Mercurial > repos > rliterman > csp2
diff CSP2/CSP2_env/env-d9b9114564458d9d-741b3de822f2aaca6c6caa4325c4afce/lib/python3.8/site-packages/Bio/MaxEntropy.py @ 68:5028fdace37b
planemo upload commit 2e9511a184a1ca667c7be0c6321a36dc4e3d116d
author | jpayne |
---|---|
date | Tue, 18 Mar 2025 16:23:26 -0400 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/CSP2/CSP2_env/env-d9b9114564458d9d-741b3de822f2aaca6c6caa4325c4afce/lib/python3.8/site-packages/Bio/MaxEntropy.py Tue Mar 18 16:23:26 2025 -0400 @@ -0,0 +1,351 @@ +# Copyright 2001 by Jeffrey Chang. All rights reserved. +# +# This file is part of the Biopython distribution and governed by your +# choice of the "Biopython License Agreement" or the "BSD 3-Clause License". +# Please see the LICENSE file that should have been included as part of this +# package. +"""Maximum Entropy code. + +Uses Improved Iterative Scaling. +""" +# TODO Define terminology + +from functools import reduce +import warnings + +try: + import numpy as np +except ImportError: + from Bio import MissingPythonDependencyError + + raise MissingPythonDependencyError( + "Please install NumPy if you want to use Bio.MaxEntropy. " + "See http://www.numpy.org/" + ) from None + + +from Bio import BiopythonDeprecationWarning + +warnings.warn( + "The 'Bio.MaxEntropy' module is deprecated and will be removed in a future " + "release of Biopython. Consider using scikit-learn instead.", + BiopythonDeprecationWarning, +) + + +class MaxEntropy: + """Hold information for a Maximum Entropy classifier. + + Members: + classes List of the possible classes of data. + alphas List of the weights for each feature. + feature_fns List of the feature functions. + + Car data from example Naive Bayes Classifier example by Eric Meisner November 22, 2003 + http://www.inf.u-szeged.hu/~ormandi/teaching + + >>> from Bio.MaxEntropy import train, classify + >>> xcar = [ + ... ['Red', 'Sports', 'Domestic'], + ... ['Red', 'Sports', 'Domestic'], + ... ['Red', 'Sports', 'Domestic'], + ... ['Yellow', 'Sports', 'Domestic'], + ... ['Yellow', 'Sports', 'Imported'], + ... ['Yellow', 'SUV', 'Imported'], + ... ['Yellow', 'SUV', 'Imported'], + ... ['Yellow', 'SUV', 'Domestic'], + ... ['Red', 'SUV', 'Imported'], + ... ['Red', 'Sports', 'Imported']] + >>> ycar = ['Yes','No','Yes','No','Yes','No','Yes','No','No','Yes'] + + Requires some rules or features + + >>> def udf1(ts, cl): + ... return ts[0] != 'Red' + ... + >>> def udf2(ts, cl): + ... return ts[1] != 'Sports' + ... + >>> def udf3(ts, cl): + ... return ts[2] != 'Domestic' + ... + >>> user_functions = [udf1, udf2, udf3] # must be an iterable type + >>> xe = train(xcar, ycar, user_functions) + >>> for xv, yv in zip(xcar, ycar): + ... xc = classify(xe, xv) + ... print('Pred: %s gives %s y is %s' % (xv, xc, yv)) + ... + Pred: ['Red', 'Sports', 'Domestic'] gives No y is Yes + Pred: ['Red', 'Sports', 'Domestic'] gives No y is No + Pred: ['Red', 'Sports', 'Domestic'] gives No y is Yes + Pred: ['Yellow', 'Sports', 'Domestic'] gives No y is No + Pred: ['Yellow', 'Sports', 'Imported'] gives No y is Yes + Pred: ['Yellow', 'SUV', 'Imported'] gives No y is No + Pred: ['Yellow', 'SUV', 'Imported'] gives No y is Yes + Pred: ['Yellow', 'SUV', 'Domestic'] gives No y is No + Pred: ['Red', 'SUV', 'Imported'] gives No y is No + Pred: ['Red', 'Sports', 'Imported'] gives No y is Yes + """ + + def __init__(self): + """Initialize the class.""" + self.classes = [] + self.alphas = [] + self.feature_fns = [] + + +def calculate(me, observation): + """Calculate the log of the probability for each class. + + me is a MaxEntropy object that has been trained. observation is a vector + representing the observed data. The return value is a list of + unnormalized log probabilities for each class. + """ + scores = [] + assert len(me.feature_fns) == len(me.alphas) + for klass in me.classes: + lprob = 0.0 + for fn, alpha in zip(me.feature_fns, me.alphas): + lprob += fn(observation, klass) * alpha + scores.append(lprob) + return scores + + +def classify(me, observation): + """Classify an observation into a class.""" + scores = calculate(me, observation) + max_score, klass = scores[0], me.classes[0] + for i in range(1, len(scores)): + if scores[i] > max_score: + max_score, klass = scores[i], me.classes[i] + return klass + + +def _eval_feature_fn(fn, xs, classes): + """Evaluate a feature function on every instance of the training set and class (PRIVATE). + + fn is a callback function that takes two parameters: a + training instance and a class. Return a dictionary of (training + set index, class index) -> non-zero value. Values of 0 are not + stored in the dictionary. + """ + values = {} + for i in range(len(xs)): + for j in range(len(classes)): + f = fn(xs[i], classes[j]) + if f != 0: + values[(i, j)] = f + return values + + +def _calc_empirical_expects(xs, ys, classes, features): + """Calculate the expectation of each function from the data (PRIVATE). + + This is the constraint for the maximum entropy distribution. Return a + list of expectations, parallel to the list of features. + """ + # E[f_i] = SUM_x,y P(x, y) f(x, y) + # = 1/N f(x, y) + class2index = {} + for index, key in enumerate(classes): + class2index[key] = index + ys_i = [class2index[y] for y in ys] + + expect = [] + N = len(xs) + for feature in features: + s = 0 + for i in range(N): + s += feature.get((i, ys_i[i]), 0) + expect.append(s / N) + return expect + + +def _calc_model_expects(xs, classes, features, alphas): + """Calculate the expectation of each feature from the model (PRIVATE). + + This is not used in maximum entropy training, but provides a good function + for debugging. + """ + # SUM_X P(x) SUM_Y P(Y|X) F(X, Y) + # = 1/N SUM_X SUM_Y P(Y|X) F(X, Y) + p_yx = _calc_p_class_given_x(xs, classes, features, alphas) + + expects = [] + for feature in features: + sum = 0.0 + for (i, j), f in feature.items(): + sum += p_yx[i][j] * f + expects.append(sum / len(xs)) + return expects + + +def _calc_p_class_given_x(xs, classes, features, alphas): + """Calculate conditional probability P(y|x) (PRIVATE). + + y is the class and x is an instance from the training set. + Return a XSxCLASSES matrix of probabilities. + """ + prob_yx = np.zeros((len(xs), len(classes))) + + # Calculate log P(y, x). + assert len(features) == len(alphas) + for feature, alpha in zip(features, alphas): + for (x, y), f in feature.items(): + prob_yx[x][y] += alpha * f + # Take an exponent to get P(y, x) + prob_yx = np.exp(prob_yx) + # Divide out the probability over each class, so we get P(y|x). + for i in range(len(xs)): + z = sum(prob_yx[i]) + prob_yx[i] = prob_yx[i] / z + return prob_yx + + +def _calc_f_sharp(N, nclasses, features): + """Calculate a matrix of f sharp values (PRIVATE).""" + # f#(x, y) = SUM_i feature(x, y) + f_sharp = np.zeros((N, nclasses)) + for feature in features: + for (i, j), f in feature.items(): + f_sharp[i][j] += f + return f_sharp + + +def _iis_solve_delta( + N, feature, f_sharp, empirical, prob_yx, max_newton_iterations, newton_converge +): + """Solve delta using Newton's method (PRIVATE).""" + # SUM_x P(x) * SUM_c P(c|x) f_i(x, c) e^[delta_i * f#(x, c)] = 0 + delta = 0.0 + iters = 0 + while iters < max_newton_iterations: # iterate for Newton's method + f_newton = df_newton = 0.0 # evaluate the function and derivative + for (i, j), f in feature.items(): + prod = prob_yx[i][j] * f * np.exp(delta * f_sharp[i][j]) + f_newton += prod + df_newton += prod * f_sharp[i][j] + f_newton, df_newton = empirical - f_newton / N, -df_newton / N + + ratio = f_newton / df_newton + delta -= ratio + if np.fabs(ratio) < newton_converge: # converged + break + iters = iters + 1 + else: + raise RuntimeError("Newton's method did not converge") + return delta + + +def _train_iis( + xs, + classes, + features, + f_sharp, + alphas, + e_empirical, + max_newton_iterations, + newton_converge, +): + """Do one iteration of hill climbing to find better alphas (PRIVATE).""" + # This is a good function to parallelize. + + # Pre-calculate P(y|x) + p_yx = _calc_p_class_given_x(xs, classes, features, alphas) + + N = len(xs) + newalphas = alphas[:] + for i in range(len(alphas)): + delta = _iis_solve_delta( + N, + features[i], + f_sharp, + e_empirical[i], + p_yx, + max_newton_iterations, + newton_converge, + ) + newalphas[i] += delta + return newalphas + + +def train( + training_set, + results, + feature_fns, + update_fn=None, + max_iis_iterations=10000, + iis_converge=1.0e-5, + max_newton_iterations=100, + newton_converge=1.0e-10, +): + """Train a maximum entropy classifier, returns MaxEntropy object. + + Train a maximum entropy classifier on a training set. + training_set is a list of observations. results is a list of the + class assignments for each observation. feature_fns is a list of + the features. These are callback functions that take an + observation and class and return a 1 or 0. update_fn is a + callback function that is called at each training iteration. It is + passed a MaxEntropy object that encapsulates the current state of + the training. + + The maximum number of iterations and the convergence criterion for IIS + are given by max_iis_iterations and iis_converge, respectively, while + max_newton_iterations and newton_converge are the maximum number + of iterations and the convergence criterion for Newton's method. + """ + if not training_set: + raise ValueError("No data in the training set.") + if len(training_set) != len(results): + raise ValueError("training_set and results should be parallel lists.") + + # Rename variables for convenience. + xs, ys = training_set, results + + # Get a list of all the classes that need to be trained. + classes = sorted(set(results)) + + # Cache values for all features. + features = [_eval_feature_fn(fn, training_set, classes) for fn in feature_fns] + # Cache values for f#. + f_sharp = _calc_f_sharp(len(training_set), len(classes), features) + + # Pre-calculate the empirical expectations of the features. + e_empirical = _calc_empirical_expects(xs, ys, classes, features) + + # Now train the alpha parameters to weigh each feature. + alphas = [0.0] * len(features) + iters = 0 + while iters < max_iis_iterations: + nalphas = _train_iis( + xs, + classes, + features, + f_sharp, + alphas, + e_empirical, + max_newton_iterations, + newton_converge, + ) + diff = [np.fabs(x - y) for x, y in zip(alphas, nalphas)] + diff = reduce(np.add, diff, 0) + alphas = nalphas + + me = MaxEntropy() + me.alphas, me.classes, me.feature_fns = alphas, classes, feature_fns + if update_fn is not None: + update_fn(me) + + if diff < iis_converge: # converged + break + else: + raise RuntimeError("IIS did not converge") + + return me + + +if __name__ == "__main__": + from Bio._utils import run_doctest + + run_doctest(verbose=0)