diff CSP2/CSP2_env/env-d9b9114564458d9d-741b3de822f2aaca6c6caa4325c4afce/include/python3.8/objimpl.h @ 69:33d812a61356

planemo upload commit 2e9511a184a1ca667c7be0c6321a36dc4e3d116d
author jpayne
date Tue, 18 Mar 2025 17:55:14 -0400
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/CSP2/CSP2_env/env-d9b9114564458d9d-741b3de822f2aaca6c6caa4325c4afce/include/python3.8/objimpl.h	Tue Mar 18 17:55:14 2025 -0400
@@ -0,0 +1,284 @@
+/* The PyObject_ memory family:  high-level object memory interfaces.
+   See pymem.h for the low-level PyMem_ family.
+*/
+
+#ifndef Py_OBJIMPL_H
+#define Py_OBJIMPL_H
+
+#include "pymem.h"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/* BEWARE:
+
+   Each interface exports both functions and macros.  Extension modules should
+   use the functions, to ensure binary compatibility across Python versions.
+   Because the Python implementation is free to change internal details, and
+   the macros may (or may not) expose details for speed, if you do use the
+   macros you must recompile your extensions with each Python release.
+
+   Never mix calls to PyObject_ memory functions with calls to the platform
+   malloc/realloc/ calloc/free, or with calls to PyMem_.
+*/
+
+/*
+Functions and macros for modules that implement new object types.
+
+ - PyObject_New(type, typeobj) allocates memory for a new object of the given
+   type, and initializes part of it.  'type' must be the C structure type used
+   to represent the object, and 'typeobj' the address of the corresponding
+   type object.  Reference count and type pointer are filled in; the rest of
+   the bytes of the object are *undefined*!  The resulting expression type is
+   'type *'.  The size of the object is determined by the tp_basicsize field
+   of the type object.
+
+ - PyObject_NewVar(type, typeobj, n) is similar but allocates a variable-size
+   object with room for n items.  In addition to the refcount and type pointer
+   fields, this also fills in the ob_size field.
+
+ - PyObject_Del(op) releases the memory allocated for an object.  It does not
+   run a destructor -- it only frees the memory.  PyObject_Free is identical.
+
+ - PyObject_Init(op, typeobj) and PyObject_InitVar(op, typeobj, n) don't
+   allocate memory.  Instead of a 'type' parameter, they take a pointer to a
+   new object (allocated by an arbitrary allocator), and initialize its object
+   header fields.
+
+Note that objects created with PyObject_{New, NewVar} are allocated using the
+specialized Python allocator (implemented in obmalloc.c), if WITH_PYMALLOC is
+enabled.  In addition, a special debugging allocator is used if PYMALLOC_DEBUG
+is also #defined.
+
+In case a specific form of memory management is needed (for example, if you
+must use the platform malloc heap(s), or shared memory, or C++ local storage or
+operator new), you must first allocate the object with your custom allocator,
+then pass its pointer to PyObject_{Init, InitVar} for filling in its Python-
+specific fields:  reference count, type pointer, possibly others.  You should
+be aware that Python has no control over these objects because they don't
+cooperate with the Python memory manager.  Such objects may not be eligible
+for automatic garbage collection and you have to make sure that they are
+released accordingly whenever their destructor gets called (cf. the specific
+form of memory management you're using).
+
+Unless you have specific memory management requirements, use
+PyObject_{New, NewVar, Del}.
+*/
+
+/*
+ * Raw object memory interface
+ * ===========================
+ */
+
+/* Functions to call the same malloc/realloc/free as used by Python's
+   object allocator.  If WITH_PYMALLOC is enabled, these may differ from
+   the platform malloc/realloc/free.  The Python object allocator is
+   designed for fast, cache-conscious allocation of many "small" objects,
+   and with low hidden memory overhead.
+
+   PyObject_Malloc(0) returns a unique non-NULL pointer if possible.
+
+   PyObject_Realloc(NULL, n) acts like PyObject_Malloc(n).
+   PyObject_Realloc(p != NULL, 0) does not return  NULL, or free the memory
+   at p.
+
+   Returned pointers must be checked for NULL explicitly; no action is
+   performed on failure other than to return NULL (no warning it printed, no
+   exception is set, etc).
+
+   For allocating objects, use PyObject_{New, NewVar} instead whenever
+   possible.  The PyObject_{Malloc, Realloc, Free} family is exposed
+   so that you can exploit Python's small-block allocator for non-object
+   uses.  If you must use these routines to allocate object memory, make sure
+   the object gets initialized via PyObject_{Init, InitVar} after obtaining
+   the raw memory.
+*/
+PyAPI_FUNC(void *) PyObject_Malloc(size_t size);
+#if !defined(Py_LIMITED_API) || Py_LIMITED_API+0 >= 0x03050000
+PyAPI_FUNC(void *) PyObject_Calloc(size_t nelem, size_t elsize);
+#endif
+PyAPI_FUNC(void *) PyObject_Realloc(void *ptr, size_t new_size);
+PyAPI_FUNC(void) PyObject_Free(void *ptr);
+
+
+/* Macros */
+#define PyObject_MALLOC         PyObject_Malloc
+#define PyObject_REALLOC        PyObject_Realloc
+#define PyObject_FREE           PyObject_Free
+#define PyObject_Del            PyObject_Free
+#define PyObject_DEL            PyObject_Free
+
+
+/*
+ * Generic object allocator interface
+ * ==================================
+ */
+
+/* Functions */
+PyAPI_FUNC(PyObject *) PyObject_Init(PyObject *, PyTypeObject *);
+PyAPI_FUNC(PyVarObject *) PyObject_InitVar(PyVarObject *,
+                                                 PyTypeObject *, Py_ssize_t);
+PyAPI_FUNC(PyObject *) _PyObject_New(PyTypeObject *);
+PyAPI_FUNC(PyVarObject *) _PyObject_NewVar(PyTypeObject *, Py_ssize_t);
+
+#define PyObject_New(type, typeobj) \
+                ( (type *) _PyObject_New(typeobj) )
+#define PyObject_NewVar(type, typeobj, n) \
+                ( (type *) _PyObject_NewVar((typeobj), (n)) )
+
+/* Inline functions trading binary compatibility for speed:
+   PyObject_INIT() is the fast version of PyObject_Init(), and
+   PyObject_INIT_VAR() is the fast version of PyObject_InitVar.
+   See also pymem.h.
+
+   These inline functions expect non-NULL object pointers. */
+static inline PyObject*
+_PyObject_INIT(PyObject *op, PyTypeObject *typeobj)
+{
+    assert(op != NULL);
+    Py_TYPE(op) = typeobj;
+    if (PyType_GetFlags(typeobj) & Py_TPFLAGS_HEAPTYPE) {
+        Py_INCREF(typeobj);
+    }
+    _Py_NewReference(op);
+    return op;
+}
+
+#define PyObject_INIT(op, typeobj) \
+    _PyObject_INIT(_PyObject_CAST(op), (typeobj))
+
+static inline PyVarObject*
+_PyObject_INIT_VAR(PyVarObject *op, PyTypeObject *typeobj, Py_ssize_t size)
+{
+    assert(op != NULL);
+    Py_SIZE(op) = size;
+    PyObject_INIT((PyObject *)op, typeobj);
+    return op;
+}
+
+#define PyObject_INIT_VAR(op, typeobj, size) \
+    _PyObject_INIT_VAR(_PyVarObject_CAST(op), (typeobj), (size))
+
+#define _PyObject_SIZE(typeobj) ( (typeobj)->tp_basicsize )
+
+/* _PyObject_VAR_SIZE returns the number of bytes (as size_t) allocated for a
+   vrbl-size object with nitems items, exclusive of gc overhead (if any).  The
+   value is rounded up to the closest multiple of sizeof(void *), in order to
+   ensure that pointer fields at the end of the object are correctly aligned
+   for the platform (this is of special importance for subclasses of, e.g.,
+   str or int, so that pointers can be stored after the embedded data).
+
+   Note that there's no memory wastage in doing this, as malloc has to
+   return (at worst) pointer-aligned memory anyway.
+*/
+#if ((SIZEOF_VOID_P - 1) & SIZEOF_VOID_P) != 0
+#   error "_PyObject_VAR_SIZE requires SIZEOF_VOID_P be a power of 2"
+#endif
+
+#define _PyObject_VAR_SIZE(typeobj, nitems)     \
+    _Py_SIZE_ROUND_UP((typeobj)->tp_basicsize + \
+        (nitems)*(typeobj)->tp_itemsize,        \
+        SIZEOF_VOID_P)
+
+#define PyObject_NEW(type, typeobj) \
+( (type *) PyObject_Init( \
+    (PyObject *) PyObject_MALLOC( _PyObject_SIZE(typeobj) ), (typeobj)) )
+
+#define PyObject_NEW_VAR(type, typeobj, n) \
+( (type *) PyObject_InitVar( \
+      (PyVarObject *) PyObject_MALLOC(_PyObject_VAR_SIZE((typeobj),(n)) ),\
+      (typeobj), (n)) )
+
+/* This example code implements an object constructor with a custom
+   allocator, where PyObject_New is inlined, and shows the important
+   distinction between two steps (at least):
+       1) the actual allocation of the object storage;
+       2) the initialization of the Python specific fields
+      in this storage with PyObject_{Init, InitVar}.
+
+   PyObject *
+   YourObject_New(...)
+   {
+       PyObject *op;
+
+       op = (PyObject *) Your_Allocator(_PyObject_SIZE(YourTypeStruct));
+       if (op == NULL)
+       return PyErr_NoMemory();
+
+       PyObject_Init(op, &YourTypeStruct);
+
+       op->ob_field = value;
+       ...
+       return op;
+   }
+
+   Note that in C++, the use of the new operator usually implies that
+   the 1st step is performed automatically for you, so in a C++ class
+   constructor you would start directly with PyObject_Init/InitVar
+*/
+
+
+
+/*
+ * Garbage Collection Support
+ * ==========================
+ */
+
+/* C equivalent of gc.collect() which ignores the state of gc.enabled. */
+PyAPI_FUNC(Py_ssize_t) PyGC_Collect(void);
+
+/* Test if a type has a GC head */
+#define PyType_IS_GC(t) PyType_HasFeature((t), Py_TPFLAGS_HAVE_GC)
+
+PyAPI_FUNC(PyVarObject *) _PyObject_GC_Resize(PyVarObject *, Py_ssize_t);
+#define PyObject_GC_Resize(type, op, n) \
+                ( (type *) _PyObject_GC_Resize(_PyVarObject_CAST(op), (n)) )
+
+
+
+PyAPI_FUNC(PyObject *) _PyObject_GC_New(PyTypeObject *);
+PyAPI_FUNC(PyVarObject *) _PyObject_GC_NewVar(PyTypeObject *, Py_ssize_t);
+
+/* Tell the GC to track this object.
+ *
+ * See also private _PyObject_GC_TRACK() macro. */
+PyAPI_FUNC(void) PyObject_GC_Track(void *);
+
+/* Tell the GC to stop tracking this object.
+ *
+ * See also private _PyObject_GC_UNTRACK() macro. */
+PyAPI_FUNC(void) PyObject_GC_UnTrack(void *);
+
+PyAPI_FUNC(void) PyObject_GC_Del(void *);
+
+#define PyObject_GC_New(type, typeobj) \
+                ( (type *) _PyObject_GC_New(typeobj) )
+#define PyObject_GC_NewVar(type, typeobj, n) \
+                ( (type *) _PyObject_GC_NewVar((typeobj), (n)) )
+
+
+/* Utility macro to help write tp_traverse functions.
+ * To use this macro, the tp_traverse function must name its arguments
+ * "visit" and "arg".  This is intended to keep tp_traverse functions
+ * looking as much alike as possible.
+ */
+#define Py_VISIT(op)                                                    \
+    do {                                                                \
+        if (op) {                                                       \
+            int vret = visit(_PyObject_CAST(op), arg);                  \
+            if (vret)                                                   \
+                return vret;                                            \
+        }                                                               \
+    } while (0)
+
+#ifndef Py_LIMITED_API
+#  define Py_CPYTHON_OBJIMPL_H
+#  include  "cpython/objimpl.h"
+#  undef Py_CPYTHON_OBJIMPL_H
+#endif
+
+#ifdef __cplusplus
+}
+#endif
+#endif /* !Py_OBJIMPL_H */