Mercurial > repos > rliterman > csp2
view CSP2/bin/compileSNPResults.py @ 35:106d28c851fa
"planemo upload"
author | rliterman |
---|---|
date | Thu, 05 Dec 2024 16:30:58 -0500 |
parents | 01431fa12065 |
children | 93393808f415 |
line wrap: on
line source
#!/usr/bin/env python3 import sys import os import glob import pandas as pd from itertools import chain import scipy.stats import numpy as np import datetime import time import argparse def getWarnings(df): df_measures = list(set(df['Measure'])) warn_list = [] if 'Preserved_Diff' in df_measures: for index,row in df.iterrows(): if pd.isna(row['Zscore']): warn_list.append(np.nan) elif 2.5 <= row['Zscore'] < 3: warn_list.append("Warning") elif row['Zscore'] >=3: warn_list.append("Failure") else: warn_list.append("Pass") elif 'Contig_Count' in df_measures: for index,row in df.iterrows(): if pd.isna(row['Zscore']): warn_list.append(np.nan) elif row['Measure'] in ["Contig_Count","L50","L90"]: if 2.5 <= row['Zscore'] < 3: warn_list.append("Warning") elif row['Zscore'] >=3: warn_list.append("Failure") else: warn_list.append("Pass") elif row['Measure'] == "Assembly_Bases": if 2.5 <= abs(row['Zscore']) < 3: warn_list.append("Warning") elif abs(row['Zscore']) >=3: warn_list.append("Failure") else: warn_list.append("Pass") elif row['Measure'] in ["N50","N90"]: if -3 < row['Zscore'] <= -2.5: warn_list.append("Warning") elif row['Zscore'] <= -3: warn_list.append("Failure") else: warn_list.append("Pass") else: sys.exit(f"{row['Measure']}") elif ('Raw_Distance_StdDev' in df_measures) | ('Preserved_Distance_StdDev' in df_measures): for index,row in df.iterrows(): if pd.isna(row['Zscore']): warn_list.append(np.nan) elif 2.5 <= row['Zscore'] < 3: warn_list.append("Warning") elif row['Zscore'] >=3: warn_list.append("Failure") else: warn_list.append("Pass") elif 'Unique_Kmers' in df_measures: for index,row in df.iterrows(): if pd.isna(row['Zscore']): warn_list.append(np.nan) elif row['Measure'] in ["Align_Percent_Diff","Unique_Kmers","gIndels","Missing_Kmers"]: if 2.5 <= row['Zscore'] < 3: warn_list.append("Warning") elif row['Zscore'] >=3: warn_list.append("Failure") else: warn_list.append("Pass") elif row['Measure'] in ["Compare_Aligned","Kmer_Similarity","Self_Aligned","Median_Alignment_Length"]: if -3 < row['Zscore'] <= -2.5: warn_list.append("Warning") elif row['Zscore'] <= -3: warn_list.append("Failure") else: warn_list.append("Pass") else: sys.exit(f"{row['Measure']}") elif ('SNPs_Cocalled' in df_measures) | ('Raw_SNPs_Cocalled' in df_measures) | ('Preserved_SNPs_Cocalled' in df_measures): for index,row in df.iterrows(): if pd.isna(row['Zscore']): warn_list.append(np.nan) elif -3 < row['Zscore'] <= -2.5: warn_list.append("Warning") elif row['Zscore'] <= -3: warn_list.append("Failure") else: warn_list.append("Pass") else: sys.exit(f"{df_measures}") return warn_list start_time = time.time() # Get args parser = argparse.ArgumentParser(description='CSP2 SNP Pipeline Compiler') parser.add_argument('--snp_dirs_file', type=str, help='Path to the file containing SNP directories') parser.add_argument('--output_directory', type=str, help='Path to the output directory') parser.add_argument('--isolate_data_file', type=str, help='Path to the isolate data file') parser.add_argument('--mummer_data_file', type=str, help='Path to the MUMmer data file') args = parser.parse_args() snp_dirs = [line.strip() for line in open(args.snp_dirs_file, 'r')] raw_snp_distance_files = list(chain.from_iterable([glob.glob(snp_dir + '/snp_distance_pairwise.tsv') for snp_dir in snp_dirs])) screening_files = list(chain.from_iterable([glob.glob(snp_dir + '/Reference_Screening.tsv') for snp_dir in snp_dirs])) # Set paths output_directory = args.output_directory log_file = f"{output_directory}/Compilation.log" mean_isolate_file = f"{output_directory}/Mean_Assembly_Stats.tsv" isolate_assembly_stats_file = f"{output_directory}/Isolate_Assembly_Stats.tsv" align_stats_file = f"{output_directory}/Isolate_Alignment_Stats.tsv" ref_mean_summary_file = f"{output_directory}/Align_Summary_by_Reference.tsv" snp_comparison_file = f"{output_directory}/SNP_Distance_Summary.tsv" qc_file = f"{output_directory}/QC_Warnings_Failures.tsv" with open(log_file,"w+") as log: log.write("CSP2 SNP Pipeline Compiler\n") log.write(str(datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S"))+"\n") log.write("-------------------------------------------------------\n\n") if len(raw_snp_distance_files) == 0: log.write("\t- CSP2 SNP Pipeline Compiler cannot detected any SNP pipeline output files\n") log.write("\t- Compiler stopping...\n") sys.exit(0) isolate_data = pd.read_csv(args.isolate_data_file, sep="\t") raw_isolate_count = isolate_data.shape[0] mummer_data = pd.read_csv(args.mummer_data_file, sep="\t") # Get reference IDs reference_ids = list(set(isolate_data[isolate_data['Isolate_Type'] == "Reference"]['Isolate_ID'])) raw_ref_count = len(reference_ids) raw_snp_distance_df = pd.concat([pd.read_csv(file, sep='\t').assign(Reference_ID=os.path.basename(os.path.dirname(file))) for file in raw_snp_distance_files]) raw_snp_distance_df['Comparison'] = raw_snp_distance_df.apply(lambda row: ';'.join(sorted([str(row['Query_1']), str(row['Query_2'])])), axis=1) # Check for preserved data preserved_snp_distance_files = list(chain.from_iterable([glob.glob(snp_dir + '/snp_distance_pairwise_preserved.tsv') for snp_dir in snp_dirs])) if len(preserved_snp_distance_files) == 0: has_preserved = False else: has_preserved = True preserved_snp_distance_df = pd.concat([pd.read_csv(file, sep='\t').assign(Reference_ID=os.path.basename(os.path.dirname(file))) for file in preserved_snp_distance_files]) preserved_snp_distance_df['Comparison'] = preserved_snp_distance_df.apply(lambda row: ';'.join(sorted([str(row['Query_1']), str(row['Query_2'])])), axis=1) screening_df = pd.concat([pd.read_csv(file, sep='\t').assign(Reference_ID=os.path.basename(os.path.dirname(file))) for file in screening_files]) snp_isolates = list(set(raw_snp_distance_df['Query_1'].tolist() + raw_snp_distance_df['Query_2'].tolist())) with open(log_file,"a+") as log: log.write(f"- Detected SNP distance data for {len(snp_isolates)} isolates out of {raw_isolate_count} total isolates analyzed\n") if len(snp_isolates) <= 2: log.write("\t- CSP2 SNP Pipeline Compiler cannot do much with 2 or fewer isolates\n") log.write("\t- Compiler stopping...\n") sys.exit(0) else: failed_combinations = screening_df.loc[screening_df['Screen_Category'] != "Pass"] failed_comparisons = [] if failed_combinations.shape[0] > 0: reference_query_dict = failed_combinations.groupby('Reference_ID')['Query_ID'].apply(list).to_dict() for index,row in failed_combinations.iterrows(): failed_comparisons.append(";".join(sorted([row['Query_ID'], row['Reference_ID']]))) log.write("\n- The following query-reference alignments did not pass QC\n") for key, value in reference_query_dict.items(): log.write(f"\nReference {key}\n{', '.join(map(str, value))}\n") # Prune isolate data isolate_data = isolate_data.loc[isolate_data['Isolate_ID'].isin(snp_isolates)] reference_ids = [x for x in reference_ids if x in snp_isolates] ref_count = len(reference_ids) with open(log_file,"a+") as log: log.write(f"- Detected SNP distance data for {ref_count} reference isolates out of {raw_ref_count} total reference isolates analyzed\n") for ref in reference_ids: log.write(f"\t- {ref}\n") # Prune MUMmer data mummer_data['Comparison'] = mummer_data.apply(lambda row: ';'.join(sorted([str(row['Query_ID']), str(row['Reference_ID'])])), axis=1) mummer_data = mummer_data.loc[~mummer_data['Comparison'].isin(failed_comparisons), ['SNPDiffs_File','Query_ID','Reference_ID','Comparison','Reference_Percent_Aligned','Query_Percent_Aligned','Median_Alignment_Length','Kmer_Similarity','Reference_Unique_Kmers','Query_Unique_Kmers','gIndels']] max_align_values = np.maximum(mummer_data['Reference_Percent_Aligned'], mummer_data['Query_Percent_Aligned']) min_align_values = np.minimum(mummer_data['Reference_Percent_Aligned'], mummer_data['Query_Percent_Aligned']) mummer_data['Align_Percent_Diff'] = 100*((max_align_values - min_align_values)/min_align_values) # Run basic assembly stats isolate_stats = isolate_data.melt(id_vars=['Isolate_ID', 'Isolate_Type'], value_vars = ['Contig_Count','Assembly_Bases','N50','N90','L50','L90'],value_name='Value',var_name = "Measure") isolate_stats['Zscore'] = isolate_stats.groupby('Measure')['Value'].transform(scipy.stats.zscore).astype('float').round(3) isolate_stats['QC'] = getWarnings(isolate_stats) isolate_stats['Value'] = isolate_stats['Value'].astype('int') # Reformat for final TSV isolate_stats['Min'] = np.nan isolate_stats['Max'] = np.nan isolate_stats['StdDev'] = np.nan isolate_stats = isolate_stats[['Isolate_ID','Isolate_Type','Measure','Min','Value','Max','StdDev','Zscore','QC']].rename(columns = {'Value':'Mean'}) isolate_stats['Count'] = 1 # Get mean values isolate_mean_df = isolate_stats.groupby(by=['Measure'])['Mean'].agg(Min = 'min',Mean = "mean",Max = 'max',StdDev = 'std',Count = 'count') isolate_mean_df['Mean'] = isolate_mean_df['Mean'].astype("int") isolate_mean_df['StdDev'] = isolate_mean_df['StdDev'].astype("float").round(3) with open(log_file,"a+") as log: log.write("- Read in and processed isolate data\n\n") for index, row in isolate_mean_df.iterrows(): log.write(f"{index}:\tMin: {row['Min']}\tMean: {row['Mean']}\tMax: {row['Max']}\tStdDev: {row['StdDev']}\n") log.write("\n") # Run basic alignment stats isolate_mummer = pd.DataFrame(columns=['Isolate_ID', 'Compare_ID', 'Self_Aligned', 'Compare_Aligned','Align_Percent_Diff','Median_Alignment_Length', 'Kmer_Similarity', 'Unique_Kmers', 'Missing_Kmers', 'gIndels', 'SNPDiffs_File']) for isolate in snp_isolates: temp_mummer = mummer_data[(mummer_data['Query_ID'] == isolate) | (mummer_data['Reference_ID'] == isolate)].drop_duplicates(subset=['Comparison']).assign(Isolate_ID = isolate) for index, row in temp_mummer.iterrows(): if row['Query_ID'] == isolate: temp_isolate_mummer = row[['Isolate_ID', 'Reference_ID', 'Query_Percent_Aligned', 'Reference_Percent_Aligned','Align_Percent_Diff', 'Median_Alignment_Length', 'Kmer_Similarity', 'Query_Unique_Kmers', 'Reference_Unique_Kmers', 'gIndels', 'SNPDiffs_File']].to_frame().T temp_isolate_mummer.columns = ['Isolate_ID', 'Compare_ID', 'Self_Aligned', 'Compare_Aligned', 'Align_Percent_Diff','Median_Alignment_Length', 'Kmer_Similarity', 'Unique_Kmers', 'Missing_Kmers', 'gIndels', 'SNPDiffs_File'] isolate_mummer = pd.concat([isolate_mummer,temp_isolate_mummer]) elif row['Reference_ID'] == isolate: temp_isolate_mummer = row[['Isolate_ID', 'Query_ID', 'Reference_Percent_Aligned', 'Query_Percent_Aligned', 'Align_Percent_Diff', 'Median_Alignment_Length', 'Kmer_Similarity', 'Reference_Unique_Kmers', 'Query_Unique_Kmers', 'gIndels', 'SNPDiffs_File']].to_frame().T temp_isolate_mummer.columns = ['Isolate_ID', 'Compare_ID', 'Self_Aligned', 'Compare_Aligned', 'Align_Percent_Diff', 'Median_Alignment_Length', 'Kmer_Similarity', 'Unique_Kmers', 'Missing_Kmers', 'gIndels', 'SNPDiffs_File'] isolate_mummer = pd.concat([isolate_mummer,temp_isolate_mummer]) isolate_mummer['Isolate_Type'] = isolate_mummer['Isolate_ID'].apply(lambda x: 'Reference' if x in reference_ids else 'Query') isolate_mummer_df = isolate_mummer.melt(id_vars=['Isolate_ID','Isolate_Type'], value_vars = ['Self_Aligned','Compare_Aligned', 'Align_Percent_Diff','Median_Alignment_Length','Kmer_Similarity','Unique_Kmers','Missing_Kmers','gIndels'],value_name='Value',var_name = "Measure") isolate_mummer_df['Value'] = isolate_mummer_df['Value'].astype("float") isolate_mummer_df = isolate_mummer_df.groupby(by=['Isolate_ID','Isolate_Type','Measure'])['Value'].agg(Count = "count",Min = "min",Value = "mean",Max = "max",StdDev = 'std').reset_index() isolate_mummer_df['Value'] = isolate_mummer_df['Value'].astype("float").round(2) # Get Zscores isolate_mummer_df['Zscore'] = isolate_mummer_df.groupby('Measure')['Value'].transform(scipy.stats.zscore).astype('float').round(3) isolate_mummer_df['QC'] = getWarnings(isolate_mummer_df) # Reformat for final TSV align_stats = isolate_mummer_df[['Isolate_ID','Isolate_Type','Measure','Min','Value','Max','StdDev','Zscore','QC','Count']].copy().rename(columns = {"Value":"Mean"}) align_stats['StdDev'] = align_stats['StdDev'].astype('float').round(3) with open(log_file,"a+") as log: log.write("- Read in and processed alignment data\n") # Process cocalled data raw_cocalled_df = raw_snp_distance_df[['Comparison','Query_1','Query_2','Reference_ID','SNPs_Cocalled']] isolate_cocalled_df = pd.DataFrame(columns = ['Isolate_ID','Count','Min','Mean','Max','StdDev']) for isolate in snp_isolates: temp_cocalled = raw_cocalled_df[(raw_cocalled_df['Query_1'] == isolate) | (raw_cocalled_df['Query_2'] == isolate)].drop_duplicates(subset=['Comparison','Reference_ID']).assign(Isolate_ID = isolate) temp_cocalled = temp_cocalled.groupby(['Isolate_ID'])['SNPs_Cocalled'].agg(Count = "count", Min = "min", Value = "mean", Max = "max",StdDev = 'std').reset_index() isolate_cocalled_df = pd.concat([isolate_cocalled_df,temp_cocalled]) isolate_cocalled_df['Measure'] = 'Raw_SNPs_Cocalled' isolate_cocalled_df['Value'] = isolate_cocalled_df['Value'].astype('int') isolate_cocalled_df['Zscore'] = isolate_cocalled_df['Value'].transform(scipy.stats.zscore).astype('float').round(3) isolate_cocalled_df['QC'] = getWarnings(isolate_cocalled_df) # Format for final TSV isolate_cocalled_df['Isolate_Type'] = isolate_cocalled_df['Isolate_ID'].apply(lambda x: 'Reference' if x in reference_ids else 'Query') isolate_cocalled_stats = isolate_cocalled_df[['Isolate_ID','Isolate_Type','Measure','Min','Value','Max','StdDev','Zscore','QC','Count']].copy().rename(columns={'Value':'Mean'}) if has_preserved: preserved_cocalled_df = preserved_snp_distance_df[['Comparison','Query_1','Query_2','Reference_ID','SNPs_Cocalled']] isolate_preserved_cocalled_df = pd.DataFrame(columns = ['Isolate_ID','Count','Min','Mean','Max','StdDev']) for isolate in snp_isolates: temp_cocalled = preserved_cocalled_df[(preserved_cocalled_df['Query_1'] == isolate) | (preserved_cocalled_df['Query_2'] == isolate)].drop_duplicates(subset=['Comparison','Reference_ID']).assign(Isolate_ID = isolate) temp_cocalled = temp_cocalled.groupby(['Isolate_ID'])['SNPs_Cocalled'].agg(Count = "count", Min = "min", Value = "mean", Max = "max",StdDev = 'std').reset_index() isolate_preserved_cocalled_df = pd.concat([isolate_preserved_cocalled_df,temp_cocalled]) isolate_preserved_cocalled_df['Measure'] = 'Preserved_SNPs_Cocalled' isolate_preserved_cocalled_df['Value'] = isolate_preserved_cocalled_df['Value'].astype('int') isolate_preserved_cocalled_df['Zscore'] = isolate_preserved_cocalled_df['Value'].transform(scipy.stats.zscore).astype('float').round(3) isolate_preserved_cocalled_df['QC'] = getWarnings(isolate_preserved_cocalled_df) # Format for final TSV isolate_preserved_cocalled_df['Isolate_Type'] = isolate_preserved_cocalled_df['Isolate_ID'].apply(lambda x: 'Reference' if x in reference_ids else 'Query') isolate_preserved_cocalled_df['StdDev'] = isolate_preserved_cocalled_df['StdDev'].astype('float').round(3) isolate_cocalled_stats = pd.concat([isolate_cocalled_stats,isolate_preserved_cocalled_df[['Isolate_ID','Isolate_Type','Measure','Min','Value','Max','StdDev','Zscore','QC','Count']].copy().rename(columns={'Value':'Mean'})]) with open(log_file,"a+") as log: log.write("- Processed cocalled SNP data\n") if has_preserved: raw_snp_df = raw_snp_distance_df[['Comparison','Query_1','Query_2','Reference_ID','SNP_Distance']].rename(columns = {'SNP_Distance':'Raw_SNP_Distance'}) preserved_snp_df = preserved_snp_distance_df[['Comparison','Query_1','Query_2','Reference_ID','SNP_Distance']].rename(columns = {'SNP_Distance':'Preserved_SNP_Distance'}) snp_df = pd.merge(raw_snp_df,preserved_snp_df,how="left",on=['Comparison','Query_1','Query_2','Reference_ID']) snp_df['Preserved_Diff'] = abs(snp_df['Preserved_SNP_Distance'] - snp_df['Raw_SNP_Distance']) isolate_snp_df = pd.DataFrame(columns = ['Isolate_ID','Count','Min','Value','Max','StdDev']) for isolate in snp_isolates: temp_snp = snp_df[(snp_df['Query_1'] == isolate) | (snp_df['Query_2'] == isolate)].drop_duplicates(subset=['Comparison','Reference_ID']).assign(Isolate_ID = isolate) temp_snp = temp_snp.groupby(['Isolate_ID'])['Preserved_Diff'].agg(Count = "count", Min = "min", Value = "mean", Max = "max",StdDev = 'std').reset_index() isolate_snp_df = pd.concat([isolate_snp_df,temp_snp]) isolate_snp_df['Measure'] = 'Preserved_Diff' isolate_snp_df['Value'] = isolate_snp_df['Value'].astype("float") isolate_snp_df['Zscore'] = isolate_snp_df['Value'].transform(scipy.stats.zscore).astype('float').round(3) isolate_snp_df['Value'] = isolate_snp_df['Value'].astype('float').round(3) isolate_snp_df['QC'] = getWarnings(isolate_snp_df) # Format for final TSV isolate_snp_df['Isolate_Type'] = isolate_snp_df['Isolate_ID'].apply(lambda x: 'Reference' if x in reference_ids else 'Query') isolate_snp_df['StdDev'] = isolate_snp_df['StdDev'].astype('float').round(3) isolate_snp_stats = isolate_snp_df[['Isolate_ID','Isolate_Type','Measure','Min','Value','Max','StdDev','Zscore','QC','Count']].copy().rename(columns={'Value':'Mean'}) with open(log_file,"a+") as log: log.write("- Processed preserved SNP data\n") else: with open(log_file,"a+") as log: log.write("- No preserved SNP data to process\n") isolate_snp_stats = pd.DataFrame(columns = ['Isolate_ID','Isolate_Type','Measure','Min','Value','Max','StdDev','Zscore','QC','Count']) # Compare SNPs across refs if len(reference_ids) == 1: isolate_stdev_stats = pd.DataFrame(columns =['Isolate_ID','Isolate_Type','Measure','Min','Mean','Max','StdDev','Zscore','QC','Count']) with open(log_file,"a+") as log: log.write("- 1 reference provided, SNP distances have no comparisons\n") else: # Get comparison stats raw_comparison_df = raw_snp_distance_df.groupby(by=['Comparison'])['SNP_Distance'].agg(Count = 'count', Min = 'min', Mean = 'mean', Max = 'max', StdDev = 'std').reset_index() raw_comparison_df['StdDev'] = raw_comparison_df['StdDev'].astype('float').round(3) raw_comparison_df['Mean'] = raw_comparison_df['Mean'].astype('int') raw_comparison_df[['Query_1', 'Query_2']] = raw_comparison_df['Comparison'].str.split(';', expand=True) raw_comparison_df['SNP_Spread'] = abs(raw_comparison_df['Max'] - raw_comparison_df['Min']) comparison_df = raw_comparison_df[['Comparison','Query_1','Query_2','Mean','StdDev','Min','Max','SNP_Spread','Count']].copy() # Get isolate stats isolate_stdev_df = pd.DataFrame(columns = ['Isolate_ID','Count','Min','Value','Max','StdDev']) for isolate in snp_isolates: temp_compare = raw_comparison_df[(raw_comparison_df['Query_1'] == isolate) | (raw_comparison_df['Query_2'] == isolate)].drop_duplicates(subset=['Comparison']).assign(Isolate_ID = isolate) temp_compare = temp_compare.groupby(by=['Isolate_ID'])['StdDev'].agg(Count = 'count', Min = 'min', Value = 'mean', Max = 'max', StdDev = 'std').reset_index() isolate_stdev_df = pd.concat([isolate_stdev_df,temp_compare]) isolate_stdev_df['Measure'] = "Raw_Distance_StdDev" isolate_stdev_df['Value'] = isolate_stdev_df['Value'].astype("float") isolate_stdev_df['Zscore'] = isolate_stdev_df['Value'].transform(scipy.stats.zscore).astype('float').round(3) isolate_stdev_df['Value'] = isolate_stdev_df['Value'].astype('float').round(3) isolate_stdev_df['Isolate_Type'] = isolate_stdev_df['Isolate_ID'].apply(lambda x: 'Reference' if x in reference_ids else 'Query') isolate_stdev_df['QC'] = getWarnings(isolate_stdev_df) isolate_stdev_stats = isolate_stdev_df[['Isolate_ID','Isolate_Type','Measure','Min','Value','Max','StdDev','Zscore','QC','Count']].copy().rename(columns={'Value':'Mean'}) if has_preserved: comparison_df.columns = ['Comparison','Query_1','Query_2','Raw_Mean','Raw_StdDev','Raw_Min','Raw_Max','Raw_SNP_Spread','Raw_Count'] preserved_comparison_df = preserved_snp_distance_df.groupby(by=['Comparison'])['SNP_Distance'].agg(Preserved_Count = 'count', Preserved_Min = 'min', Preserved_Mean = 'mean', Preserved_Max = 'max', Preserved_StdDev = 'std').reset_index() preserved_comparison_df['Preserved_StdDev'] = preserved_comparison_df['Preserved_StdDev'].astype('float').round(3) preserved_comparison_df['Preserved_Mean'] = preserved_comparison_df['Preserved_Mean'].astype('int') preserved_comparison_df[['Query_1', 'Query_2']] = preserved_comparison_df['Comparison'].str.split(';', expand=True) preserved_comparison_df['Preserved_SNP_Spread'] = abs(preserved_comparison_df['Preserved_Max'] - preserved_comparison_df['Preserved_Min']) comparison_df = comparison_df.merge(preserved_comparison_df,how = "left", on=['Comparison','Query_1','Query_2']) comparison_df['Mean_Preserved_Diff'] = abs(comparison_df['Preserved_Mean'] - comparison_df['Raw_Mean']) comparison_df = comparison_df[['Query_1','Query_2','Raw_Mean','Preserved_Mean','Mean_Preserved_Diff','Raw_StdDev','Preserved_StdDev','Raw_SNP_Spread','Preserved_SNP_Spread','Raw_Min','Raw_Max','Preserved_Min','Preserved_Max','Raw_Count','Preserved_Count']] isolate_stdev_df = pd.DataFrame(columns = ['Isolate_ID','Count','Min','Value','Max','StdDev']) for isolate in snp_isolates: temp_compare = preserved_comparison_df[(preserved_comparison_df['Query_1'] == isolate) | (preserved_comparison_df['Query_2'] == isolate)].drop_duplicates(subset=['Comparison']).assign(Isolate_ID = isolate) temp_compare = temp_compare.groupby(by=['Isolate_ID'])['Preserved_StdDev'].agg(Count = 'count', Min = 'min', Value = 'mean', Max = 'max', StdDev = 'std').reset_index() isolate_stdev_df = pd.concat([isolate_stdev_df,temp_compare]) isolate_stdev_df['Measure'] = "Preserved_Distance_StdDev" isolate_stdev_df['Value'] = isolate_stdev_df['Value'].astype('float') isolate_stdev_df['Zscore'] = isolate_stdev_df['Value'].transform(scipy.stats.zscore).astype('float').round(3) isolate_stdev_df['Value'] = isolate_stdev_df['Value'].astype('float').round(3) isolate_stdev_df['Isolate_Type'] = isolate_stdev_df['Isolate_ID'].apply(lambda x: 'Reference' if x in reference_ids else 'Query') isolate_stdev_df['QC'] = getWarnings(isolate_stdev_df) isolate_stdev_stats = pd.concat([isolate_stdev_stats,isolate_stdev_df[['Isolate_ID','Isolate_Type','Measure','Min','Value','Max','StdDev','Zscore','QC','Count']].copy().rename(columns={'Value':'Mean'})]) with open(log_file,"a+") as log: log.write("- Compared results across references\n") else: with open(log_file,"a+") as log: log.write("- Compared results across references\n") # Group by ref #### Isolate #### ref_isolate_df = isolate_stats.loc[isolate_stats['Isolate_Type'] == "Reference"][['Isolate_ID','Measure','Mean','StdDev','Min','Max','Zscore','QC','Count']].rename(columns = {'Isolate_ID':'Reference_ID'}) #### StdDev #### ref_stdev_df = isolate_stdev_stats.loc[isolate_stdev_stats['Isolate_Type'] == "Reference"][['Isolate_ID','Measure','Mean','StdDev','Min','Max','Zscore','QC','Count']].rename(columns = {'Isolate_ID':'Reference_ID'}) #### MUMmer #### ref_mummer_df = pd.DataFrame(columns = ['Reference_ID','Measure','Mean','StdDev','Min','Max','Count']) for ref in reference_ids: ref_mummer = isolate_mummer[(isolate_mummer['Isolate_ID'] == ref) | (isolate_mummer['Compare_ID'] == ref)].assign(Focal_Reference = ref) ref_mummer['Comparison'] = ref_mummer.apply(lambda row: ';'.join(sorted([str(row['Isolate_ID']), str(row['Compare_ID'])])), axis=1) ref_mummer = ref_mummer.drop_duplicates(subset=['Comparison']) ref_mummer = ref_mummer.melt(id_vars=['Focal_Reference','Isolate_ID','Compare_ID'], value_vars = ['Align_Percent_Diff','Median_Alignment_Length','Kmer_Similarity','gIndels'],value_name='Value',var_name = "Measure") ref_mummer['Value'] = ref_mummer['Value'].astype("float") ref_mummer = ref_mummer.groupby(by=['Measure'])['Value'].agg(Count = "count",Min = "min",Mean = "mean",Max = "max",StdDev = 'std').reset_index().assign(Reference_ID = ref) ref_mummer = ref_mummer[['Reference_ID','Measure','Mean','StdDev','Min','Max','Count']] ref_mummer_df = pd.concat([ref_mummer_df,ref_mummer]) ref_mummer_df['QC'] = np.nan ref_mummer_df['Zscore'] = np.nan ref_mummer_summary_df = pd.concat([ref_mummer_df[['Reference_ID','Measure','Mean','StdDev','Min','Max','Zscore','QC','Count']],align_stats.loc[(align_stats['Isolate_Type'] == "Reference") & (align_stats['Measure'].isin(['Self_Aligned','Compare_Aligned','Unique_Kmers','Missing_Kmers']))][['Isolate_ID','Measure','Mean','StdDev','Min','Max','Zscore','QC','Count']].rename(columns = {'Isolate_ID':'Reference_ID'})]) #### Cocalled #### ref_cocalled_summary_df = raw_cocalled_df.groupby(by=['Reference_ID'])['SNPs_Cocalled'].agg(Mean = "mean",StdDev = 'std',Min = "min",Max = "max",Count = 'count').reset_index() ref_cocalled_summary_df['Measure'] = "Raw_SNPs_Cocalled" ref_cocalled_summary_df['QC'] = np.nan ref_cocalled_summary_df['Zscore'] = np.nan ref_cocalled_summary_df = ref_cocalled_summary_df[['Reference_ID','Measure','Mean','StdDev','Min','Max','Zscore','QC','Count']] if has_preserved: preserved_cocalled_summary = preserved_cocalled_df.groupby(by=['Reference_ID'])['SNPs_Cocalled'].agg(Mean = "mean",StdDev = 'std',Min = "min",Max = "max",Count = 'count').reset_index() preserved_cocalled_summary['Measure'] = "Preserved_SNPs_Cocalled" preserved_cocalled_summary['QC'] = np.nan preserved_cocalled_summary['Zscore'] = np.nan ref_cocalled_summary_df = pd.concat([ref_cocalled_summary_df,preserved_cocalled_summary[['Reference_ID','Measure','Mean','StdDev','Min','Max','Zscore','QC','Count']]]) #### Preserved Diff #### if has_preserved: ref_summary_preserved_df = snp_df.groupby(by=['Reference_ID'])['Preserved_Diff'].agg(Mean = "mean",StdDev = 'std',Min = "min",Max = "max",Count = 'count').reset_index() ref_summary_preserved_df['Measure'] = "Preserved_Diff" ref_summary_preserved_df['QC'] = np.nan ref_summary_preserved_df['Zscore'] = np.nan ref_summary_preserved_df = ref_summary_preserved_df[['Reference_ID','Measure','Mean','StdDev','Min','Max','Count','Zscore','QC']].copy() #### Compile #### ref_summary_df = pd.concat([ref_mummer_summary_df, ref_cocalled_summary_df, ref_isolate_df,ref_stdev_df]).sort_values(by=['Measure']) ref_summary_df['Mean'] = ref_summary_df['Mean'].astype("float").round(3) ref_summary_df['Min'] = ref_summary_df['Min'].astype("float").round(3) ref_summary_df['Max'] = ref_summary_df['Max'].astype("float").round(3) ref_summary_df['StdDev'] = ref_summary_df['StdDev'].astype("float").round(3) # Catch warnings and failures all_isolate_stats = pd.concat([isolate_stats,align_stats,isolate_stdev_stats,isolate_cocalled_stats,isolate_snp_stats]).sort_values(by=['Zscore']) warn_fail_df = all_isolate_stats.loc[all_isolate_stats['QC'].isin(['Failure','Warning'])].copy() warn_fail_df['abs_Zscore'] = warn_fail_df['Zscore'].abs() warn_fail_df = warn_fail_df.sort_values(by='abs_Zscore',ascending=False).drop('abs_Zscore',axis=1) warn_fail_isolates = list(set(warn_fail_df['Isolate_ID'])) if len(warn_fail_isolates) > 0: with open(log_file,"a+") as log: log.write("\n- The following samples had QC warnings or failures:\n") for isolate in warn_fail_isolates: isolate_warn_fail = warn_fail_df.loc[warn_fail_df['Isolate_ID'] == isolate] if isolate in reference_ids: log.write(f"\n{isolate} (Reference):\n") else: log.write(f"\n{isolate} (Query):\n") for index,row in isolate_warn_fail.iterrows(): log.write(f"\t- {row['Measure']} - Mean: {row['Mean']}; Zscore: {row['Zscore']}; QC: {row['QC']}\n") else: with open(log_file,"a+") as log: log.write("-There were no QC warnings or failures\n") # Output data # Mean assembly stats isolate_mean_df.reset_index().to_csv(mean_isolate_file,sep='\t',index=False) # Isolate assembly stats isolate_assembly_stats = isolate_stats.loc[isolate_stats['Measure'].isin(['Contig_Count','Assembly_Bases','L50','L90','N50','N90'])].drop(['Min','Max','StdDev','Count'],axis=1).rename(columns = {'Mean':'Value'}) isolate_assembly_stats.to_csv(isolate_assembly_stats_file,sep='\t',index=False) # Isolate alignment stats isolate_align_stats = pd.concat([align_stats,isolate_cocalled_stats,isolate_snp_stats,isolate_stdev_stats]).reset_index(drop=True) for col in ['Min', 'Mean', 'Max', 'StdDev', 'Zscore']: isolate_align_stats[col] = isolate_align_stats[col].astype("float").round(3) isolate_align_stats.to_csv(align_stats_file,sep='\t',index=False) # Reference Assembly Stats ref_align_summary_df = ref_summary_df.loc[(~ref_summary_df['Measure'].isin(['Contig_Count','Assembly_Bases','L50','L90','N50','N90'])) & (~pd.isna(ref_summary_df['Zscore']))] ref_mean_summary_df = ref_summary_df.loc[(~ref_summary_df['Measure'].isin(['Contig_Count','Assembly_Bases','L50','L90','N50','N90'])) & (pd.isna(ref_summary_df['Zscore']))].drop(['Zscore','QC'],axis =1) ref_mean_summary_df['Zscore'] = np.nan ref_mean_summary_df['QC'] = np.nan # Add alignment stats if has_preserved: ref_mean_summary_df = pd.concat([ref_mean_summary_df,ref_summary_preserved_df]) ref_isolate_align_stats = align_stats.loc[(align_stats['Isolate_Type'] == "Reference") & (align_stats['Measure'].isin(['Self_Aligned','Compare_Aligned']))].drop(['Isolate_Type'],axis=1).rename(columns = {'Isolate_ID':'Reference_ID'})[['Reference_ID','Measure','Mean','StdDev','Min','Max','Count','Zscore','QC']] ref_mean_summary_stats = pd.concat([ref_mean_summary_df,ref_isolate_align_stats]) ref_mean_summary_stats.to_csv(ref_mean_summary_file,sep='\t',index=False) end_time = time.time() with open(log_file,"a+") as log: log.write(f"\n- Completed compilation in {end_time - start_time:.2f} seconds\n") log.write(f"\t- Saved mean isolate assembly data to {mean_isolate_file}\n") log.write(f"\t- Saved raw isolate assembly data to {isolate_assembly_stats_file}\n") log.write(f"\t- Saved isolate alignment data to {align_stats_file}\n") log.write(f"\t- Saved reference summary data to {ref_mean_summary_file}\n") # Comparisons if multiple refs if len(reference_ids) > 1: comparison_df.to_csv(snp_comparison_file,sep="\t",index = False) log.write(f"\t- Saved SNP distance comparisons across references to {snp_comparison_file}\n") # Failures/warnings if warn_fail_df.shape[0] > 0: warn_fail_df.to_csv(qc_file,sep="\t",index=False) log.write(f"\t- Saved QC warnings/failures to {qc_file}\n")