSet(true) { + ctor(value, kj::mv(t)); + } + inline NullableValue(T& t) + : isSet(true) { + ctor(value, t); + } + inline NullableValue(const T& t) + : isSet(true) { + ctor(value, t); + } + template <typename U> + inline NullableValue(NullableValue<U>&& other) + : isSet(other.isSet) { + if (isSet) { + ctor(value, kj::mv(other.value)); + } + } + template <typename U> + inline NullableValue(const NullableValue<U>& other) + : isSet(other.isSet) { + if (isSet) { + ctor(value, other.value); + } + } + template <typename U> + inline NullableValue(const NullableValue<U&>& other) + : isSet(other.isSet) { + if (isSet) { + ctor(value, *other.ptr); + } + } + inline NullableValue(decltype(nullptr)): isSet(false) {} + + inline NullableValue& operator=(NullableValue&& other) { + if (&other != this) { + // Careful about throwing destructors/constructors here. + if (isSet) { + isSet = false; + dtor(value); + } + if (other.isSet) { + ctor(value, kj::mv(other.value)); + isSet = true; + } + } + return *this; + } + + inline NullableValue& operator=(NullableValue& other) { + if (&other != this) { + // Careful about throwing destructors/constructors here. + if (isSet) { + isSet = false; + dtor(value); + } + if (other.isSet) { + ctor(value, other.value); + isSet = true; + } + } + return *this; + } + + inline NullableValue& operator=(const NullableValue& other) { + if (&other != this) { + // Careful about throwing destructors/constructors here. + if (isSet) { + isSet = false; + dtor(value); + } + if (other.isSet) { + ctor(value, other.value); + isSet = true; + } + } + return *this; + } + + inline NullableValue& operator=(T&& other) { emplace(kj::mv(other)); return *this; } + inline NullableValue& operator=(T& other) { emplace(other); return *this; } + inline NullableValue& operator=(const T& other) { emplace(other); return *this; } + template <typename U> + inline NullableValue& operator=(NullableValue<U>&& other) { + if (other.isSet) { + emplace(kj::mv(other.value)); + } else { + *this = nullptr; + } + return *this; + } + template <typename U> + inline NullableValue& operator=(const NullableValue<U>& other) { + if (other.isSet) { + emplace(other.value); + } else { + *this = nullptr; + } + return *this; + } + template <typename U> + inline NullableValue& operator=(const NullableValue<U&>& other) { + if (other.isSet) { + emplace(other.value); + } else { + *this = nullptr; + } + return *this; + } + inline NullableValue& operator=(decltype(nullptr)) { + if (isSet) { + isSet = false; + dtor(value); + } + return *this; + } + + inline bool operator==(decltype(nullptr)) const { return !isSet; } + inline bool operator!=(decltype(nullptr)) const { return isSet; } + + NullableValue(const T* t) = delete; + NullableValue& operator=(const T* other) = delete; + // We used to permit assigning a Maybe<T> directly from a T*, and the assignment would check for + // nullness. This turned out never to be useful, and sometimes to be dangerous. + +private: + bool isSet; + +#if _MSC_VER && !defined(__clang__) +#pragma warning(push) +#pragma warning(disable: 4624) +// Warns that the anonymous union has a deleted destructor when T is non-trivial. This warning +// seems broken. +#endif + + union { + T value; + }; + +#if _MSC_VER && !defined(__clang__) +#pragma warning(pop) +#endif + + friend class kj::Maybe<T>; + template <typename U> + friend NullableValue<U>&& readMaybe(Maybe<U>&& maybe); +}; + +template <typename T> +inline NullableValue<T>&& readMaybe(Maybe<T>&& maybe) { return kj::mv(maybe.ptr); } +template <typename T> +inline T* readMaybe(Maybe<T>& maybe) { return maybe.ptr; } +template <typename T> +inline const T* readMaybe(const Maybe<T>& maybe) { return maybe.ptr; } +template <typename T> +inline T* readMaybe(Maybe<T&>&& maybe) { return maybe.ptr; } +template <typename T> +inline T* readMaybe(const Maybe<T&>& maybe) { return maybe.ptr; } + +template <typename T> +inline T* readMaybe(T* ptr) { return ptr; } +// Allow KJ_IF_MAYBE to work on regular pointers. + +} // namespace _ (private) + +#define KJ_IF_MAYBE(name, exp) if (auto name = ::kj::_::readMaybe(exp)) + +#if __GNUC__ || __clang__ +// These two macros provide a friendly syntax to extract the value of a Maybe or return early. +// +// Use KJ_UNWRAP_OR_RETURN if you just want to return a simple value when the Maybe is null: +// +// int foo(Maybe<int> maybe) { +// int value = KJ_UNWRAP_OR_RETURN(maybe, -1); +// // ... use value ... +// } +// +// For functions returning void, omit the second parameter to KJ_UNWRAP_OR_RETURN: +// +// void foo(Maybe<int> maybe) { +// int value = KJ_UNWRAP_OR_RETURN(maybe); +// // ... use value ... +// } +// +// Use KJ_UNWRAP_OR if you want to execute a block with multiple statements. +// +// int foo(Maybe<int> maybe) { +// int value = KJ_UNWRAP_OR(maybe, { +// KJ_LOG(ERROR, "problem!!!"); +// return -1; +// }); +// // ... use value ... +// } +// +// The block MUST return at the end or you will get a compiler error +// +// Unfortunately, these macros seem impossible to express without using GCC's non-standard +// "statement expressions" extension. IIFEs don't do the trick here because a lambda cannot +// return out of the parent scope. These macros should therefore only be used in projects that +// target GCC or GCC-compatible compilers. +// +// `__GNUC__` is not defined when using LLVM's MSVC-compatible compiler driver `clang-cl` (even +// though clang supports the required extension), hence the additional `|| __clang__`. + +#define KJ_UNWRAP_OR_RETURN(value, ...) \ + (*({ \ + auto _kj_result = ::kj::_::readMaybe(value); \ + if (!_kj_result) { \ + return __VA_ARGS__; \ + } \ + kj::mv(_kj_result); \ + })) + +#define KJ_UNWRAP_OR(value, block) \ + (*({ \ + auto _kj_result = ::kj::_::readMaybe(value); \ + if (!_kj_result) { \ + block; \ + asm("KJ_UNWRAP_OR_block_is_missing_return_statement\n"); \ + } \ + kj::mv(_kj_result); \ + })) +#endif + +template <typename T> +class Maybe { + // A T, or nullptr. + + // IF YOU CHANGE THIS CLASS: Note that there is a specialization of it in memory.h. + +public: + Maybe(): ptr(nullptr) {} + Maybe(T&& t): ptr(kj::mv(t)) {} + Maybe(T& t): ptr(t) {} + Maybe(const T& t): ptr(t) {} + Maybe(Maybe&& other): ptr(kj::mv(other.ptr)) { other = nullptr; } + Maybe(const Maybe& other): ptr(other.ptr) {} + Maybe(Maybe& other): ptr(other.ptr) {} + + template <typename U> + Maybe(Maybe<U>&& other) { + KJ_IF_MAYBE(val, kj::mv(other)) { + ptr.emplace(kj::mv(*val)); + other = nullptr; + } + } + template <typename U> + Maybe(Maybe<U&>&& other) { + KJ_IF_MAYBE(val, other) { + ptr.emplace(*val); + other = nullptr; + } + } + template <typename U> + Maybe(const Maybe<U>& other) { + KJ_IF_MAYBE(val, other) { + ptr.emplace(*val); + } + } + + Maybe(decltype(nullptr)): ptr(nullptr) {} + + template <typename... Params> + inline T& emplace(Params&&... params) { + // Replace this Maybe's content with a new value constructed by passing the given parameters to + // T's constructor. This can be used to initialize a Maybe without copying or even moving a T. + // Returns a reference to the newly-constructed value. + + return ptr.emplace(kj::fwd<Params>(params)...); + } + + inline Maybe& operator=(T&& other) { ptr = kj::mv(other); return *this; } + inline Maybe& operator=(T& other) { ptr = other; return *this; } + inline Maybe& operator=(const T& other) { ptr = other; return *this; } + + inline Maybe& operator=(Maybe&& other) { ptr = kj::mv(other.ptr); other = nullptr; return *this; } + inline Maybe& operator=(Maybe& other) { ptr = other.ptr; return *this; } + inline Maybe& operator=(const Maybe& other) { ptr = other.ptr; return *this; } + + template <typename U> + Maybe& operator=(Maybe<U>&& other) { + KJ_IF_MAYBE(val, kj::mv(other)) { + ptr.emplace(kj::mv(*val)); + other = nullptr; + } else { + ptr = nullptr; + } + return *this; + } + template <typename U> + Maybe& operator=(const Maybe<U>& other) { + KJ_IF_MAYBE(val, other) { + ptr.emplace(*val); + } else { + ptr = nullptr; + } + return *this; + } + + inline Maybe& operator=(decltype(nullptr)) { ptr = nullptr; return *this; } + + inline bool operator==(decltype(nullptr)) const { return ptr == nullptr; } + inline bool operator!=(decltype(nullptr)) const { return ptr != nullptr; } + + inline bool operator==(const Maybe<T>& other) const { + if (ptr == nullptr) { + return other == nullptr; + } else { + return other.ptr != nullptr && *ptr == *other.ptr; + } + } + inline bool operator!=(const Maybe<T>& other) const { return !(*this == other); } + + Maybe(const T* t) = delete; + Maybe& operator=(const T* other) = delete; + // We used to permit assigning a Maybe<T> directly from a T*, and the assignment would check for + // nullness. This turned out never to be useful, and sometimes to be dangerous. + + T& orDefault(T& defaultValue) & { + if (ptr == nullptr) { + return defaultValue; + } else { + return *ptr; + } + } + const T& orDefault(const T& defaultValue) const & { + if (ptr == nullptr) { + return defaultValue; + } else { + return *ptr; + } + } + T&& orDefault(T&& defaultValue) && { + if (ptr == nullptr) { + return kj::mv(defaultValue); + } else { + return kj::mv(*ptr); + } + } + const T&& orDefault(const T&& defaultValue) const && { + if (ptr == nullptr) { + return kj::mv(defaultValue); + } else { + return kj::mv(*ptr); + } + } + + template <typename F, + typename Result = decltype(instance<bool>() ? instance<T&>() : instance<F>()())> + Result orDefault(F&& lazyDefaultValue) & { + if (ptr == nullptr) { + return lazyDefaultValue(); + } else { + return *ptr; + } + } + + template <typename F, + typename Result = decltype(instance<bool>() ? instance<const T&>() : instance<F>()())> + Result orDefault(F&& lazyDefaultValue) const & { + if (ptr == nullptr) { + return lazyDefaultValue(); + } else { + return *ptr; + } + } + + template <typename F, + typename Result = decltype(instance<bool>() ? instance<T&&>() : instance<F>()())> + Result orDefault(F&& lazyDefaultValue) && { + if (ptr == nullptr) { + return lazyDefaultValue(); + } else { + return kj::mv(*ptr); + } + } + + template <typename F, + typename Result = decltype(instance<bool>() ? instance<const T&&>() : instance<F>()())> + Result orDefault(F&& lazyDefaultValue) const && { + if (ptr == nullptr) { + return lazyDefaultValue(); + } else { + return kj::mv(*ptr); + } + } + + template <typename Func> + auto map(Func&& f) & -> Maybe<decltype(f(instance<T&>()))> { + if (ptr == nullptr) { + return nullptr; + } else { + return f(*ptr); + } + } + + template <typename Func> + auto map(Func&& f) const & -> Maybe<decltype(f(instance<const T&>()))> { + if (ptr == nullptr) { + return nullptr; + } else { + return f(*ptr); + } + } + + template <typename Func> + auto map(Func&& f) && -> Maybe<decltype(f(instance<T&&>()))> { + if (ptr == nullptr) { + return nullptr; + } else { + return f(kj::mv(*ptr)); + } + } + + template <typename Func> + auto map(Func&& f) const && -> Maybe<decltype(f(instance<const T&&>()))> { + if (ptr == nullptr) { + return nullptr; + } else { + return f(kj::mv(*ptr)); + } + } + +private: + _::NullableValue<T> ptr; + + template <typename U> + friend class Maybe; + template <typename U> + friend _::NullableValue<U>&& _::readMaybe(Maybe<U>&& maybe); + template <typename U> + friend U* _::readMaybe(Maybe<U>& maybe); + template <typename U> + friend const U* _::readMaybe(const Maybe<U>& maybe); +}; + +template <typename T> +class Maybe<T&> { +public: + constexpr Maybe(): ptr(nullptr) {} + constexpr Maybe(T& t): ptr(&t) {} + constexpr Maybe(T* t): ptr(t) {} + + inline constexpr Maybe(PropagateConst<T, Maybe>& other): ptr(other.ptr) {} + // Allow const copy only if `T` itself is const. Otherwise allow only non-const copy, to + // protect transitive constness. Clang is happy for this constructor to be declared `= default` + // since, after evaluation of `PropagateConst`, it does end up being a default-able constructor. + // But, GCC and MSVC both complain about that, claiming this constructor cannot be declared + // default. I don't know who is correct, but whatever, we'll write out an implementation, fine. + // + // Note that we can't solve this by inheriting DisallowConstCopyIfNotConst<T> because we want + // to override the move constructor, and if we override the move constructor then we must define + // the copy constructor here. + + inline constexpr Maybe(Maybe&& other): ptr(other.ptr) { other.ptr = nullptr; } + + template <typename U> + inline constexpr Maybe(Maybe<U&>& other): ptr(other.ptr) {} + template <typename U> + inline constexpr Maybe(const Maybe<U&>& other): ptr(const_cast<const U*>(other.ptr)) {} + template <typename U> + inline constexpr Maybe(Maybe<U&>&& other): ptr(other.ptr) { other.ptr = nullptr; } + template <typename U> + inline constexpr Maybe(const Maybe<U&>&& other) = delete; + template <typename U, typename = EnableIf<canConvert<U*, T*>()>> + constexpr Maybe(Maybe<U>& other): ptr(other.ptr.operator U*()) {} + template <typename U, typename = EnableIf<canConvert<const U*, T*>()>> + constexpr Maybe(const Maybe<U>& other): ptr(other.ptr.operator const U*()) {} + inline constexpr Maybe(decltype(nullptr)): ptr(nullptr) {} + + inline Maybe& operator=(T& other) { ptr = &other; return *this; } + inline Maybe& operator=(T* other) { ptr = other; return *this; } + inline Maybe& operator=(PropagateConst<T, Maybe>& other) { ptr = other.ptr; return *this; } + inline Maybe& operator=(Maybe&& other) { ptr = other.ptr; other.ptr = nullptr; return *this; } + template <typename U> + inline Maybe& operator=(Maybe<U&>& other) { ptr = other.ptr; return *this; } + template <typename U> + inline Maybe& operator=(const Maybe<const U&>& other) { ptr = other.ptr; return *this; } + template <typename U> + inline Maybe& operator=(Maybe<U&>&& other) { ptr = other.ptr; other.ptr = nullptr; return *this; } + template <typename U> + inline Maybe& operator=(const Maybe<U&>&& other) = delete; + + inline bool operator==(decltype(nullptr)) const { return ptr == nullptr; } + inline bool operator!=(decltype(nullptr)) const { return ptr != nullptr; } + + T& orDefault(T& defaultValue) { + if (ptr == nullptr) { + return defaultValue; + } else { + return *ptr; + } + } + const T& orDefault(const T& defaultValue) const { + if (ptr == nullptr) { + return defaultValue; + } else { + return *ptr; + } + } + + template <typename Func> + auto map(Func&& f) -> Maybe<decltype(f(instance<T&>()))> { + if (ptr == nullptr) { + return nullptr; + } else { + return f(*ptr); + } + } + + template <typename Func> + auto map(Func&& f) const -> Maybe<decltype(f(instance<const T&>()))> { + if (ptr == nullptr) { + return nullptr; + } else { + const T& ref = *ptr; + return f(ref); + } + } + +private: + T* ptr; + + template <typename U> + friend class Maybe; + template <typename U> + friend U* _::readMaybe(Maybe<U&>&& maybe); + template <typename U> + friend U* _::readMaybe(const Maybe<U&>& maybe); +}; + +// ======================================================================================= +// ArrayPtr +// +// So common that we put it in common.h rather than array.h. + +template <typename T> +class Array; + +template <typename T> +class ArrayPtr: public DisallowConstCopyIfNotConst<T> { + // A pointer to an array. Includes a size. Like any pointer, it doesn't own the target data, + // and passing by value only copies the pointer, not the target. + +public: + inline constexpr ArrayPtr(): ptr(nullptr), size_(0) {} + inline constexpr ArrayPtr(decltype(nullptr)): ptr(nullptr), size_(0) {} + inline constexpr ArrayPtr(T* ptr KJ_LIFETIMEBOUND, size_t size): ptr(ptr), size_(size) {} + inline constexpr ArrayPtr(T* begin KJ_LIFETIMEBOUND, T* end KJ_LIFETIMEBOUND) + : ptr(begin), size_(end - begin) {} + ArrayPtr<T>& operator=(Array<T>&&) = delete; + ArrayPtr<T>& operator=(decltype(nullptr)) { + ptr = nullptr; + size_ = 0; + return *this; + } + +#if __GNUC__ && !__clang__ && __GNUC__ >= 9 +// GCC 9 added a warning when we take an initializer_list as a constructor parameter and save a +// pointer to its content in a class member. GCC apparently imagines we're going to do something +// dumb like this: +// ArrayPtr<const int> ptr = { 1, 2, 3 }; +// foo(ptr[1]); // undefined behavior! +// Any KJ programmer should be able to recognize that this is UB, because an ArrayPtr does not own +// its content. That's not what this constructor is for, tohugh. This constructor is meant to allow +// code like this: +// int foo(ArrayPtr<const int> p); +// // ... later ... +// foo({1, 2, 3}); +// In this case, the initializer_list's backing array, like any temporary, lives until the end of +// the statement `foo({1, 2, 3});`. Therefore, it lives at least until the call to foo() has +// returned, which is exactly what we care about. This usage is fine! GCC is wrong to warn. +// +// Amusingly, Clang's implementation has a similar type that they call ArrayRef which apparently +// triggers this same GCC warning. My guess is that Clang will not introduce a similar warning +// given that it triggers on their own, legitimate code. +#pragma GCC diagnostic push +#pragma GCC diagnostic ignored "-Winit-list-lifetime" +#endif + inline KJ_CONSTEXPR() ArrayPtr( + ::std::initializer_list<RemoveConstOrDisable<T>> init KJ_LIFETIMEBOUND) + : ptr(init.begin()), size_(init.size()) {} +#if __GNUC__ && !__clang__ && __GNUC__ >= 9 +#pragma GCC diagnostic pop +#endif + + template <size_t size> + inline constexpr ArrayPtr(KJ_LIFETIMEBOUND T (&native)[size]): ptr(native), size_(size) { + // Construct an ArrayPtr from a native C-style array. + // + // We disable this constructor for const char arrays because otherwise you would be able to + // implicitly convert a character literal to ArrayPtr<const char>, which sounds really great, + // except that the NUL terminator would be included, which probably isn't what you intended. + // + // TODO(someday): Maybe we should support character literals but explicitly chop off the NUL + // terminator. This could do the wrong thing if someone tries to construct an + // ArrayPtr<const char> from a non-NUL-terminated char array, but evidence suggests that all + // real use cases are in fact intending to remove the NUL terminator. It's convenient to be + // able to specify ArrayPtr<const char> as a parameter type and be able to accept strings + // as input in addition to arrays. Currently, you'll need overloading to support string + // literals in this case, but if you overload StringPtr, then you'll find that several + // conversions (e.g. from String and from a literal char array) become ambiguous! You end up + // having to overload for literal char arrays specifically which is cumbersome. + + static_assert(!isSameType<T, const char>(), + "Can't implicitly convert literal char array to ArrayPtr because we don't know if " + "you meant to include the NUL terminator. We may change this in the future to " + "automatically drop the NUL terminator. For now, try explicitly converting to StringPtr, " + "which can in turn implicitly convert to ArrayPtr<const char>."); + static_assert(!isSameType<T, const char16_t>(), "see above"); + static_assert(!isSameType<T, const char32_t>(), "see above"); + } + + inline operator ArrayPtr<const T>() const { + return ArrayPtr<const T>(ptr, size_); + } + inline ArrayPtr<const T> asConst() const { + return ArrayPtr<const T>(ptr, size_); + } + + inline constexpr size_t size() const { return size_; } + inline const T& operator[](size_t index) const { + KJ_IREQUIRE(index < size_, "Out-of-bounds ArrayPtr access."); + return ptr[index]; + } + inline T& operator[](size_t index) { + KJ_IREQUIRE(index < size_, "Out-of-bounds ArrayPtr access."); + return ptr[index]; + } + + inline T* begin() { return ptr; } + inline T* end() { return ptr + size_; } + inline T& front() { return *ptr; } + inline T& back() { return *(ptr + size_ - 1); } + inline constexpr const T* begin() const { return ptr; } + inline constexpr const T* end() const { return ptr + size_; } + inline const T& front() const { return *ptr; } + inline const T& back() const { return *(ptr + size_ - 1); } + + inline ArrayPtr<const T> slice(size_t start, size_t end) const { + KJ_IREQUIRE(start <= end && end <= size_, "Out-of-bounds ArrayPtr::slice()."); + return ArrayPtr<const T>(ptr + start, end - start); + } + inline ArrayPtr slice(size_t start, size_t end) { + KJ_IREQUIRE(start <= end && end <= size_, "Out-of-bounds ArrayPtr::slice()."); + return ArrayPtr(ptr + start, end - start); + } + inline bool startsWith(const ArrayPtr<const T>& other) const { + return other.size() <= size_ && slice(0, other.size()) == other; + } + inline bool endsWith(const ArrayPtr<const T>& other) const { + return other.size() <= size_ && slice(size_ - other.size(), size_) == other; + } + + inline Maybe<size_t> findFirst(const T& match) const { + for (size_t i = 0; i < size_; i++) { + if (ptr[i] == match) { + return i; + } + } + return nullptr; + } + inline Maybe<size_t> findLast(const T& match) const { + for (size_t i = size_; i--;) { + if (ptr[i] == match) { + return i; + } + } + return nullptr; + } + + inline ArrayPtr<PropagateConst<T, byte>> asBytes() const { + // Reinterpret the array as a byte array. This is explicitly legal under C++ aliasing + // rules. + return { reinterpret_cast<PropagateConst<T, byte>*>(ptr), size_ * sizeof(T) }; + } + inline ArrayPtr<PropagateConst<T, char>> asChars() const { + // Reinterpret the array as a char array. This is explicitly legal under C++ aliasing + // rules. + return { reinterpret_cast<PropagateConst<T, char>*>(ptr), size_ * sizeof(T) }; + } + + inline bool operator==(decltype(nullptr)) const { return size_ == 0; } + inline bool operator!=(decltype(nullptr)) const { return size_ != 0; } + + inline bool operator==(const ArrayPtr& other) const { + if (size_ != other.size_) return false; + if (isIntegral<RemoveConst<T>>()) { + if (size_ == 0) return true; + return memcmp(ptr, other.ptr, size_ * sizeof(T)) == 0; + } + for (size_t i = 0; i < size_; i++) { + if (ptr[i] != other[i]) return false; + } + return true; + } +#if !__cpp_impl_three_way_comparison + inline bool operator!=(const ArrayPtr& other) const { return !(*this == other); } +#endif + + template <typename U> + inline bool operator==(const ArrayPtr<U>& other) const { + if (size_ != other.size()) return false; + for (size_t i = 0; i < size_; i++) { + if (ptr[i] != other[i]) return false; + } + return true; + } +#if !__cpp_impl_three_way_comparison + template <typename U> + inline bool operator!=(const ArrayPtr<U>& other) const { return !(*this == other); } +#endif + + template <typename... Attachments> + Array<T> attach(Attachments&&... attachments) const KJ_WARN_UNUSED_RESULT; + // Like Array<T>::attach(), but also promotes an ArrayPtr to an Array. Generally the attachment + // should be an object that actually owns the array that the ArrayPtr is pointing at. + // + // You must include kj/array.h to call this. + +private: + T* ptr; + size_t size_; +}; + +template <> +inline Maybe<size_t> ArrayPtr<const char>::findFirst(const char& c) const { + const char* pos = reinterpret_cast<const char*>(memchr(ptr, c, size_)); + if (pos == nullptr) { + return nullptr; + } else { + return pos - ptr; + } +} + +template <> +inline Maybe<size_t> ArrayPtr<char>::findFirst(const char& c) const { + char* pos = reinterpret_cast<char*>(memchr(ptr, c, size_)); + if (pos == nullptr) { + return nullptr; + } else { + return pos - ptr; + } +} + +template <> +inline Maybe<size_t> ArrayPtr<const byte>::findFirst(const byte& c) const { + const byte* pos = reinterpret_cast<const byte*>(memchr(ptr, c, size_)); + if (pos == nullptr) { + return nullptr; + } else { + return pos - ptr; + } +} + +template <> +inline Maybe<size_t> ArrayPtr<byte>::findFirst(const byte& c) const { + byte* pos = reinterpret_cast<byte*>(memchr(ptr, c, size_)); + if (pos == nullptr) { + return nullptr; + } else { + return pos - ptr; + } +} + +// glibc has a memrchr() for reverse search but it's non-standard, so we don't bother optimizing +// findLast(), which isn't used much anyway. + +template <typename T> +inline constexpr ArrayPtr<T> arrayPtr(T* ptr KJ_LIFETIMEBOUND, size_t size) { + // Use this function to construct ArrayPtrs without writing out the type name. + return ArrayPtr<T>(ptr, size); +} + +template <typename T> +inline constexpr ArrayPtr<T> arrayPtr(T* begin KJ_LIFETIMEBOUND, T* end KJ_LIFETIMEBOUND) { + // Use this function to construct ArrayPtrs without writing out the type name. + return ArrayPtr<T>(begin, end); +} + +// ======================================================================================= +// Casts + +template <typename To, typename From> +To implicitCast(From&& from) { + // `implicitCast<T>(value)` casts `value` to type `T` only if the conversion is implicit. Useful + // for e.g. resolving ambiguous overloads without sacrificing type-safety. + return kj::fwd<From>(from); +} + +template <typename To, typename From> +Maybe<To&> dynamicDowncastIfAvailable(From& from) { + // If RTTI is disabled, always returns nullptr. Otherwise, works like dynamic_cast. Useful + // in situations where dynamic_cast could allow an optimization, but isn't strictly necessary + // for correctness. It is highly recommended that you try to arrange all your dynamic_casts + // this way, as a dynamic_cast that is necessary for correctness implies a flaw in the interface + // design. + + // Force a compile error if To is not a subtype of From. Cross-casting is rare; if it is needed + // we should have a separate cast function like dynamicCrosscastIfAvailable(). + if (false) { + kj::implicitCast<From*>(kj::implicitCast<To*>(nullptr)); + } + +#if KJ_NO_RTTI + return nullptr; +#else + return dynamic_cast<To*>(&from); +#endif +} + +template <typename To, typename From> +To& downcast(From& from) { + // Down-cast a value to a sub-type, asserting that the cast is valid. In opt mode this is a + // static_cast, but in debug mode (when RTTI is enabled) a dynamic_cast will be used to verify + // that the value really has the requested type. + + // Force a compile error if To is not a subtype of From. + if (false) { + kj::implicitCast<From*>(kj::implicitCast<To*>(nullptr)); + } + +#if !KJ_NO_RTTI + KJ_IREQUIRE(dynamic_cast<To*>(&from) != nullptr, "Value cannot be downcast() to requested type."); +#endif + + return static_cast<To&>(from); +} + +// ======================================================================================= +// Defer + +namespace _ { // private + +template <typename Func> +class Deferred { +public: + Deferred(Func&& func): maybeFunc(kj::fwd<Func>(func)) {} + ~Deferred() noexcept(false) { + run(); + } + KJ_DISALLOW_COPY(Deferred); + + Deferred(Deferred&&) = default; + // Since we use a kj::Maybe, the default move constructor does exactly what we want it to do. + + void run() { + // Move `maybeFunc` to the local scope so that even if we throw, we destroy the functor we had. + auto maybeLocalFunc = kj::mv(maybeFunc); + KJ_IF_MAYBE(func, maybeLocalFunc) { + (*func)(); + } + } + + void cancel() { + maybeFunc = nullptr; + } + +private: + kj::Maybe<Func> maybeFunc; + // Note that `Func` may actually be an lvalue reference because `kj::defer` takes its argument via + // universal reference. `kj::Maybe` has specializations for lvalue reference types, so this works + // out. +}; + +} // namespace _ (private) + +template <typename Func> +_::Deferred<Func> defer(Func&& func) { + // Returns an object which will invoke the given functor in its destructor. The object is not + // copyable but is move-constructable with the semantics you'd expect. Since the return type is + // private, you need to assign to an `auto` variable. + // + // The KJ_DEFER macro provides slightly more convenient syntax for the common case where you + // want some code to run at current scope exit. + // + // KJ_DEFER does not support move-assignment for its returned objects. If you need to reuse the + // variable for your deferred function object, then you will want to write your own class for that + // purpose. + + return _::Deferred<Func>(kj::fwd<Func>(func)); +} + +#define KJ_DEFER(code) auto KJ_UNIQUE_NAME(_kjDefer) = ::kj::defer([&](){code;}) +// Run the given code when the function exits, whether by return or exception. + +} // namespace kj + +KJ_END_HEADER