Mercurial > repos > rliterman > csp2
diff CSP2/CSP2_env/env-d9b9114564458d9d-741b3de822f2aaca6c6caa4325c4afce/include/kj/string.h @ 69:33d812a61356
planemo upload commit 2e9511a184a1ca667c7be0c6321a36dc4e3d116d
author | jpayne |
---|---|
date | Tue, 18 Mar 2025 17:55:14 -0400 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/CSP2/CSP2_env/env-d9b9114564458d9d-741b3de822f2aaca6c6caa4325c4afce/include/kj/string.h Tue Mar 18 17:55:14 2025 -0400 @@ -0,0 +1,935 @@ +// Copyright (c) 2013-2014 Sandstorm Development Group, Inc. and contributors +// Licensed under the MIT License: +// +// Permission is hereby granted, free of charge, to any person obtaining a copy +// of this software and associated documentation files (the "Software"), to deal +// in the Software without restriction, including without limitation the rights +// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +// copies of the Software, and to permit persons to whom the Software is +// furnished to do so, subject to the following conditions: +// +// The above copyright notice and this permission notice shall be included in +// all copies or substantial portions of the Software. +// +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN +// THE SOFTWARE. + +#pragma once + +#include <initializer_list> +#include "array.h" +#include "kj/common.h" +#include <string.h> + +KJ_BEGIN_HEADER + +namespace kj { + class StringPtr; + class LiteralStringConst; + class String; + class ConstString; + + class StringTree; // string-tree.h +} + +constexpr kj::StringPtr operator "" _kj(const char* str, size_t n); +// You can append _kj to a string literal to make its type be StringPtr. There are a few cases +// where you must do this for correctness: +// - When you want to declare a constexpr StringPtr. Without _kj, this is a compile error. +// - When you want to initialize a static/global StringPtr from a string literal without forcing +// global constructor code to run at dynamic initialization time. +// - When you have a string literal that contains NUL characters. Without _kj, the string will +// be considered to end at the first NUL. +// - When you want to initialize an ArrayPtr<const char> from a string literal, without including +// the NUL terminator in the data. (Initializing an ArrayPtr from a regular string literal is +// a compile error specifically due to this ambiguity.) +// +// In other cases, there should be no difference between initializing a StringPtr from a regular +// string literal vs. one with _kj (assuming the compiler is able to optimize away strlen() on a +// string literal). + +constexpr kj::LiteralStringConst operator "" _kjc(const char* str, size_t n); + +namespace kj { + +// Our STL string SFINAE trick does not work with GCC 4.7, but it works with Clang and GCC 4.8, so +// we'll just preprocess it out if not supported. +#if __clang__ || __GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8) || _MSC_VER +#define KJ_COMPILER_SUPPORTS_STL_STRING_INTEROP 1 +#endif + +// ======================================================================================= +// StringPtr -- A NUL-terminated ArrayPtr<const char> containing UTF-8 text. +// +// NUL bytes are allowed to appear before the end of the string. The only requirement is that +// a NUL byte appear immediately after the last byte of the content. This terminator byte is not +// counted in the string's size. + +class StringPtr { +public: + inline StringPtr(): content("", 1) {} + inline StringPtr(decltype(nullptr)): content("", 1) {} + inline StringPtr(const char* value KJ_LIFETIMEBOUND): content(value, strlen(value) + 1) {} + inline StringPtr(const char* value KJ_LIFETIMEBOUND, size_t size): content(value, size + 1) { + KJ_IREQUIRE(value[size] == '\0', "StringPtr must be NUL-terminated."); + } + inline StringPtr(const char* begin KJ_LIFETIMEBOUND, const char* end KJ_LIFETIMEBOUND): StringPtr(begin, end - begin) {} + inline StringPtr(String&& value KJ_LIFETIMEBOUND) : StringPtr(value) {} + inline StringPtr(const String& value KJ_LIFETIMEBOUND); + inline StringPtr(const ConstString& value KJ_LIFETIMEBOUND); + StringPtr& operator=(String&& value) = delete; + inline StringPtr& operator=(decltype(nullptr)) { + content = ArrayPtr<const char>("", 1); + return *this; + } + +#if __cpp_char8_t + inline StringPtr(const char8_t* value KJ_LIFETIMEBOUND): StringPtr(reinterpret_cast<const char*>(value)) {} + inline StringPtr(const char8_t* value KJ_LIFETIMEBOUND, size_t size) + : StringPtr(reinterpret_cast<const char*>(value), size) {} + inline StringPtr(const char8_t* begin KJ_LIFETIMEBOUND, const char8_t* end KJ_LIFETIMEBOUND) + : StringPtr(reinterpret_cast<const char*>(begin), reinterpret_cast<const char*>(end)) {} + // KJ strings are and always have been UTF-8, so screw this C++20 char8_t stuff. +#endif + +#if KJ_COMPILER_SUPPORTS_STL_STRING_INTEROP + template < + typename T, + typename = decltype(instance<T>().c_str()), + typename = decltype(instance<T>().size())> + inline StringPtr(const T& t KJ_LIFETIMEBOUND): StringPtr(t.c_str(), t.size()) {} + // Allow implicit conversion from any class that has a c_str() and a size() method (namely, std::string). + // We use a template trick to detect std::string in order to avoid including the header for + // those who don't want it. + template < + typename T, + typename = decltype(instance<T>().c_str()), + typename = decltype(instance<T>().size())> + inline operator T() const { return {cStr(), size()}; } + // Allow implicit conversion to any class that has a c_str() method and a size() method (namely, std::string). + // We use a template trick to detect std::string in order to avoid including the header for + // those who don't want it. +#endif + + inline constexpr operator ArrayPtr<const char>() const; + inline constexpr ArrayPtr<const char> asArray() const; + inline ArrayPtr<const byte> asBytes() const { return asArray().asBytes(); } + // Result does not include NUL terminator. + + inline const char* cStr() const { return content.begin(); } + // Returns NUL-terminated string. + + inline size_t size() const { return content.size() - 1; } + // Result does not include NUL terminator. + + inline char operator[](size_t index) const { return content[index]; } + + inline constexpr const char* begin() const { return content.begin(); } + inline constexpr const char* end() const { return content.end() - 1; } + + inline constexpr bool operator==(decltype(nullptr)) const { return content.size() <= 1; } +#if !__cpp_impl_three_way_comparison + inline constexpr bool operator!=(decltype(nullptr)) const { return content.size() > 1; } +#endif + + inline bool operator==(const StringPtr& other) const; +#if !__cpp_impl_three_way_comparison + inline bool operator!=(const StringPtr& other) const { return !(*this == other); } +#endif + inline bool operator< (const StringPtr& other) const; + inline bool operator> (const StringPtr& other) const { return other < *this; } + inline bool operator<=(const StringPtr& other) const { return !(other < *this); } + inline bool operator>=(const StringPtr& other) const { return !(*this < other); } + + inline StringPtr slice(size_t start) const; + inline ArrayPtr<const char> slice(size_t start, size_t end) const; + // A string slice is only NUL-terminated if it is a suffix, so slice() has a one-parameter + // version that assumes end = size(). + + inline bool startsWith(const StringPtr& other) const { return asArray().startsWith(other);} + inline bool endsWith(const StringPtr& other) const { return asArray().endsWith(other); } + + inline Maybe<size_t> findFirst(char c) const { return asArray().findFirst(c); } + inline Maybe<size_t> findLast(char c) const { return asArray().findLast(c); } + + template <typename T> + T parseAs() const; + // Parse string as template number type. + // Integer numbers prefixed by "0x" and "0X" are parsed in base 16 (like strtoi with base 0). + // Integer numbers prefixed by "0" are parsed in base 10 (unlike strtoi with base 0). + // Overflowed integer numbers throw exception. + // Overflowed floating numbers return inf. + template <typename T> + Maybe<T> tryParseAs() const; + // Same as parseAs, but rather than throwing an exception we return NULL. + + template <typename... Attachments> + ConstString attach(Attachments&&... attachments) const KJ_WARN_UNUSED_RESULT; + ConstString attach() const KJ_WARN_UNUSED_RESULT; + // Like ArrayPtr<T>::attach(), but instead promotes a StringPtr into a ConstString. Generally the + // attachment should be an object that somehow owns the String that the StringPtr is pointing at. + +private: + inline explicit constexpr StringPtr(ArrayPtr<const char> content): content(content) {} + friend constexpr StringPtr (::operator "" _kj)(const char* str, size_t n); + friend class LiteralStringConst; + + ArrayPtr<const char> content; + friend class SourceLocation; +}; + +#if !__cpp_impl_three_way_comparison +inline bool operator==(const char* a, const StringPtr& b) { return b == a; } +inline bool operator!=(const char* a, const StringPtr& b) { return b != a; } +#endif + +template <> char StringPtr::parseAs<char>() const; +template <> signed char StringPtr::parseAs<signed char>() const; +template <> unsigned char StringPtr::parseAs<unsigned char>() const; +template <> short StringPtr::parseAs<short>() const; +template <> unsigned short StringPtr::parseAs<unsigned short>() const; +template <> int StringPtr::parseAs<int>() const; +template <> unsigned StringPtr::parseAs<unsigned>() const; +template <> long StringPtr::parseAs<long>() const; +template <> unsigned long StringPtr::parseAs<unsigned long>() const; +template <> long long StringPtr::parseAs<long long>() const; +template <> unsigned long long StringPtr::parseAs<unsigned long long>() const; +template <> float StringPtr::parseAs<float>() const; +template <> double StringPtr::parseAs<double>() const; + +template <> Maybe<char> StringPtr::tryParseAs<char>() const; +template <> Maybe<signed char> StringPtr::tryParseAs<signed char>() const; +template <> Maybe<unsigned char> StringPtr::tryParseAs<unsigned char>() const; +template <> Maybe<short> StringPtr::tryParseAs<short>() const; +template <> Maybe<unsigned short> StringPtr::tryParseAs<unsigned short>() const; +template <> Maybe<int> StringPtr::tryParseAs<int>() const; +template <> Maybe<unsigned> StringPtr::tryParseAs<unsigned>() const; +template <> Maybe<long> StringPtr::tryParseAs<long>() const; +template <> Maybe<unsigned long> StringPtr::tryParseAs<unsigned long>() const; +template <> Maybe<long long> StringPtr::tryParseAs<long long>() const; +template <> Maybe<unsigned long long> StringPtr::tryParseAs<unsigned long long>() const; +template <> Maybe<float> StringPtr::tryParseAs<float>() const; +template <> Maybe<double> StringPtr::tryParseAs<double>() const; + +class LiteralStringConst: public StringPtr { +public: + inline operator ConstString() const; + +private: + inline explicit constexpr LiteralStringConst(ArrayPtr<const char> content): StringPtr(content) {} + friend constexpr LiteralStringConst (::operator "" _kjc)(const char* str, size_t n); +}; + +// ======================================================================================= +// String -- A NUL-terminated Array<char> containing UTF-8 text. +// +// NUL bytes are allowed to appear before the end of the string. The only requirement is that +// a NUL byte appear immediately after the last byte of the content. This terminator byte is not +// counted in the string's size. +// +// To allocate a String, you must call kj::heapString(). We do not implement implicit copying to +// the heap because this hides potential inefficiency from the developer. + +class String { +public: + String() = default; + inline String(decltype(nullptr)): content(nullptr) {} + inline String(char* value, size_t size, const ArrayDisposer& disposer); + // Does not copy. `size` does not include NUL terminator, but `value` must be NUL-terminated. + inline explicit String(Array<char> buffer); + // Does not copy. Requires `buffer` ends with `\0`. + + inline operator ArrayPtr<char>() KJ_LIFETIMEBOUND; + inline operator ArrayPtr<const char>() const KJ_LIFETIMEBOUND; + inline ArrayPtr<char> asArray() KJ_LIFETIMEBOUND; + inline ArrayPtr<const char> asArray() const KJ_LIFETIMEBOUND; + inline ArrayPtr<byte> asBytes() KJ_LIFETIMEBOUND { return asArray().asBytes(); } + inline ArrayPtr<const byte> asBytes() const KJ_LIFETIMEBOUND { return asArray().asBytes(); } + // Result does not include NUL terminator. + + inline StringPtr asPtr() const KJ_LIFETIMEBOUND { + // Convenience operator to return a StringPtr. + return StringPtr{*this}; + } + + inline Array<char> releaseArray() { return kj::mv(content); } + // Disowns the backing array (which includes the NUL terminator) and returns it. The String value + // is clobbered (as if moved away). + + inline const char* cStr() const KJ_LIFETIMEBOUND; + + inline size_t size() const; + // Result does not include NUL terminator. + + inline char operator[](size_t index) const; + inline char& operator[](size_t index) KJ_LIFETIMEBOUND; + + inline char* begin() KJ_LIFETIMEBOUND; + inline char* end() KJ_LIFETIMEBOUND; + inline const char* begin() const KJ_LIFETIMEBOUND; + inline const char* end() const KJ_LIFETIMEBOUND; + + inline bool operator==(decltype(nullptr)) const { return content.size() <= 1; } + inline bool operator!=(decltype(nullptr)) const { return content.size() > 1; } + + inline bool operator==(const StringPtr& other) const { return StringPtr(*this) == other; } +#if !__cpp_impl_three_way_comparison + inline bool operator!=(const StringPtr& other) const { return StringPtr(*this) != other; } +#endif + inline bool operator< (const StringPtr& other) const { return StringPtr(*this) < other; } + inline bool operator> (const StringPtr& other) const { return StringPtr(*this) > other; } + inline bool operator<=(const StringPtr& other) const { return StringPtr(*this) <= other; } + inline bool operator>=(const StringPtr& other) const { return StringPtr(*this) >= other; } + + inline bool operator==(const String& other) const { return StringPtr(*this) == StringPtr(other); } +#if !__cpp_impl_three_way_comparison + inline bool operator!=(const String& other) const { return StringPtr(*this) != StringPtr(other); } +#endif + inline bool operator< (const String& other) const { return StringPtr(*this) < StringPtr(other); } + inline bool operator> (const String& other) const { return StringPtr(*this) > StringPtr(other); } + inline bool operator<=(const String& other) const { return StringPtr(*this) <= StringPtr(other); } + inline bool operator>=(const String& other) const { return StringPtr(*this) >= StringPtr(other); } + // Note that if we don't overload for `const String&` specifically, then C++20 will decide that + // comparisons between two strings are ambiguous. (Clang turns this into a warning, + // -Wambiguous-reversed-operator, due to the stupidity...) + + inline bool operator==(const ConstString& other) const { return StringPtr(*this) == StringPtr(other); } +#if !__cpp_impl_three_way_comparison + inline bool operator!=(const ConstString& other) const { return StringPtr(*this) != StringPtr(other); } +#endif + inline bool operator< (const ConstString& other) const { return StringPtr(*this) < StringPtr(other); } + inline bool operator> (const ConstString& other) const { return StringPtr(*this) > StringPtr(other); } + inline bool operator<=(const ConstString& other) const { return StringPtr(*this) <= StringPtr(other); } + inline bool operator>=(const ConstString& other) const { return StringPtr(*this) >= StringPtr(other); } + + inline bool startsWith(const StringPtr& other) const { return asArray().startsWith(other);} + inline bool endsWith(const StringPtr& other) const { return asArray().endsWith(other); } + + inline StringPtr slice(size_t start) const KJ_LIFETIMEBOUND { + return StringPtr(*this).slice(start); + } + inline ArrayPtr<const char> slice(size_t start, size_t end) const KJ_LIFETIMEBOUND { + return StringPtr(*this).slice(start, end); + } + + inline Maybe<size_t> findFirst(char c) const { return asArray().findFirst(c); } + inline Maybe<size_t> findLast(char c) const { return asArray().findLast(c); } + + template <typename T> + T parseAs() const { return StringPtr(*this).parseAs<T>(); } + // Parse as number + + template <typename T> + Maybe<T> tryParseAs() const { return StringPtr(*this).tryParseAs<T>(); } + +private: + Array<char> content; +}; + +// ======================================================================================= +// ConstString -- Same as String, but the backing buffer is const. +// +// This has the useful property that it can reference a string literal without allocating +// a copy. Any String can also convert (by move) to ConstString, transferring ownership of +// the buffer. + +class ConstString { +public: + ConstString() = default; + inline ConstString(decltype(nullptr)): content(nullptr) {} + inline ConstString(const char* value, size_t size, const ArrayDisposer& disposer); + // Does not copy. `size` does not include NUL terminator, but `value` must be NUL-terminated. + inline explicit ConstString(Array<const char> buffer); + // Does not copy. Requires `buffer` ends with `\0`. + inline explicit ConstString(String&& string): content(string.releaseArray()) {} + // Does not copy. Ownership is transfered. + + inline operator ArrayPtr<const char>() const KJ_LIFETIMEBOUND; + inline ArrayPtr<const char> asArray() const KJ_LIFETIMEBOUND; + inline ArrayPtr<const byte> asBytes() const KJ_LIFETIMEBOUND { return asArray().asBytes(); } + // Result does not include NUL terminator. + + inline StringPtr asPtr() const KJ_LIFETIMEBOUND { + // Convenience operator to return a StringPtr. + return StringPtr{*this}; + } + + inline Array<const char> releaseArray() { return kj::mv(content); } + // Disowns the backing array (which includes the NUL terminator) and returns it. The ConstString value + // is clobbered (as if moved away). + + inline const char* cStr() const KJ_LIFETIMEBOUND; + + inline size_t size() const; + // Result does not include NUL terminator. + + inline char operator[](size_t index) const; + inline char& operator[](size_t index) KJ_LIFETIMEBOUND; + + inline const char* begin() const KJ_LIFETIMEBOUND; + inline const char* end() const KJ_LIFETIMEBOUND; + + inline bool operator==(decltype(nullptr)) const { return content.size() <= 1; } + inline bool operator!=(decltype(nullptr)) const { return content.size() > 1; } + + inline bool operator==(const StringPtr& other) const { return StringPtr(*this) == other; } +#if !__cpp_impl_three_way_comparison + inline bool operator!=(const StringPtr& other) const { return StringPtr(*this) != other; } +#endif + inline bool operator< (const StringPtr& other) const { return StringPtr(*this) < other; } + inline bool operator> (const StringPtr& other) const { return StringPtr(*this) > other; } + inline bool operator<=(const StringPtr& other) const { return StringPtr(*this) <= other; } + inline bool operator>=(const StringPtr& other) const { return StringPtr(*this) >= other; } + + inline bool operator==(const String& other) const { return StringPtr(*this) == StringPtr(other); } +#if !__cpp_impl_three_way_comparison + inline bool operator!=(const String& other) const { return StringPtr(*this) != StringPtr(other); } +#endif + inline bool operator< (const String& other) const { return StringPtr(*this) < StringPtr(other); } + inline bool operator> (const String& other) const { return StringPtr(*this) > StringPtr(other); } + inline bool operator<=(const String& other) const { return StringPtr(*this) <= StringPtr(other); } + inline bool operator>=(const String& other) const { return StringPtr(*this) >= StringPtr(other); } + + inline bool operator==(const ConstString& other) const { return StringPtr(*this) == StringPtr(other); } +#if !__cpp_impl_three_way_comparison + inline bool operator!=(const ConstString& other) const { return StringPtr(*this) != StringPtr(other); } +#endif + inline bool operator< (const ConstString& other) const { return StringPtr(*this) < StringPtr(other); } + inline bool operator> (const ConstString& other) const { return StringPtr(*this) > StringPtr(other); } + inline bool operator<=(const ConstString& other) const { return StringPtr(*this) <= StringPtr(other); } + inline bool operator>=(const ConstString& other) const { return StringPtr(*this) >= StringPtr(other); } + // Note that if we don't overload for `const ConstString&` specifically, then C++20 will decide that + // comparisons between two strings are ambiguous. (Clang turns this into a warning, + // -Wambiguous-reversed-operator, due to the stupidity...) + + inline bool startsWith(const StringPtr& other) const { return asArray().startsWith(other);} + inline bool endsWith(const StringPtr& other) const { return asArray().endsWith(other); } + + inline StringPtr slice(size_t start) const KJ_LIFETIMEBOUND { + return StringPtr(*this).slice(start); + } + inline ArrayPtr<const char> slice(size_t start, size_t end) const KJ_LIFETIMEBOUND { + return StringPtr(*this).slice(start, end); + } + + inline Maybe<size_t> findFirst(char c) const { return asArray().findFirst(c); } + inline Maybe<size_t> findLast(char c) const { return asArray().findLast(c); } + + template <typename T> + T parseAs() const { return StringPtr(*this).parseAs<T>(); } + // Parse as number + + template <typename T> + Maybe<T> tryParseAs() const { return StringPtr(*this).tryParseAs<T>(); } + +private: + Array<const char> content; +}; + +#if !__cpp_impl_three_way_comparison +inline bool operator==(const char* a, const String& b) { return b == a; } +inline bool operator!=(const char* a, const String& b) { return b != a; } +#endif + +String heapString(size_t size); +// Allocate a String of the given size on the heap, not including NUL terminator. The NUL +// terminator will be initialized automatically but the rest of the content is not initialized. + +String heapString(const char* value); +String heapString(const char* value, size_t size); +String heapString(StringPtr value); +String heapString(const String& value); +String heapString(ArrayPtr<const char> value); +// Allocates a copy of the given value on the heap. + +// ======================================================================================= +// Magic str() function which transforms parameters to text and concatenates them into one big +// String. + +namespace _ { // private + +inline size_t sum(std::initializer_list<size_t> nums) { + size_t result = 0; + for (auto num: nums) { + result += num; + } + return result; +} + +inline char* fill(char* ptr) { return ptr; } +inline char* fillLimited(char* ptr, char* limit) { return ptr; } + +template <typename... Rest> +char* fill(char* __restrict__ target, const StringTree& first, Rest&&... rest); +template <typename... Rest> +char* fillLimited(char* __restrict__ target, char* limit, const StringTree& first, Rest&&... rest); +// Make str() work with stringifiers that return StringTree by patching fill(). +// +// Defined in string-tree.h. + +template <typename First, typename... Rest> +char* fill(char* __restrict__ target, const First& first, Rest&&... rest) { + auto i = first.begin(); + auto end = first.end(); + while (i != end) { + *target++ = *i++; + } + return fill(target, kj::fwd<Rest>(rest)...); +} + +template <typename... Params> +String concat(Params&&... params) { + // Concatenate a bunch of containers into a single Array. The containers can be anything that + // is iterable and whose elements can be converted to `char`. + + String result = heapString(sum({params.size()...})); + fill(result.begin(), kj::fwd<Params>(params)...); + return result; +} + +inline String concat(String&& arr) { + return kj::mv(arr); +} + +template <typename First, typename... Rest> +char* fillLimited(char* __restrict__ target, char* limit, const First& first, Rest&&... rest) { + auto i = first.begin(); + auto end = first.end(); + while (i != end) { + if (target == limit) return target; + *target++ = *i++; + } + return fillLimited(target, limit, kj::fwd<Rest>(rest)...); +} + +template <typename T> +class Delimited; +// Delimits a sequence of type T with a string delimiter. Implements kj::delimited(). + +template <typename T, typename... Rest> +char* fill(char* __restrict__ target, Delimited<T>&& first, Rest&&... rest); +template <typename T, typename... Rest> +char* fillLimited(char* __restrict__ target, char* limit, Delimited<T>&& first,Rest&&... rest); +template <typename T, typename... Rest> +char* fill(char* __restrict__ target, Delimited<T>& first, Rest&&... rest); +template <typename T, typename... Rest> +char* fillLimited(char* __restrict__ target, char* limit, Delimited<T>& first,Rest&&... rest); +// As with StringTree, we special-case Delimited<T>. + +struct Stringifier { + // This is a dummy type with only one instance: STR (below). To make an arbitrary type + // stringifiable, define `operator*(Stringifier, T)` to return an iterable container of `char`. + // The container type must have a `size()` method. Be sure to declare the operator in the same + // namespace as `T` **or** in the global scope. + // + // A more usual way to accomplish what we're doing here would be to require that you define + // a function like `toString(T)` and then rely on argument-dependent lookup. However, this has + // the problem that it pollutes other people's namespaces and even the global namespace. For + // example, some other project may already have functions called `toString` which do something + // different. Declaring `operator*` with `Stringifier` as the left operand cannot conflict with + // anything. + + inline ArrayPtr<const char> operator*(ArrayPtr<const char> s) const { return s; } + inline ArrayPtr<const char> operator*(ArrayPtr<char> s) const { return s; } + inline ArrayPtr<const char> operator*(const Array<const char>& s) const KJ_LIFETIMEBOUND { + return s; + } + inline ArrayPtr<const char> operator*(const Array<char>& s) const KJ_LIFETIMEBOUND { return s; } + template<size_t n> + inline ArrayPtr<const char> operator*(const CappedArray<char, n>& s) const KJ_LIFETIMEBOUND { + return s; + } + template<size_t n> + inline ArrayPtr<const char> operator*(const FixedArray<char, n>& s) const KJ_LIFETIMEBOUND { + return s; + } + inline ArrayPtr<const char> operator*(const char* s) const KJ_LIFETIMEBOUND { + return arrayPtr(s, strlen(s)); + } +#if __cpp_char8_t + inline ArrayPtr<const char> operator*(const char8_t* s) const KJ_LIFETIMEBOUND { + return operator*(reinterpret_cast<const char*>(s)); + } +#endif + inline ArrayPtr<const char> operator*(const String& s) const KJ_LIFETIMEBOUND { + return s.asArray(); + } + inline ArrayPtr<const char> operator*(const StringPtr& s) const { return s.asArray(); } + inline ArrayPtr<const char> operator*(const ConstString& s) const { return s.asArray(); } + + inline Range<char> operator*(const Range<char>& r) const { return r; } + inline Repeat<char> operator*(const Repeat<char>& r) const { return r; } + + inline FixedArray<char, 1> operator*(char c) const { + FixedArray<char, 1> result; + result[0] = c; + return result; + } + + StringPtr operator*(decltype(nullptr)) const; + StringPtr operator*(bool b) const; + + CappedArray<char, 5> operator*(signed char i) const; + CappedArray<char, 5> operator*(unsigned char i) const; + CappedArray<char, sizeof(short) * 3 + 2> operator*(short i) const; + CappedArray<char, sizeof(unsigned short) * 3 + 2> operator*(unsigned short i) const; + CappedArray<char, sizeof(int) * 3 + 2> operator*(int i) const; + CappedArray<char, sizeof(unsigned int) * 3 + 2> operator*(unsigned int i) const; + CappedArray<char, sizeof(long) * 3 + 2> operator*(long i) const; + CappedArray<char, sizeof(unsigned long) * 3 + 2> operator*(unsigned long i) const; + CappedArray<char, sizeof(long long) * 3 + 2> operator*(long long i) const; + CappedArray<char, sizeof(unsigned long long) * 3 + 2> operator*(unsigned long long i) const; + CappedArray<char, 24> operator*(float f) const; + CappedArray<char, 32> operator*(double f) const; + CappedArray<char, sizeof(const void*) * 2 + 1> operator*(const void* s) const; + +#if KJ_COMPILER_SUPPORTS_STL_STRING_INTEROP // supports expression SFINAE? + template <typename T, typename Result = decltype(instance<T>().toString())> + inline Result operator*(T&& value) const { return kj::fwd<T>(value).toString(); } +#endif +}; +static KJ_CONSTEXPR(const) Stringifier STR = Stringifier(); + +} // namespace _ (private) + +template <typename T> +auto toCharSequence(T&& value) -> decltype(_::STR * kj::fwd<T>(value)) { + // Returns an iterable of chars that represent a textual representation of the value, suitable + // for debugging. + // + // Most users should use str() instead, but toCharSequence() may occasionally be useful to avoid + // heap allocation overhead that str() implies. + // + // To specialize this function for your type, see KJ_STRINGIFY. + + return _::STR * kj::fwd<T>(value); +} + +CappedArray<char, sizeof(unsigned char) * 2 + 1> hex(unsigned char i); +CappedArray<char, sizeof(unsigned short) * 2 + 1> hex(unsigned short i); +CappedArray<char, sizeof(unsigned int) * 2 + 1> hex(unsigned int i); +CappedArray<char, sizeof(unsigned long) * 2 + 1> hex(unsigned long i); +CappedArray<char, sizeof(unsigned long long) * 2 + 1> hex(unsigned long long i); + +template <typename... Params> +String str(Params&&... params) { + // Magic function which builds a string from a bunch of arbitrary values. Example: + // str(1, " / ", 2, " = ", 0.5) + // returns: + // "1 / 2 = 0.5" + // To teach `str` how to stringify a type, see `Stringifier`. + + return _::concat(toCharSequence(kj::fwd<Params>(params))...); +} + +inline String str(String&& s) { return mv(s); } +// Overload to prevent redundant allocation. + +template <typename T> +_::Delimited<T> delimited(T&& arr, kj::StringPtr delim); +// Use to stringify an array. + +template <typename T> +String strArray(T&& arr, const char* delim) { + size_t delimLen = strlen(delim); + KJ_STACK_ARRAY(decltype(_::STR * arr[0]), pieces, kj::size(arr), 8, 32); + size_t size = 0; + for (size_t i = 0; i < kj::size(arr); i++) { + if (i > 0) size += delimLen; + pieces[i] = _::STR * arr[i]; + size += pieces[i].size(); + } + + String result = heapString(size); + char* pos = result.begin(); + for (size_t i = 0; i < kj::size(arr); i++) { + if (i > 0) { + memcpy(pos, delim, delimLen); + pos += delimLen; + } + pos = _::fill(pos, pieces[i]); + } + return result; +} + +template <typename... Params> +StringPtr strPreallocated(ArrayPtr<char> buffer, Params&&... params) { + // Like str() but writes into a preallocated buffer. If the buffer is not long enough, the result + // is truncated (but still NUL-terminated). + // + // This can be used like: + // + // char buffer[256]; + // StringPtr text = strPreallocated(buffer, params...); + // + // This is useful for optimization. It can also potentially be used safely in async signal + // handlers. HOWEVER, to use in an async signal handler, all of the stringifiers for the inputs + // must also be signal-safe. KJ guarantees signal safety when stringifying any built-in integer + // type (but NOT floating-points), basic char/byte sequences (ArrayPtr<byte>, String, etc.), as + // well as Array<T> as long as T can also be stringified safely. To safely stringify a delimited + // array, you must use kj::delimited(arr, delim) rather than the deprecated + // kj::strArray(arr, delim). + + char* end = _::fillLimited(buffer.begin(), buffer.end() - 1, + toCharSequence(kj::fwd<Params>(params))...); + *end = '\0'; + return StringPtr(buffer.begin(), end); +} + +template <typename T, typename = decltype(toCharSequence(kj::instance<T&>()))> +inline _::Delimited<ArrayPtr<T>> operator*(const _::Stringifier&, ArrayPtr<T> arr) { + return _::Delimited<ArrayPtr<T>>(arr, ", "); +} + +template <typename T, typename = decltype(toCharSequence(kj::instance<const T&>()))> +inline _::Delimited<ArrayPtr<const T>> operator*(const _::Stringifier&, const Array<T>& arr) { + return _::Delimited<ArrayPtr<const T>>(arr, ", "); +} + +#define KJ_STRINGIFY(...) operator*(::kj::_::Stringifier, __VA_ARGS__) +// Defines a stringifier for a custom type. Example: +// +// class Foo {...}; +// inline StringPtr KJ_STRINGIFY(const Foo& foo) { return foo.name(); } +// // or perhaps +// inline String KJ_STRINGIFY(const Foo& foo) { return kj::str(foo.fld1(), ",", foo.fld2()); } +// +// This allows Foo to be passed to str(). +// +// The function should be declared either in the same namespace as the target type or in the global +// namespace. It can return any type which is an iterable container of chars. + +// ======================================================================================= +// Inline implementation details. + +inline StringPtr::StringPtr(const String& value): content(value.cStr(), value.size() + 1) {} +inline StringPtr::StringPtr(const ConstString& value): content(value.cStr(), value.size() + 1) {} + +inline constexpr StringPtr::operator ArrayPtr<const char>() const { + return ArrayPtr<const char>(content.begin(), content.size() - 1); +} + +inline constexpr ArrayPtr<const char> StringPtr::asArray() const { + return ArrayPtr<const char>(content.begin(), content.size() - 1); +} + +inline bool StringPtr::operator==(const StringPtr& other) const { + return content.size() == other.content.size() && + memcmp(content.begin(), other.content.begin(), content.size() - 1) == 0; +} + +inline bool StringPtr::operator<(const StringPtr& other) const { + bool shorter = content.size() < other.content.size(); + int cmp = memcmp(content.begin(), other.content.begin(), + shorter ? content.size() : other.content.size()); + return cmp < 0 || (cmp == 0 && shorter); +} + +inline StringPtr StringPtr::slice(size_t start) const { + return StringPtr(content.slice(start, content.size())); +} +inline ArrayPtr<const char> StringPtr::slice(size_t start, size_t end) const { + return content.slice(start, end); +} + +inline LiteralStringConst::operator ConstString() const { + return ConstString(begin(), size(), NullArrayDisposer::instance); +} + +inline ConstString StringPtr::attach() const { + // This is meant as a roundabout way to make a ConstString from a StringPtr + return ConstString(begin(), size(), NullArrayDisposer::instance); +} + +template <typename... Attachments> +inline ConstString StringPtr::attach(Attachments&&... attachments) const { + return ConstString { content.attach(kj::fwd<Attachments>(attachments)...) }; +} + +inline String::operator ArrayPtr<char>() { + return content == nullptr ? ArrayPtr<char>(nullptr) : content.slice(0, content.size() - 1); +} +inline String::operator ArrayPtr<const char>() const { + return content == nullptr ? ArrayPtr<const char>(nullptr) : content.slice(0, content.size() - 1); +} +inline ConstString::operator ArrayPtr<const char>() const { + return content == nullptr ? ArrayPtr<const char>(nullptr) : content.slice(0, content.size() - 1); +} + +inline ArrayPtr<char> String::asArray() { + return content == nullptr ? ArrayPtr<char>(nullptr) : content.slice(0, content.size() - 1); +} +inline ArrayPtr<const char> String::asArray() const { + return content == nullptr ? ArrayPtr<const char>(nullptr) : content.slice(0, content.size() - 1); +} +inline ArrayPtr<const char> ConstString::asArray() const { + return content == nullptr ? ArrayPtr<const char>(nullptr) : content.slice(0, content.size() - 1); +} + +inline const char* String::cStr() const { return content == nullptr ? "" : content.begin(); } +inline const char* ConstString::cStr() const { return content == nullptr ? "" : content.begin(); } + +inline size_t String::size() const { return content == nullptr ? 0 : content.size() - 1; } +inline size_t ConstString::size() const { return content == nullptr ? 0 : content.size() - 1; } + +inline char String::operator[](size_t index) const { return content[index]; } +inline char& String::operator[](size_t index) { return content[index]; } +inline char ConstString::operator[](size_t index) const { return content[index]; } + +inline char* String::begin() { return content == nullptr ? nullptr : content.begin(); } +inline char* String::end() { return content == nullptr ? nullptr : content.end() - 1; } +inline const char* String::begin() const { return content == nullptr ? nullptr : content.begin(); } +inline const char* String::end() const { return content == nullptr ? nullptr : content.end() - 1; } +inline const char* ConstString::begin() const { return content == nullptr ? nullptr : content.begin(); } +inline const char* ConstString::end() const { return content == nullptr ? nullptr : content.end() - 1; } + +inline String::String(char* value, size_t size, const ArrayDisposer& disposer) + : content(value, size + 1, disposer) { + KJ_IREQUIRE(value[size] == '\0', "String must be NUL-terminated."); +} +inline ConstString::ConstString(const char* value, size_t size, const ArrayDisposer& disposer) + : content(value, size + 1, disposer) { + KJ_IREQUIRE(value[size] == '\0', "String must be NUL-terminated."); +} + +inline String::String(Array<char> buffer): content(kj::mv(buffer)) { + KJ_IREQUIRE(content.size() > 0 && content.back() == '\0', "String must be NUL-terminated."); +} +inline ConstString::ConstString(Array<const char> buffer): content(kj::mv(buffer)) { + KJ_IREQUIRE(content.size() > 0 && content.back() == '\0', "String must be NUL-terminated."); +} + +inline String heapString(const char* value) { + return heapString(value, strlen(value)); +} +inline String heapString(StringPtr value) { + return heapString(value.begin(), value.size()); +} +inline String heapString(const String& value) { + return heapString(value.begin(), value.size()); +} +inline String heapString(ArrayPtr<const char> value) { + return heapString(value.begin(), value.size()); +} + +namespace _ { // private + +template <typename T> +class Delimited { +public: + Delimited(T array, kj::StringPtr delimiter) + : array(kj::fwd<T>(array)), delimiter(delimiter) {} + + // TODO(someday): In theory we should support iteration as a character sequence, but the iterator + // will be pretty complicated. + + size_t size() { + ensureStringifiedInitialized(); + + size_t result = 0; + bool first = true; + for (auto& e: stringified) { + if (first) { + first = false; + } else { + result += delimiter.size(); + } + result += e.size(); + } + return result; + } + + char* flattenTo(char* __restrict__ target) { + ensureStringifiedInitialized(); + + bool first = true; + for (auto& elem: stringified) { + if (first) { + first = false; + } else { + target = fill(target, delimiter); + } + target = fill(target, elem); + } + return target; + } + + char* flattenTo(char* __restrict__ target, char* limit) { + // This is called in the strPreallocated(). We want to avoid allocation. size() will not have + // been called in this case, so hopefully `stringified` is still uninitialized. We will + // stringify each item and immediately use it. + bool first = true; + for (auto&& elem: array) { + if (target == limit) return target; + if (first) { + first = false; + } else { + target = fillLimited(target, limit, delimiter); + } + target = fillLimited(target, limit, kj::toCharSequence(elem)); + } + return target; + } + +private: + typedef decltype(toCharSequence(*instance<T>().begin())) StringifiedItem; + T array; + kj::StringPtr delimiter; + Array<StringifiedItem> stringified; + + void ensureStringifiedInitialized() { + if (array.size() > 0 && stringified.size() == 0) { + stringified = KJ_MAP(e, array) { return toCharSequence(e); }; + } + } +}; + +template <typename T, typename... Rest> +char* fill(char* __restrict__ target, Delimited<T>&& first, Rest&&... rest) { + target = first.flattenTo(target); + return fill(target, kj::fwd<Rest>(rest)...); +} +template <typename T, typename... Rest> +char* fillLimited(char* __restrict__ target, char* limit, Delimited<T>&& first, Rest&&... rest) { + target = first.flattenTo(target, limit); + return fillLimited(target, limit, kj::fwd<Rest>(rest)...); +} +template <typename T, typename... Rest> +char* fill(char* __restrict__ target, Delimited<T>& first, Rest&&... rest) { + target = first.flattenTo(target); + return fill(target, kj::fwd<Rest>(rest)...); +} +template <typename T, typename... Rest> +char* fillLimited(char* __restrict__ target, char* limit, Delimited<T>& first, Rest&&... rest) { + target = first.flattenTo(target, limit); + return fillLimited(target, limit, kj::fwd<Rest>(rest)...); +} + +template <typename T> +inline Delimited<T>&& KJ_STRINGIFY(Delimited<T>&& delimited) { return kj::mv(delimited); } +template <typename T> +inline const Delimited<T>& KJ_STRINGIFY(const Delimited<T>& delimited) { return delimited; } + +} // namespace _ (private) + +template <typename T> +_::Delimited<T> delimited(T&& arr, kj::StringPtr delim) { + return _::Delimited<T>(kj::fwd<T>(arr), delim); +} + +} // namespace kj + +constexpr kj::StringPtr operator "" _kj(const char* str, size_t n) { + return kj::StringPtr(kj::ArrayPtr<const char>(str, n + 1)); +}; + +constexpr kj::LiteralStringConst operator "" _kjc(const char* str, size_t n) { + return kj::LiteralStringConst(kj::ArrayPtr<const char>(str, n + 1)); +}; + +KJ_END_HEADER