Mercurial > repos > rliterman > csp2
diff CSP2/CSP2_env/env-d9b9114564458d9d-741b3de822f2aaca6c6caa4325c4afce/include/python3.8/object.h @ 69:33d812a61356
planemo upload commit 2e9511a184a1ca667c7be0c6321a36dc4e3d116d
author | jpayne |
---|---|
date | Tue, 18 Mar 2025 17:55:14 -0400 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/CSP2/CSP2_env/env-d9b9114564458d9d-741b3de822f2aaca6c6caa4325c4afce/include/python3.8/object.h Tue Mar 18 17:55:14 2025 -0400 @@ -0,0 +1,753 @@ +#ifndef Py_OBJECT_H +#define Py_OBJECT_H + +#include "pymem.h" /* _Py_tracemalloc_config */ + +#ifdef __cplusplus +extern "C" { +#endif + + +/* Object and type object interface */ + +/* +Objects are structures allocated on the heap. Special rules apply to +the use of objects to ensure they are properly garbage-collected. +Objects are never allocated statically or on the stack; they must be +accessed through special macros and functions only. (Type objects are +exceptions to the first rule; the standard types are represented by +statically initialized type objects, although work on type/class unification +for Python 2.2 made it possible to have heap-allocated type objects too). + +An object has a 'reference count' that is increased or decreased when a +pointer to the object is copied or deleted; when the reference count +reaches zero there are no references to the object left and it can be +removed from the heap. + +An object has a 'type' that determines what it represents and what kind +of data it contains. An object's type is fixed when it is created. +Types themselves are represented as objects; an object contains a +pointer to the corresponding type object. The type itself has a type +pointer pointing to the object representing the type 'type', which +contains a pointer to itself!). + +Objects do not float around in memory; once allocated an object keeps +the same size and address. Objects that must hold variable-size data +can contain pointers to variable-size parts of the object. Not all +objects of the same type have the same size; but the size cannot change +after allocation. (These restrictions are made so a reference to an +object can be simply a pointer -- moving an object would require +updating all the pointers, and changing an object's size would require +moving it if there was another object right next to it.) + +Objects are always accessed through pointers of the type 'PyObject *'. +The type 'PyObject' is a structure that only contains the reference count +and the type pointer. The actual memory allocated for an object +contains other data that can only be accessed after casting the pointer +to a pointer to a longer structure type. This longer type must start +with the reference count and type fields; the macro PyObject_HEAD should be +used for this (to accommodate for future changes). The implementation +of a particular object type can cast the object pointer to the proper +type and back. + +A standard interface exists for objects that contain an array of items +whose size is determined when the object is allocated. +*/ + +/* Py_DEBUG implies Py_REF_DEBUG. */ +#if defined(Py_DEBUG) && !defined(Py_REF_DEBUG) +#define Py_REF_DEBUG +#endif + +#if defined(Py_LIMITED_API) && defined(Py_REF_DEBUG) +#error Py_LIMITED_API is incompatible with Py_DEBUG, Py_TRACE_REFS, and Py_REF_DEBUG +#endif + + +#ifdef Py_TRACE_REFS +/* Define pointers to support a doubly-linked list of all live heap objects. */ +#define _PyObject_HEAD_EXTRA \ + struct _object *_ob_next; \ + struct _object *_ob_prev; + +#define _PyObject_EXTRA_INIT 0, 0, + +#else +#define _PyObject_HEAD_EXTRA +#define _PyObject_EXTRA_INIT +#endif + +/* PyObject_HEAD defines the initial segment of every PyObject. */ +#define PyObject_HEAD PyObject ob_base; + +#define PyObject_HEAD_INIT(type) \ + { _PyObject_EXTRA_INIT \ + 1, type }, + +#define PyVarObject_HEAD_INIT(type, size) \ + { PyObject_HEAD_INIT(type) size }, + +/* PyObject_VAR_HEAD defines the initial segment of all variable-size + * container objects. These end with a declaration of an array with 1 + * element, but enough space is malloc'ed so that the array actually + * has room for ob_size elements. Note that ob_size is an element count, + * not necessarily a byte count. + */ +#define PyObject_VAR_HEAD PyVarObject ob_base; +#define Py_INVALID_SIZE (Py_ssize_t)-1 + +/* Nothing is actually declared to be a PyObject, but every pointer to + * a Python object can be cast to a PyObject*. This is inheritance built + * by hand. Similarly every pointer to a variable-size Python object can, + * in addition, be cast to PyVarObject*. + */ +typedef struct _object { + _PyObject_HEAD_EXTRA + Py_ssize_t ob_refcnt; + struct _typeobject *ob_type; +} PyObject; + +/* Cast argument to PyObject* type. */ +#define _PyObject_CAST(op) ((PyObject*)(op)) + +typedef struct { + PyObject ob_base; + Py_ssize_t ob_size; /* Number of items in variable part */ +} PyVarObject; + +/* Cast argument to PyVarObject* type. */ +#define _PyVarObject_CAST(op) ((PyVarObject*)(op)) + +#define Py_REFCNT(ob) (_PyObject_CAST(ob)->ob_refcnt) +#define Py_TYPE(ob) (_PyObject_CAST(ob)->ob_type) +#define Py_SIZE(ob) (_PyVarObject_CAST(ob)->ob_size) + +/* +Type objects contain a string containing the type name (to help somewhat +in debugging), the allocation parameters (see PyObject_New() and +PyObject_NewVar()), +and methods for accessing objects of the type. Methods are optional, a +nil pointer meaning that particular kind of access is not available for +this type. The Py_DECREF() macro uses the tp_dealloc method without +checking for a nil pointer; it should always be implemented except if +the implementation can guarantee that the reference count will never +reach zero (e.g., for statically allocated type objects). + +NB: the methods for certain type groups are now contained in separate +method blocks. +*/ + +typedef PyObject * (*unaryfunc)(PyObject *); +typedef PyObject * (*binaryfunc)(PyObject *, PyObject *); +typedef PyObject * (*ternaryfunc)(PyObject *, PyObject *, PyObject *); +typedef int (*inquiry)(PyObject *); +typedef Py_ssize_t (*lenfunc)(PyObject *); +typedef PyObject *(*ssizeargfunc)(PyObject *, Py_ssize_t); +typedef PyObject *(*ssizessizeargfunc)(PyObject *, Py_ssize_t, Py_ssize_t); +typedef int(*ssizeobjargproc)(PyObject *, Py_ssize_t, PyObject *); +typedef int(*ssizessizeobjargproc)(PyObject *, Py_ssize_t, Py_ssize_t, PyObject *); +typedef int(*objobjargproc)(PyObject *, PyObject *, PyObject *); + +typedef int (*objobjproc)(PyObject *, PyObject *); +typedef int (*visitproc)(PyObject *, void *); +typedef int (*traverseproc)(PyObject *, visitproc, void *); + + +typedef void (*freefunc)(void *); +typedef void (*destructor)(PyObject *); +typedef PyObject *(*getattrfunc)(PyObject *, char *); +typedef PyObject *(*getattrofunc)(PyObject *, PyObject *); +typedef int (*setattrfunc)(PyObject *, char *, PyObject *); +typedef int (*setattrofunc)(PyObject *, PyObject *, PyObject *); +typedef PyObject *(*reprfunc)(PyObject *); +typedef Py_hash_t (*hashfunc)(PyObject *); +typedef PyObject *(*richcmpfunc) (PyObject *, PyObject *, int); +typedef PyObject *(*getiterfunc) (PyObject *); +typedef PyObject *(*iternextfunc) (PyObject *); +typedef PyObject *(*descrgetfunc) (PyObject *, PyObject *, PyObject *); +typedef int (*descrsetfunc) (PyObject *, PyObject *, PyObject *); +typedef int (*initproc)(PyObject *, PyObject *, PyObject *); +typedef PyObject *(*newfunc)(struct _typeobject *, PyObject *, PyObject *); +typedef PyObject *(*allocfunc)(struct _typeobject *, Py_ssize_t); + +#ifdef Py_LIMITED_API +/* In Py_LIMITED_API, PyTypeObject is an opaque structure. */ +typedef struct _typeobject PyTypeObject; +#else +/* PyTypeObject is defined in cpython/object.h */ +#endif + +typedef struct{ + int slot; /* slot id, see below */ + void *pfunc; /* function pointer */ +} PyType_Slot; + +typedef struct{ + const char* name; + int basicsize; + int itemsize; + unsigned int flags; + PyType_Slot *slots; /* terminated by slot==0. */ +} PyType_Spec; + +PyAPI_FUNC(PyObject*) PyType_FromSpec(PyType_Spec*); +#if !defined(Py_LIMITED_API) || Py_LIMITED_API+0 >= 0x03030000 +PyAPI_FUNC(PyObject*) PyType_FromSpecWithBases(PyType_Spec*, PyObject*); +#endif +#if !defined(Py_LIMITED_API) || Py_LIMITED_API+0 >= 0x03040000 +PyAPI_FUNC(void*) PyType_GetSlot(struct _typeobject*, int); +#endif + +/* Generic type check */ +PyAPI_FUNC(int) PyType_IsSubtype(struct _typeobject *, struct _typeobject *); +#define PyObject_TypeCheck(ob, tp) \ + (Py_TYPE(ob) == (tp) || PyType_IsSubtype(Py_TYPE(ob), (tp))) + +PyAPI_DATA(struct _typeobject) PyType_Type; /* built-in 'type' */ +PyAPI_DATA(struct _typeobject) PyBaseObject_Type; /* built-in 'object' */ +PyAPI_DATA(struct _typeobject) PySuper_Type; /* built-in 'super' */ + +PyAPI_FUNC(unsigned long) PyType_GetFlags(struct _typeobject*); + +#define PyType_Check(op) \ + PyType_FastSubclass(Py_TYPE(op), Py_TPFLAGS_TYPE_SUBCLASS) +#define PyType_CheckExact(op) (Py_TYPE(op) == &PyType_Type) + +PyAPI_FUNC(int) PyType_Ready(struct _typeobject *); +PyAPI_FUNC(PyObject *) PyType_GenericAlloc(struct _typeobject *, Py_ssize_t); +PyAPI_FUNC(PyObject *) PyType_GenericNew(struct _typeobject *, + PyObject *, PyObject *); +PyAPI_FUNC(unsigned int) PyType_ClearCache(void); +PyAPI_FUNC(void) PyType_Modified(struct _typeobject *); + +/* Generic operations on objects */ +PyAPI_FUNC(PyObject *) PyObject_Repr(PyObject *); +PyAPI_FUNC(PyObject *) PyObject_Str(PyObject *); +PyAPI_FUNC(PyObject *) PyObject_ASCII(PyObject *); +PyAPI_FUNC(PyObject *) PyObject_Bytes(PyObject *); +PyAPI_FUNC(PyObject *) PyObject_RichCompare(PyObject *, PyObject *, int); +PyAPI_FUNC(int) PyObject_RichCompareBool(PyObject *, PyObject *, int); +PyAPI_FUNC(PyObject *) PyObject_GetAttrString(PyObject *, const char *); +PyAPI_FUNC(int) PyObject_SetAttrString(PyObject *, const char *, PyObject *); +PyAPI_FUNC(int) PyObject_HasAttrString(PyObject *, const char *); +PyAPI_FUNC(PyObject *) PyObject_GetAttr(PyObject *, PyObject *); +PyAPI_FUNC(int) PyObject_SetAttr(PyObject *, PyObject *, PyObject *); +PyAPI_FUNC(int) PyObject_HasAttr(PyObject *, PyObject *); +PyAPI_FUNC(PyObject *) PyObject_SelfIter(PyObject *); +PyAPI_FUNC(PyObject *) PyObject_GenericGetAttr(PyObject *, PyObject *); +PyAPI_FUNC(int) PyObject_GenericSetAttr(PyObject *, + PyObject *, PyObject *); +#if !defined(Py_LIMITED_API) || Py_LIMITED_API+0 >= 0x03030000 +PyAPI_FUNC(int) PyObject_GenericSetDict(PyObject *, PyObject *, void *); +#endif +PyAPI_FUNC(Py_hash_t) PyObject_Hash(PyObject *); +PyAPI_FUNC(Py_hash_t) PyObject_HashNotImplemented(PyObject *); +PyAPI_FUNC(int) PyObject_IsTrue(PyObject *); +PyAPI_FUNC(int) PyObject_Not(PyObject *); +PyAPI_FUNC(int) PyCallable_Check(PyObject *); +PyAPI_FUNC(void) PyObject_ClearWeakRefs(PyObject *); + +/* PyObject_Dir(obj) acts like Python builtins.dir(obj), returning a + list of strings. PyObject_Dir(NULL) is like builtins.dir(), + returning the names of the current locals. In this case, if there are + no current locals, NULL is returned, and PyErr_Occurred() is false. +*/ +PyAPI_FUNC(PyObject *) PyObject_Dir(PyObject *); + + +/* Helpers for printing recursive container types */ +PyAPI_FUNC(int) Py_ReprEnter(PyObject *); +PyAPI_FUNC(void) Py_ReprLeave(PyObject *); + +/* Flag bits for printing: */ +#define Py_PRINT_RAW 1 /* No string quotes etc. */ + +/* +Type flags (tp_flags) + +These flags are used to change expected features and behavior for a +particular type. + +Arbitration of the flag bit positions will need to be coordinated among +all extension writers who publicly release their extensions (this will +be fewer than you might expect!). + +Most flags were removed as of Python 3.0 to make room for new flags. (Some +flags are not for backwards compatibility but to indicate the presence of an +optional feature; these flags remain of course.) + +Type definitions should use Py_TPFLAGS_DEFAULT for their tp_flags value. + +Code can use PyType_HasFeature(type_ob, flag_value) to test whether the +given type object has a specified feature. +*/ + +/* Set if the type object is dynamically allocated */ +#define Py_TPFLAGS_HEAPTYPE (1UL << 9) + +/* Set if the type allows subclassing */ +#define Py_TPFLAGS_BASETYPE (1UL << 10) + +/* Set if the type implements the vectorcall protocol (PEP 590) */ +#ifndef Py_LIMITED_API +#define _Py_TPFLAGS_HAVE_VECTORCALL (1UL << 11) +#endif + +/* Set if the type is 'ready' -- fully initialized */ +#define Py_TPFLAGS_READY (1UL << 12) + +/* Set while the type is being 'readied', to prevent recursive ready calls */ +#define Py_TPFLAGS_READYING (1UL << 13) + +/* Objects support garbage collection (see objimpl.h) */ +#define Py_TPFLAGS_HAVE_GC (1UL << 14) + +/* These two bits are preserved for Stackless Python, next after this is 17 */ +#ifdef STACKLESS +#define Py_TPFLAGS_HAVE_STACKLESS_EXTENSION (3UL << 15) +#else +#define Py_TPFLAGS_HAVE_STACKLESS_EXTENSION 0 +#endif + +/* Objects behave like an unbound method */ +#define Py_TPFLAGS_METHOD_DESCRIPTOR (1UL << 17) + +/* Objects support type attribute cache */ +#define Py_TPFLAGS_HAVE_VERSION_TAG (1UL << 18) +#define Py_TPFLAGS_VALID_VERSION_TAG (1UL << 19) + +/* Type is abstract and cannot be instantiated */ +#define Py_TPFLAGS_IS_ABSTRACT (1UL << 20) + +/* These flags are used to determine if a type is a subclass. */ +#define Py_TPFLAGS_LONG_SUBCLASS (1UL << 24) +#define Py_TPFLAGS_LIST_SUBCLASS (1UL << 25) +#define Py_TPFLAGS_TUPLE_SUBCLASS (1UL << 26) +#define Py_TPFLAGS_BYTES_SUBCLASS (1UL << 27) +#define Py_TPFLAGS_UNICODE_SUBCLASS (1UL << 28) +#define Py_TPFLAGS_DICT_SUBCLASS (1UL << 29) +#define Py_TPFLAGS_BASE_EXC_SUBCLASS (1UL << 30) +#define Py_TPFLAGS_TYPE_SUBCLASS (1UL << 31) + +#define Py_TPFLAGS_DEFAULT ( \ + Py_TPFLAGS_HAVE_STACKLESS_EXTENSION | \ + Py_TPFLAGS_HAVE_VERSION_TAG | \ + 0) + +/* NOTE: The following flags reuse lower bits (removed as part of the + * Python 3.0 transition). */ + +/* The following flag is kept for compatibility. Starting with 3.8, + * binary compatibility of C extensions accross feature releases of + * Python is not supported anymore, except when using the stable ABI. + */ + +/* Type structure has tp_finalize member (3.4) */ +#define Py_TPFLAGS_HAVE_FINALIZE (1UL << 0) + +#ifdef Py_LIMITED_API +# define PyType_HasFeature(t,f) ((PyType_GetFlags(t) & (f)) != 0) +#endif +#define PyType_FastSubclass(t,f) PyType_HasFeature(t,f) + + +/* +The macros Py_INCREF(op) and Py_DECREF(op) are used to increment or decrement +reference counts. Py_DECREF calls the object's deallocator function when +the refcount falls to 0; for +objects that don't contain references to other objects or heap memory +this can be the standard function free(). Both macros can be used +wherever a void expression is allowed. The argument must not be a +NULL pointer. If it may be NULL, use Py_XINCREF/Py_XDECREF instead. +The macro _Py_NewReference(op) initialize reference counts to 1, and +in special builds (Py_REF_DEBUG, Py_TRACE_REFS) performs additional +bookkeeping appropriate to the special build. + +We assume that the reference count field can never overflow; this can +be proven when the size of the field is the same as the pointer size, so +we ignore the possibility. Provided a C int is at least 32 bits (which +is implicitly assumed in many parts of this code), that's enough for +about 2**31 references to an object. + +XXX The following became out of date in Python 2.2, but I'm not sure +XXX what the full truth is now. Certainly, heap-allocated type objects +XXX can and should be deallocated. +Type objects should never be deallocated; the type pointer in an object +is not considered to be a reference to the type object, to save +complications in the deallocation function. (This is actually a +decision that's up to the implementer of each new type so if you want, +you can count such references to the type object.) +*/ + +/* First define a pile of simple helper macros, one set per special + * build symbol. These either expand to the obvious things, or to + * nothing at all when the special mode isn't in effect. The main + * macros can later be defined just once then, yet expand to different + * things depending on which special build options are and aren't in effect. + * Trust me <wink>: while painful, this is 20x easier to understand than, + * e.g, defining _Py_NewReference five different times in a maze of nested + * #ifdefs (we used to do that -- it was impenetrable). + */ +#ifdef Py_REF_DEBUG +PyAPI_DATA(Py_ssize_t) _Py_RefTotal; +PyAPI_FUNC(void) _Py_NegativeRefcount(const char *filename, int lineno, + PyObject *op); +PyAPI_FUNC(Py_ssize_t) _Py_GetRefTotal(void); +#define _Py_INC_REFTOTAL _Py_RefTotal++ +#define _Py_DEC_REFTOTAL _Py_RefTotal-- + +/* Py_REF_DEBUG also controls the display of refcounts and memory block + * allocations at the interactive prompt and at interpreter shutdown + */ +PyAPI_FUNC(void) _PyDebug_PrintTotalRefs(void); +#else +#define _Py_INC_REFTOTAL +#define _Py_DEC_REFTOTAL +#endif /* Py_REF_DEBUG */ + +#ifdef COUNT_ALLOCS +PyAPI_FUNC(void) _Py_inc_count(struct _typeobject *); +PyAPI_FUNC(void) _Py_dec_count(struct _typeobject *); +#define _Py_INC_TPALLOCS(OP) _Py_inc_count(Py_TYPE(OP)) +#define _Py_INC_TPFREES(OP) _Py_dec_count(Py_TYPE(OP)) +#define _Py_DEC_TPFREES(OP) Py_TYPE(OP)->tp_frees-- +#define _Py_COUNT_ALLOCS_COMMA , +#else +#define _Py_INC_TPALLOCS(OP) +#define _Py_INC_TPFREES(OP) +#define _Py_DEC_TPFREES(OP) +#define _Py_COUNT_ALLOCS_COMMA +#endif /* COUNT_ALLOCS */ + +/* Update the Python traceback of an object. This function must be called + when a memory block is reused from a free list. */ +PyAPI_FUNC(int) _PyTraceMalloc_NewReference(PyObject *op); + +#ifdef Py_TRACE_REFS +/* Py_TRACE_REFS is such major surgery that we call external routines. */ +PyAPI_FUNC(void) _Py_NewReference(PyObject *); +PyAPI_FUNC(void) _Py_ForgetReference(PyObject *); +PyAPI_FUNC(void) _Py_PrintReferences(FILE *); +PyAPI_FUNC(void) _Py_PrintReferenceAddresses(FILE *); +PyAPI_FUNC(void) _Py_AddToAllObjects(PyObject *, int force); +#else +/* Without Py_TRACE_REFS, there's little enough to do that we expand code + inline. */ +static inline void _Py_NewReference(PyObject *op) +{ + if (_Py_tracemalloc_config.tracing) { + _PyTraceMalloc_NewReference(op); + } + _Py_INC_TPALLOCS(op); + _Py_INC_REFTOTAL; + Py_REFCNT(op) = 1; +} + +static inline void _Py_ForgetReference(PyObject *op) +{ + (void)op; /* may be unused, shut up -Wunused-parameter */ + _Py_INC_TPFREES(op); +} +#endif /* !Py_TRACE_REFS */ + + +PyAPI_FUNC(void) _Py_Dealloc(PyObject *); + +static inline void _Py_INCREF(PyObject *op) +{ + _Py_INC_REFTOTAL; + op->ob_refcnt++; +} + +#define Py_INCREF(op) _Py_INCREF(_PyObject_CAST(op)) + +static inline void _Py_DECREF(const char *filename, int lineno, + PyObject *op) +{ + (void)filename; /* may be unused, shut up -Wunused-parameter */ + (void)lineno; /* may be unused, shut up -Wunused-parameter */ + _Py_DEC_REFTOTAL; + if (--op->ob_refcnt != 0) { +#ifdef Py_REF_DEBUG + if (op->ob_refcnt < 0) { + _Py_NegativeRefcount(filename, lineno, op); + } +#endif + } + else { + _Py_Dealloc(op); + } +} + +#define Py_DECREF(op) _Py_DECREF(__FILE__, __LINE__, _PyObject_CAST(op)) + + +/* Safely decref `op` and set `op` to NULL, especially useful in tp_clear + * and tp_dealloc implementations. + * + * Note that "the obvious" code can be deadly: + * + * Py_XDECREF(op); + * op = NULL; + * + * Typically, `op` is something like self->containee, and `self` is done + * using its `containee` member. In the code sequence above, suppose + * `containee` is non-NULL with a refcount of 1. Its refcount falls to + * 0 on the first line, which can trigger an arbitrary amount of code, + * possibly including finalizers (like __del__ methods or weakref callbacks) + * coded in Python, which in turn can release the GIL and allow other threads + * to run, etc. Such code may even invoke methods of `self` again, or cause + * cyclic gc to trigger, but-- oops! --self->containee still points to the + * object being torn down, and it may be in an insane state while being torn + * down. This has in fact been a rich historic source of miserable (rare & + * hard-to-diagnose) segfaulting (and other) bugs. + * + * The safe way is: + * + * Py_CLEAR(op); + * + * That arranges to set `op` to NULL _before_ decref'ing, so that any code + * triggered as a side-effect of `op` getting torn down no longer believes + * `op` points to a valid object. + * + * There are cases where it's safe to use the naive code, but they're brittle. + * For example, if `op` points to a Python integer, you know that destroying + * one of those can't cause problems -- but in part that relies on that + * Python integers aren't currently weakly referencable. Best practice is + * to use Py_CLEAR() even if you can't think of a reason for why you need to. + */ +#define Py_CLEAR(op) \ + do { \ + PyObject *_py_tmp = _PyObject_CAST(op); \ + if (_py_tmp != NULL) { \ + (op) = NULL; \ + Py_DECREF(_py_tmp); \ + } \ + } while (0) + +/* Function to use in case the object pointer can be NULL: */ +static inline void _Py_XINCREF(PyObject *op) +{ + if (op != NULL) { + Py_INCREF(op); + } +} + +#define Py_XINCREF(op) _Py_XINCREF(_PyObject_CAST(op)) + +static inline void _Py_XDECREF(PyObject *op) +{ + if (op != NULL) { + Py_DECREF(op); + } +} + +#define Py_XDECREF(op) _Py_XDECREF(_PyObject_CAST(op)) + +/* +These are provided as conveniences to Python runtime embedders, so that +they can have object code that is not dependent on Python compilation flags. +*/ +PyAPI_FUNC(void) Py_IncRef(PyObject *); +PyAPI_FUNC(void) Py_DecRef(PyObject *); + +/* +_Py_NoneStruct is an object of undefined type which can be used in contexts +where NULL (nil) is not suitable (since NULL often means 'error'). + +Don't forget to apply Py_INCREF() when returning this value!!! +*/ +PyAPI_DATA(PyObject) _Py_NoneStruct; /* Don't use this directly */ +#define Py_None (&_Py_NoneStruct) + +/* Macro for returning Py_None from a function */ +#define Py_RETURN_NONE return Py_INCREF(Py_None), Py_None + +/* +Py_NotImplemented is a singleton used to signal that an operation is +not implemented for a given type combination. +*/ +PyAPI_DATA(PyObject) _Py_NotImplementedStruct; /* Don't use this directly */ +#define Py_NotImplemented (&_Py_NotImplementedStruct) + +/* Macro for returning Py_NotImplemented from a function */ +#define Py_RETURN_NOTIMPLEMENTED \ + return Py_INCREF(Py_NotImplemented), Py_NotImplemented + +/* Rich comparison opcodes */ +#define Py_LT 0 +#define Py_LE 1 +#define Py_EQ 2 +#define Py_NE 3 +#define Py_GT 4 +#define Py_GE 5 + +/* + * Macro for implementing rich comparisons + * + * Needs to be a macro because any C-comparable type can be used. + */ +#define Py_RETURN_RICHCOMPARE(val1, val2, op) \ + do { \ + switch (op) { \ + case Py_EQ: if ((val1) == (val2)) Py_RETURN_TRUE; Py_RETURN_FALSE; \ + case Py_NE: if ((val1) != (val2)) Py_RETURN_TRUE; Py_RETURN_FALSE; \ + case Py_LT: if ((val1) < (val2)) Py_RETURN_TRUE; Py_RETURN_FALSE; \ + case Py_GT: if ((val1) > (val2)) Py_RETURN_TRUE; Py_RETURN_FALSE; \ + case Py_LE: if ((val1) <= (val2)) Py_RETURN_TRUE; Py_RETURN_FALSE; \ + case Py_GE: if ((val1) >= (val2)) Py_RETURN_TRUE; Py_RETURN_FALSE; \ + default: \ + Py_UNREACHABLE(); \ + } \ + } while (0) + + +/* +More conventions +================ + +Argument Checking +----------------- + +Functions that take objects as arguments normally don't check for nil +arguments, but they do check the type of the argument, and return an +error if the function doesn't apply to the type. + +Failure Modes +------------- + +Functions may fail for a variety of reasons, including running out of +memory. This is communicated to the caller in two ways: an error string +is set (see errors.h), and the function result differs: functions that +normally return a pointer return NULL for failure, functions returning +an integer return -1 (which could be a legal return value too!), and +other functions return 0 for success and -1 for failure. +Callers should always check for errors before using the result. If +an error was set, the caller must either explicitly clear it, or pass +the error on to its caller. + +Reference Counts +---------------- + +It takes a while to get used to the proper usage of reference counts. + +Functions that create an object set the reference count to 1; such new +objects must be stored somewhere or destroyed again with Py_DECREF(). +Some functions that 'store' objects, such as PyTuple_SetItem() and +PyList_SetItem(), +don't increment the reference count of the object, since the most +frequent use is to store a fresh object. Functions that 'retrieve' +objects, such as PyTuple_GetItem() and PyDict_GetItemString(), also +don't increment +the reference count, since most frequently the object is only looked at +quickly. Thus, to retrieve an object and store it again, the caller +must call Py_INCREF() explicitly. + +NOTE: functions that 'consume' a reference count, like +PyList_SetItem(), consume the reference even if the object wasn't +successfully stored, to simplify error handling. + +It seems attractive to make other functions that take an object as +argument consume a reference count; however, this may quickly get +confusing (even the current practice is already confusing). Consider +it carefully, it may save lots of calls to Py_INCREF() and Py_DECREF() at +times. +*/ + + +/* Trashcan mechanism, thanks to Christian Tismer. + +When deallocating a container object, it's possible to trigger an unbounded +chain of deallocations, as each Py_DECREF in turn drops the refcount on "the +next" object in the chain to 0. This can easily lead to stack overflows, +especially in threads (which typically have less stack space to work with). + +A container object can avoid this by bracketing the body of its tp_dealloc +function with a pair of macros: + +static void +mytype_dealloc(mytype *p) +{ + ... declarations go here ... + + PyObject_GC_UnTrack(p); // must untrack first + Py_TRASHCAN_BEGIN(p, mytype_dealloc) + ... The body of the deallocator goes here, including all calls ... + ... to Py_DECREF on contained objects. ... + Py_TRASHCAN_END // there should be no code after this +} + +CAUTION: Never return from the middle of the body! If the body needs to +"get out early", put a label immediately before the Py_TRASHCAN_END +call, and goto it. Else the call-depth counter (see below) will stay +above 0 forever, and the trashcan will never get emptied. + +How it works: The BEGIN macro increments a call-depth counter. So long +as this counter is small, the body of the deallocator is run directly without +further ado. But if the counter gets large, it instead adds p to a list of +objects to be deallocated later, skips the body of the deallocator, and +resumes execution after the END macro. The tp_dealloc routine then returns +without deallocating anything (and so unbounded call-stack depth is avoided). + +When the call stack finishes unwinding again, code generated by the END macro +notices this, and calls another routine to deallocate all the objects that +may have been added to the list of deferred deallocations. In effect, a +chain of N deallocations is broken into (N-1)/(PyTrash_UNWIND_LEVEL-1) pieces, +with the call stack never exceeding a depth of PyTrash_UNWIND_LEVEL. + +Since the tp_dealloc of a subclass typically calls the tp_dealloc of the base +class, we need to ensure that the trashcan is only triggered on the tp_dealloc +of the actual class being deallocated. Otherwise we might end up with a +partially-deallocated object. To check this, the tp_dealloc function must be +passed as second argument to Py_TRASHCAN_BEGIN(). +*/ + +/* The new thread-safe private API, invoked by the macros below. */ +PyAPI_FUNC(void) _PyTrash_thread_deposit_object(PyObject*); +PyAPI_FUNC(void) _PyTrash_thread_destroy_chain(void); + +#define PyTrash_UNWIND_LEVEL 50 + +#define Py_TRASHCAN_BEGIN_CONDITION(op, cond) \ + do { \ + PyThreadState *_tstate = NULL; \ + /* If "cond" is false, then _tstate remains NULL and the deallocator \ + * is run normally without involving the trashcan */ \ + if (cond) { \ + _tstate = PyThreadState_GET(); \ + if (_tstate->trash_delete_nesting >= PyTrash_UNWIND_LEVEL) { \ + /* Store the object (to be deallocated later) and jump past \ + * Py_TRASHCAN_END, skipping the body of the deallocator */ \ + _PyTrash_thread_deposit_object(_PyObject_CAST(op)); \ + break; \ + } \ + ++_tstate->trash_delete_nesting; \ + } + /* The body of the deallocator is here. */ +#define Py_TRASHCAN_END \ + if (_tstate) { \ + --_tstate->trash_delete_nesting; \ + if (_tstate->trash_delete_later && _tstate->trash_delete_nesting <= 0) \ + _PyTrash_thread_destroy_chain(); \ + } \ + } while (0); + +#define Py_TRASHCAN_BEGIN(op, dealloc) Py_TRASHCAN_BEGIN_CONDITION(op, \ + Py_TYPE(op)->tp_dealloc == (destructor)(dealloc)) + +/* For backwards compatibility, these macros enable the trashcan + * unconditionally */ +#define Py_TRASHCAN_SAFE_BEGIN(op) Py_TRASHCAN_BEGIN_CONDITION(op, 1) +#define Py_TRASHCAN_SAFE_END(op) Py_TRASHCAN_END + + +#ifndef Py_LIMITED_API +# define Py_CPYTHON_OBJECT_H +# include "cpython/object.h" +# undef Py_CPYTHON_OBJECT_H +#endif + +#ifdef __cplusplus +} +#endif +#endif /* !Py_OBJECT_H */