diff CSP2/CSP2_env/env-d9b9114564458d9d-741b3de822f2aaca6c6caa4325c4afce/include/python3.8/cpython/pystate.h @ 69:33d812a61356

planemo upload commit 2e9511a184a1ca667c7be0c6321a36dc4e3d116d
author jpayne
date Tue, 18 Mar 2025 17:55:14 -0400
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/CSP2/CSP2_env/env-d9b9114564458d9d-741b3de822f2aaca6c6caa4325c4afce/include/python3.8/cpython/pystate.h	Tue Mar 18 17:55:14 2025 -0400
@@ -0,0 +1,251 @@
+#ifndef Py_CPYTHON_PYSTATE_H
+#  error "this header file must not be included directly"
+#endif
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+#include "cpython/initconfig.h"
+
+PyAPI_FUNC(int) _PyInterpreterState_RequiresIDRef(PyInterpreterState *);
+PyAPI_FUNC(void) _PyInterpreterState_RequireIDRef(PyInterpreterState *, int);
+
+PyAPI_FUNC(PyObject *) _PyInterpreterState_GetMainModule(PyInterpreterState *);
+
+/* State unique per thread */
+
+/* Py_tracefunc return -1 when raising an exception, or 0 for success. */
+typedef int (*Py_tracefunc)(PyObject *, struct _frame *, int, PyObject *);
+
+/* The following values are used for 'what' for tracefunc functions
+ *
+ * To add a new kind of trace event, also update "trace_init" in
+ * Python/sysmodule.c to define the Python level event name
+ */
+#define PyTrace_CALL 0
+#define PyTrace_EXCEPTION 1
+#define PyTrace_LINE 2
+#define PyTrace_RETURN 3
+#define PyTrace_C_CALL 4
+#define PyTrace_C_EXCEPTION 5
+#define PyTrace_C_RETURN 6
+#define PyTrace_OPCODE 7
+
+
+typedef struct _err_stackitem {
+    /* This struct represents an entry on the exception stack, which is a
+     * per-coroutine state. (Coroutine in the computer science sense,
+     * including the thread and generators).
+     * This ensures that the exception state is not impacted by "yields"
+     * from an except handler.
+     */
+    PyObject *exc_type, *exc_value, *exc_traceback;
+
+    struct _err_stackitem *previous_item;
+
+} _PyErr_StackItem;
+
+
+// The PyThreadState typedef is in Include/pystate.h.
+struct _ts {
+    /* See Python/ceval.c for comments explaining most fields */
+
+    struct _ts *prev;
+    struct _ts *next;
+    PyInterpreterState *interp;
+
+    struct _frame *frame;
+    int recursion_depth;
+    char overflowed; /* The stack has overflowed. Allow 50 more calls
+                        to handle the runtime error. */
+    char recursion_critical; /* The current calls must not cause
+                                a stack overflow. */
+    int stackcheck_counter;
+
+    /* 'tracing' keeps track of the execution depth when tracing/profiling.
+       This is to prevent the actual trace/profile code from being recorded in
+       the trace/profile. */
+    int tracing;
+    int use_tracing;
+
+    Py_tracefunc c_profilefunc;
+    Py_tracefunc c_tracefunc;
+    PyObject *c_profileobj;
+    PyObject *c_traceobj;
+
+    /* The exception currently being raised */
+    PyObject *curexc_type;
+    PyObject *curexc_value;
+    PyObject *curexc_traceback;
+
+    /* The exception currently being handled, if no coroutines/generators
+     * are present. Always last element on the stack referred to be exc_info.
+     */
+    _PyErr_StackItem exc_state;
+
+    /* Pointer to the top of the stack of the exceptions currently
+     * being handled */
+    _PyErr_StackItem *exc_info;
+
+    PyObject *dict;  /* Stores per-thread state */
+
+    int gilstate_counter;
+
+    PyObject *async_exc; /* Asynchronous exception to raise */
+    unsigned long thread_id; /* Thread id where this tstate was created */
+
+    int trash_delete_nesting;
+    PyObject *trash_delete_later;
+
+    /* Called when a thread state is deleted normally, but not when it
+     * is destroyed after fork().
+     * Pain:  to prevent rare but fatal shutdown errors (issue 18808),
+     * Thread.join() must wait for the join'ed thread's tstate to be unlinked
+     * from the tstate chain.  That happens at the end of a thread's life,
+     * in pystate.c.
+     * The obvious way doesn't quite work:  create a lock which the tstate
+     * unlinking code releases, and have Thread.join() wait to acquire that
+     * lock.  The problem is that we _are_ at the end of the thread's life:
+     * if the thread holds the last reference to the lock, decref'ing the
+     * lock will delete the lock, and that may trigger arbitrary Python code
+     * if there's a weakref, with a callback, to the lock.  But by this time
+     * _PyRuntime.gilstate.tstate_current is already NULL, so only the simplest
+     * of C code can be allowed to run (in particular it must not be possible to
+     * release the GIL).
+     * So instead of holding the lock directly, the tstate holds a weakref to
+     * the lock:  that's the value of on_delete_data below.  Decref'ing a
+     * weakref is harmless.
+     * on_delete points to _threadmodule.c's static release_sentinel() function.
+     * After the tstate is unlinked, release_sentinel is called with the
+     * weakref-to-lock (on_delete_data) argument, and release_sentinel releases
+     * the indirectly held lock.
+     */
+    void (*on_delete)(void *);
+    void *on_delete_data;
+
+    int coroutine_origin_tracking_depth;
+
+    PyObject *async_gen_firstiter;
+    PyObject *async_gen_finalizer;
+
+    PyObject *context;
+    uint64_t context_ver;
+
+    /* Unique thread state id. */
+    uint64_t id;
+
+    /* XXX signal handlers should also be here */
+
+};
+
+/* Get the current interpreter state.
+
+   Issue a fatal error if there no current Python thread state or no current
+   interpreter. It cannot return NULL.
+
+   The caller must hold the GIL.*/
+PyAPI_FUNC(PyInterpreterState *) _PyInterpreterState_Get(void);
+
+PyAPI_FUNC(int) _PyState_AddModule(PyObject*, struct PyModuleDef*);
+PyAPI_FUNC(void) _PyState_ClearModules(void);
+PyAPI_FUNC(PyThreadState *) _PyThreadState_Prealloc(PyInterpreterState *);
+
+/* Similar to PyThreadState_Get(), but don't issue a fatal error
+ * if it is NULL. */
+PyAPI_FUNC(PyThreadState *) _PyThreadState_UncheckedGet(void);
+
+/* PyGILState */
+
+/* Helper/diagnostic function - return 1 if the current thread
+   currently holds the GIL, 0 otherwise.
+
+   The function returns 1 if _PyGILState_check_enabled is non-zero. */
+PyAPI_FUNC(int) PyGILState_Check(void);
+
+/* Get the single PyInterpreterState used by this process' GILState
+   implementation.
+
+   This function doesn't check for error. Return NULL before _PyGILState_Init()
+   is called and after _PyGILState_Fini() is called.
+
+   See also _PyInterpreterState_Get() and _PyInterpreterState_GET_UNSAFE(). */
+PyAPI_FUNC(PyInterpreterState *) _PyGILState_GetInterpreterStateUnsafe(void);
+
+/* The implementation of sys._current_frames()  Returns a dict mapping
+   thread id to that thread's current frame.
+*/
+PyAPI_FUNC(PyObject *) _PyThread_CurrentFrames(void);
+
+/* Routines for advanced debuggers, requested by David Beazley.
+   Don't use unless you know what you are doing! */
+PyAPI_FUNC(PyInterpreterState *) PyInterpreterState_Main(void);
+PyAPI_FUNC(PyInterpreterState *) PyInterpreterState_Head(void);
+PyAPI_FUNC(PyInterpreterState *) PyInterpreterState_Next(PyInterpreterState *);
+PyAPI_FUNC(PyThreadState *) PyInterpreterState_ThreadHead(PyInterpreterState *);
+PyAPI_FUNC(PyThreadState *) PyThreadState_Next(PyThreadState *);
+
+typedef struct _frame *(*PyThreadFrameGetter)(PyThreadState *self_);
+
+/* cross-interpreter data */
+
+struct _xid;
+
+// _PyCrossInterpreterData is similar to Py_buffer as an effectively
+// opaque struct that holds data outside the object machinery.  This
+// is necessary to pass safely between interpreters in the same process.
+typedef struct _xid {
+    // data is the cross-interpreter-safe derivation of a Python object
+    // (see _PyObject_GetCrossInterpreterData).  It will be NULL if the
+    // new_object func (below) encodes the data.
+    void *data;
+    // obj is the Python object from which the data was derived.  This
+    // is non-NULL only if the data remains bound to the object in some
+    // way, such that the object must be "released" (via a decref) when
+    // the data is released.  In that case the code that sets the field,
+    // likely a registered "crossinterpdatafunc", is responsible for
+    // ensuring it owns the reference (i.e. incref).
+    PyObject *obj;
+    // interp is the ID of the owning interpreter of the original
+    // object.  It corresponds to the active interpreter when
+    // _PyObject_GetCrossInterpreterData() was called.  This should only
+    // be set by the cross-interpreter machinery.
+    //
+    // We use the ID rather than the PyInterpreterState to avoid issues
+    // with deleted interpreters.  Note that IDs are never re-used, so
+    // each one will always correspond to a specific interpreter
+    // (whether still alive or not).
+    int64_t interp;
+    // new_object is a function that returns a new object in the current
+    // interpreter given the data.  The resulting object (a new
+    // reference) will be equivalent to the original object.  This field
+    // is required.
+    PyObject *(*new_object)(struct _xid *);
+    // free is called when the data is released.  If it is NULL then
+    // nothing will be done to free the data.  For some types this is
+    // okay (e.g. bytes) and for those types this field should be set
+    // to NULL.  However, for most the data was allocated just for
+    // cross-interpreter use, so it must be freed when
+    // _PyCrossInterpreterData_Release is called or the memory will
+    // leak.  In that case, at the very least this field should be set
+    // to PyMem_RawFree (the default if not explicitly set to NULL).
+    // The call will happen with the original interpreter activated.
+    void (*free)(void *);
+} _PyCrossInterpreterData;
+
+PyAPI_FUNC(int) _PyObject_GetCrossInterpreterData(PyObject *, _PyCrossInterpreterData *);
+PyAPI_FUNC(PyObject *) _PyCrossInterpreterData_NewObject(_PyCrossInterpreterData *);
+PyAPI_FUNC(void) _PyCrossInterpreterData_Release(_PyCrossInterpreterData *);
+
+PyAPI_FUNC(int) _PyObject_CheckCrossInterpreterData(PyObject *);
+
+/* cross-interpreter data registry */
+
+typedef int (*crossinterpdatafunc)(PyObject *, struct _xid *);
+
+PyAPI_FUNC(int) _PyCrossInterpreterData_RegisterClass(PyTypeObject *, crossinterpdatafunc);
+PyAPI_FUNC(crossinterpdatafunc) _PyCrossInterpreterData_Lookup(PyObject *);
+
+#ifdef __cplusplus
+}
+#endif