Mercurial > repos > rliterman > csp2
diff CSP2/CSP2_env/env-d9b9114564458d9d-741b3de822f2aaca6c6caa4325c4afce/lib/python3.8/site-packages/numpy/matlib.py @ 69:33d812a61356
planemo upload commit 2e9511a184a1ca667c7be0c6321a36dc4e3d116d
author | jpayne |
---|---|
date | Tue, 18 Mar 2025 17:55:14 -0400 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/CSP2/CSP2_env/env-d9b9114564458d9d-741b3de822f2aaca6c6caa4325c4afce/lib/python3.8/site-packages/numpy/matlib.py Tue Mar 18 17:55:14 2025 -0400 @@ -0,0 +1,378 @@ +import warnings + +# 2018-05-29, PendingDeprecationWarning added to matrix.__new__ +# 2020-01-23, numpy 1.19.0 PendingDeprecatonWarning +warnings.warn("Importing from numpy.matlib is deprecated since 1.19.0. " + "The matrix subclass is not the recommended way to represent " + "matrices or deal with linear algebra (see " + "https://docs.scipy.org/doc/numpy/user/numpy-for-matlab-users.html). " + "Please adjust your code to use regular ndarray. ", + PendingDeprecationWarning, stacklevel=2) + +import numpy as np +from numpy.matrixlib.defmatrix import matrix, asmatrix +# Matlib.py contains all functions in the numpy namespace with a few +# replacements. See doc/source/reference/routines.matlib.rst for details. +# Need * as we're copying the numpy namespace. +from numpy import * # noqa: F403 + +__version__ = np.__version__ + +__all__ = np.__all__[:] # copy numpy namespace +__all__ += ['rand', 'randn', 'repmat'] + +def empty(shape, dtype=None, order='C'): + """Return a new matrix of given shape and type, without initializing entries. + + Parameters + ---------- + shape : int or tuple of int + Shape of the empty matrix. + dtype : data-type, optional + Desired output data-type. + order : {'C', 'F'}, optional + Whether to store multi-dimensional data in row-major + (C-style) or column-major (Fortran-style) order in + memory. + + See Also + -------- + empty_like, zeros + + Notes + ----- + `empty`, unlike `zeros`, does not set the matrix values to zero, + and may therefore be marginally faster. On the other hand, it requires + the user to manually set all the values in the array, and should be + used with caution. + + Examples + -------- + >>> import numpy.matlib + >>> np.matlib.empty((2, 2)) # filled with random data + matrix([[ 6.76425276e-320, 9.79033856e-307], # random + [ 7.39337286e-309, 3.22135945e-309]]) + >>> np.matlib.empty((2, 2), dtype=int) + matrix([[ 6600475, 0], # random + [ 6586976, 22740995]]) + + """ + return ndarray.__new__(matrix, shape, dtype, order=order) + +def ones(shape, dtype=None, order='C'): + """ + Matrix of ones. + + Return a matrix of given shape and type, filled with ones. + + Parameters + ---------- + shape : {sequence of ints, int} + Shape of the matrix + dtype : data-type, optional + The desired data-type for the matrix, default is np.float64. + order : {'C', 'F'}, optional + Whether to store matrix in C- or Fortran-contiguous order, + default is 'C'. + + Returns + ------- + out : matrix + Matrix of ones of given shape, dtype, and order. + + See Also + -------- + ones : Array of ones. + matlib.zeros : Zero matrix. + + Notes + ----- + If `shape` has length one i.e. ``(N,)``, or is a scalar ``N``, + `out` becomes a single row matrix of shape ``(1,N)``. + + Examples + -------- + >>> np.matlib.ones((2,3)) + matrix([[1., 1., 1.], + [1., 1., 1.]]) + + >>> np.matlib.ones(2) + matrix([[1., 1.]]) + + """ + a = ndarray.__new__(matrix, shape, dtype, order=order) + a.fill(1) + return a + +def zeros(shape, dtype=None, order='C'): + """ + Return a matrix of given shape and type, filled with zeros. + + Parameters + ---------- + shape : int or sequence of ints + Shape of the matrix + dtype : data-type, optional + The desired data-type for the matrix, default is float. + order : {'C', 'F'}, optional + Whether to store the result in C- or Fortran-contiguous order, + default is 'C'. + + Returns + ------- + out : matrix + Zero matrix of given shape, dtype, and order. + + See Also + -------- + numpy.zeros : Equivalent array function. + matlib.ones : Return a matrix of ones. + + Notes + ----- + If `shape` has length one i.e. ``(N,)``, or is a scalar ``N``, + `out` becomes a single row matrix of shape ``(1,N)``. + + Examples + -------- + >>> import numpy.matlib + >>> np.matlib.zeros((2, 3)) + matrix([[0., 0., 0.], + [0., 0., 0.]]) + + >>> np.matlib.zeros(2) + matrix([[0., 0.]]) + + """ + a = ndarray.__new__(matrix, shape, dtype, order=order) + a.fill(0) + return a + +def identity(n,dtype=None): + """ + Returns the square identity matrix of given size. + + Parameters + ---------- + n : int + Size of the returned identity matrix. + dtype : data-type, optional + Data-type of the output. Defaults to ``float``. + + Returns + ------- + out : matrix + `n` x `n` matrix with its main diagonal set to one, + and all other elements zero. + + See Also + -------- + numpy.identity : Equivalent array function. + matlib.eye : More general matrix identity function. + + Examples + -------- + >>> import numpy.matlib + >>> np.matlib.identity(3, dtype=int) + matrix([[1, 0, 0], + [0, 1, 0], + [0, 0, 1]]) + + """ + a = array([1]+n*[0], dtype=dtype) + b = empty((n, n), dtype=dtype) + b.flat = a + return b + +def eye(n,M=None, k=0, dtype=float, order='C'): + """ + Return a matrix with ones on the diagonal and zeros elsewhere. + + Parameters + ---------- + n : int + Number of rows in the output. + M : int, optional + Number of columns in the output, defaults to `n`. + k : int, optional + Index of the diagonal: 0 refers to the main diagonal, + a positive value refers to an upper diagonal, + and a negative value to a lower diagonal. + dtype : dtype, optional + Data-type of the returned matrix. + order : {'C', 'F'}, optional + Whether the output should be stored in row-major (C-style) or + column-major (Fortran-style) order in memory. + + .. versionadded:: 1.14.0 + + Returns + ------- + I : matrix + A `n` x `M` matrix where all elements are equal to zero, + except for the `k`-th diagonal, whose values are equal to one. + + See Also + -------- + numpy.eye : Equivalent array function. + identity : Square identity matrix. + + Examples + -------- + >>> import numpy.matlib + >>> np.matlib.eye(3, k=1, dtype=float) + matrix([[0., 1., 0.], + [0., 0., 1.], + [0., 0., 0.]]) + + """ + return asmatrix(np.eye(n, M=M, k=k, dtype=dtype, order=order)) + +def rand(*args): + """ + Return a matrix of random values with given shape. + + Create a matrix of the given shape and propagate it with + random samples from a uniform distribution over ``[0, 1)``. + + Parameters + ---------- + \\*args : Arguments + Shape of the output. + If given as N integers, each integer specifies the size of one + dimension. + If given as a tuple, this tuple gives the complete shape. + + Returns + ------- + out : ndarray + The matrix of random values with shape given by `\\*args`. + + See Also + -------- + randn, numpy.random.RandomState.rand + + Examples + -------- + >>> np.random.seed(123) + >>> import numpy.matlib + >>> np.matlib.rand(2, 3) + matrix([[0.69646919, 0.28613933, 0.22685145], + [0.55131477, 0.71946897, 0.42310646]]) + >>> np.matlib.rand((2, 3)) + matrix([[0.9807642 , 0.68482974, 0.4809319 ], + [0.39211752, 0.34317802, 0.72904971]]) + + If the first argument is a tuple, other arguments are ignored: + + >>> np.matlib.rand((2, 3), 4) + matrix([[0.43857224, 0.0596779 , 0.39804426], + [0.73799541, 0.18249173, 0.17545176]]) + + """ + if isinstance(args[0], tuple): + args = args[0] + return asmatrix(np.random.rand(*args)) + +def randn(*args): + """ + Return a random matrix with data from the "standard normal" distribution. + + `randn` generates a matrix filled with random floats sampled from a + univariate "normal" (Gaussian) distribution of mean 0 and variance 1. + + Parameters + ---------- + \\*args : Arguments + Shape of the output. + If given as N integers, each integer specifies the size of one + dimension. If given as a tuple, this tuple gives the complete shape. + + Returns + ------- + Z : matrix of floats + A matrix of floating-point samples drawn from the standard normal + distribution. + + See Also + -------- + rand, numpy.random.RandomState.randn + + Notes + ----- + For random samples from the normal distribution with mean ``mu`` and + standard deviation ``sigma``, use:: + + sigma * np.matlib.randn(...) + mu + + Examples + -------- + >>> np.random.seed(123) + >>> import numpy.matlib + >>> np.matlib.randn(1) + matrix([[-1.0856306]]) + >>> np.matlib.randn(1, 2, 3) + matrix([[ 0.99734545, 0.2829785 , -1.50629471], + [-0.57860025, 1.65143654, -2.42667924]]) + + Two-by-four matrix of samples from the normal distribution with + mean 3 and standard deviation 2.5: + + >>> 2.5 * np.matlib.randn((2, 4)) + 3 + matrix([[1.92771843, 6.16484065, 0.83314899, 1.30278462], + [2.76322758, 6.72847407, 1.40274501, 1.8900451 ]]) + + """ + if isinstance(args[0], tuple): + args = args[0] + return asmatrix(np.random.randn(*args)) + +def repmat(a, m, n): + """ + Repeat a 0-D to 2-D array or matrix MxN times. + + Parameters + ---------- + a : array_like + The array or matrix to be repeated. + m, n : int + The number of times `a` is repeated along the first and second axes. + + Returns + ------- + out : ndarray + The result of repeating `a`. + + Examples + -------- + >>> import numpy.matlib + >>> a0 = np.array(1) + >>> np.matlib.repmat(a0, 2, 3) + array([[1, 1, 1], + [1, 1, 1]]) + + >>> a1 = np.arange(4) + >>> np.matlib.repmat(a1, 2, 2) + array([[0, 1, 2, 3, 0, 1, 2, 3], + [0, 1, 2, 3, 0, 1, 2, 3]]) + + >>> a2 = np.asmatrix(np.arange(6).reshape(2, 3)) + >>> np.matlib.repmat(a2, 2, 3) + matrix([[0, 1, 2, 0, 1, 2, 0, 1, 2], + [3, 4, 5, 3, 4, 5, 3, 4, 5], + [0, 1, 2, 0, 1, 2, 0, 1, 2], + [3, 4, 5, 3, 4, 5, 3, 4, 5]]) + + """ + a = asanyarray(a) + ndim = a.ndim + if ndim == 0: + origrows, origcols = (1, 1) + elif ndim == 1: + origrows, origcols = (1, a.shape[0]) + else: + origrows, origcols = a.shape + rows = origrows * m + cols = origcols * n + c = a.reshape(1, a.size).repeat(m, 0).reshape(rows, origcols).repeat(n, 0) + return c.reshape(rows, cols)