Mercurial > repos > rliterman > csp2
view CSP2/CSP2_env/env-d9b9114564458d9d-741b3de822f2aaca6c6caa4325c4afce/include/kj/debug.h @ 69:33d812a61356
planemo upload commit 2e9511a184a1ca667c7be0c6321a36dc4e3d116d
author | jpayne |
---|---|
date | Tue, 18 Mar 2025 17:55:14 -0400 |
parents | |
children |
line wrap: on
line source
// Copyright (c) 2013-2014 Sandstorm Development Group, Inc. and contributors // Licensed under the MIT License: // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN // THE SOFTWARE. // This file declares convenient macros for debug logging and error handling. The macros make // it excessively easy to extract useful context information from code. Example: // // KJ_ASSERT(a == b, a, b, "a and b must be the same."); // // On failure, this will throw an exception whose description looks like: // // myfile.c++:43: bug in code: expected a == b; a = 14; b = 72; a and b must be the same. // // As you can see, all arguments after the first provide additional context. // // The macros available are: // // * `KJ_LOG(severity, ...)`: Just writes a log message, to stderr by default (but you can // intercept messages by implementing an ExceptionCallback). `severity` is `INFO`, `WARNING`, // `ERROR`, or `FATAL`. By default, `INFO` logs are not written, but for command-line apps the // user should be able to pass a flag like `--verbose` to enable them. Other log levels are // enabled by default. Log messages -- like exceptions -- can be intercepted by registering an // ExceptionCallback. // // * `KJ_DBG(...)`: Like `KJ_LOG`, but intended specifically for temporary log lines added while // debugging a particular problem. Calls to `KJ_DBG` should always be deleted before committing // code. It is suggested that you set up a pre-commit hook that checks for this. // // * `KJ_ASSERT(condition, ...)`: Throws an exception if `condition` is false, or aborts if // exceptions are disabled. This macro should be used to check for bugs in the surrounding code // and its dependencies, but NOT to check for invalid input. The macro may be followed by a // brace-delimited code block; if so, the block will be executed in the case where the assertion // fails, before throwing the exception. If control jumps out of the block (e.g. with "break", // "return", or "goto"), then the error is considered "recoverable" -- in this case, if // exceptions are disabled, execution will continue normally rather than aborting (but if // exceptions are enabled, an exception will still be thrown on exiting the block). A "break" // statement in particular will jump to the code immediately after the block (it does not break // any surrounding loop or switch). Example: // // KJ_ASSERT(value >= 0, "Value cannot be negative.", value) { // // Assertion failed. Set value to zero to "recover". // value = 0; // // Don't abort if exceptions are disabled. Continue normally. // // (Still throw an exception if they are enabled, though.) // break; // } // // When exceptions are disabled, we'll get here even if the assertion fails. // // Otherwise, we get here only if the assertion passes. // // * `KJ_REQUIRE(condition, ...)`: Like `KJ_ASSERT` but used to check preconditions -- e.g. to // validate parameters passed from a caller. A failure indicates that the caller is buggy. // // * `KJ_ASSUME(condition, ...)`: Like `KJ_ASSERT`, but in release mode (if KJ_DEBUG is not // defined; see below) instead warrants to the compiler that the condition can be assumed to // hold, allowing it to optimize accordingly. This can result in undefined behavior, so use // this macro *only* if you can prove to your satisfaction that the condition is guaranteed by // surrounding code, and if the condition failing to hold would in any case result in undefined // behavior in its dependencies. // // * `KJ_SYSCALL(code, ...)`: Executes `code` assuming it makes a system call. A negative result // is considered an error, with error code reported via `errno`. EINTR is handled by retrying. // Other errors are handled by throwing an exception. If you need to examine the return code, // assign it to a variable like so: // // int fd; // KJ_SYSCALL(fd = open(filename, O_RDONLY), filename); // // `KJ_SYSCALL` can be followed by a recovery block, just like `KJ_ASSERT`. // // * `KJ_NONBLOCKING_SYSCALL(code, ...)`: Like KJ_SYSCALL, but will not throw an exception on // EAGAIN/EWOULDBLOCK. The calling code should check the syscall's return value to see if it // indicates an error; in this case, it can assume the error was EAGAIN because any other error // would have caused an exception to be thrown. // // * `KJ_CONTEXT(...)`: Notes additional contextual information relevant to any exceptions thrown // from within the current scope. That is, until control exits the block in which KJ_CONTEXT() // is used, if any exception is generated, it will contain the given information in its context // chain. This is helpful because it can otherwise be very difficult to come up with error // messages that make sense within low-level helper code. Note that the parameters to // KJ_CONTEXT() are only evaluated if an exception is thrown. This implies that any variables // used must remain valid until the end of the scope. // // Notes: // * Do not write expressions with side-effects in the message content part of the macro, as the // message will not necessarily be evaluated. // * For every macro `FOO` above except `LOG`, there is also a `FAIL_FOO` macro used to report // failures that already happened. For the macros that check a boolean condition, `FAIL_FOO` // omits the first parameter and behaves like it was `false`. `FAIL_SYSCALL` and // `FAIL_RECOVERABLE_SYSCALL` take a string and an OS error number as the first two parameters. // The string should be the name of the failed system call. // * For every macro `FOO` above except `ASSUME`, there is a `DFOO` version (or // `RECOVERABLE_DFOO`) which is only executed in debug mode, i.e. when KJ_DEBUG is defined. // KJ_DEBUG is defined automatically by common.h when compiling without optimization (unless // NDEBUG is defined), but you can also define it explicitly (e.g. -DKJ_DEBUG). Generally, // production builds should NOT use KJ_DEBUG as it may enable expensive checks that are unlikely // to fail. #pragma once #include "string.h" #include "exception.h" #include "windows-sanity.h" // work-around macro conflict with `ERROR` KJ_BEGIN_HEADER namespace kj { #if KJ_MSVC_TRADITIONAL_CPP // MSVC does __VA_ARGS__ differently from GCC: // - A trailing comma before an empty __VA_ARGS__ is removed automatically, whereas GCC wants // you to request this behavior with "##__VA_ARGS__". // - If __VA_ARGS__ is passed directly as an argument to another macro, it will be treated as a // *single* argument rather than an argument list. This can be worked around by wrapping the // outer macro call in KJ_EXPAND(), which apparently forces __VA_ARGS__ to be expanded before // the macro is evaluated. I don't understand the C preprocessor. // - Using "#__VA_ARGS__" to stringify __VA_ARGS__ expands to zero tokens when __VA_ARGS__ is // empty, rather than expanding to an empty string literal. We can work around by concatenating // with an empty string literal. #define KJ_EXPAND(X) X #define KJ_LOG(severity, ...) \ for (bool _kj_shouldLog = ::kj::_::Debug::shouldLog(::kj::LogSeverity::severity); \ _kj_shouldLog; _kj_shouldLog = false) \ ::kj::_::Debug::log(__FILE__, __LINE__, ::kj::LogSeverity::severity, \ "" #__VA_ARGS__, __VA_ARGS__) #define KJ_DBG(...) KJ_EXPAND(KJ_LOG(DBG, __VA_ARGS__)) #define KJ_REQUIRE(cond, ...) \ if (auto _kjCondition = ::kj::_::MAGIC_ASSERT << cond) {} else \ for (::kj::_::Debug::Fault f(__FILE__, __LINE__, ::kj::Exception::Type::FAILED, \ #cond, "_kjCondition," #__VA_ARGS__, _kjCondition, __VA_ARGS__);; f.fatal()) #define KJ_FAIL_REQUIRE(...) \ for (::kj::_::Debug::Fault f(__FILE__, __LINE__, ::kj::Exception::Type::FAILED, \ nullptr, "" #__VA_ARGS__, __VA_ARGS__);; f.fatal()) #define KJ_SYSCALL(call, ...) \ if (auto _kjSyscallResult = ::kj::_::Debug::syscall([&](){return (call);}, false)) {} else \ for (::kj::_::Debug::Fault f(__FILE__, __LINE__, \ _kjSyscallResult.getErrorNumber(), #call, "" #__VA_ARGS__, __VA_ARGS__);; f.fatal()) #define KJ_NONBLOCKING_SYSCALL(call, ...) \ if (auto _kjSyscallResult = ::kj::_::Debug::syscall([&](){return (call);}, true)) {} else \ for (::kj::_::Debug::Fault f(__FILE__, __LINE__, \ _kjSyscallResult.getErrorNumber(), #call, "" #__VA_ARGS__, __VA_ARGS__);; f.fatal()) #define KJ_FAIL_SYSCALL(code, errorNumber, ...) \ for (::kj::_::Debug::Fault f(__FILE__, __LINE__, \ errorNumber, code, "" #__VA_ARGS__, __VA_ARGS__);; f.fatal()) #if _WIN32 || __CYGWIN__ #define KJ_WIN32(call, ...) \ if (auto _kjWin32Result = ::kj::_::Debug::win32Call(call)) {} else \ for (::kj::_::Debug::Fault f(__FILE__, __LINE__, \ _kjWin32Result, #call, "" #__VA_ARGS__, __VA_ARGS__);; f.fatal()) #define KJ_WINSOCK(call, ...) \ if (auto _kjWin32Result = ::kj::_::Debug::winsockCall(call)) {} else \ for (::kj::_::Debug::Fault f(__FILE__, __LINE__, \ _kjWin32Result, #call, "" #__VA_ARGS__, __VA_ARGS__);; f.fatal()) #define KJ_FAIL_WIN32(code, errorNumber, ...) \ for (::kj::_::Debug::Fault f(__FILE__, __LINE__, \ ::kj::_::Debug::Win32Result(errorNumber), code, "" #__VA_ARGS__, __VA_ARGS__);; f.fatal()) #endif #define KJ_UNIMPLEMENTED(...) \ for (::kj::_::Debug::Fault f(__FILE__, __LINE__, ::kj::Exception::Type::UNIMPLEMENTED, \ nullptr, "" #__VA_ARGS__, __VA_ARGS__);; f.fatal()) // TODO(msvc): MSVC mis-deduces `ContextImpl<decltype(func)>` as `ContextImpl<int>` in some edge // cases, such as inside nested lambdas inside member functions. Wrapping the type in // `decltype(instance<...>())` helps it deduce the context function's type correctly. #define KJ_CONTEXT(...) \ auto KJ_UNIQUE_NAME(_kjContextFunc) = [&]() -> ::kj::_::Debug::Context::Value { \ return ::kj::_::Debug::Context::Value(__FILE__, __LINE__, \ ::kj::_::Debug::makeDescription("" #__VA_ARGS__, __VA_ARGS__)); \ }; \ decltype(::kj::instance<::kj::_::Debug::ContextImpl<decltype(KJ_UNIQUE_NAME(_kjContextFunc))>>()) \ KJ_UNIQUE_NAME(_kjContext)(KJ_UNIQUE_NAME(_kjContextFunc)) #define KJ_REQUIRE_NONNULL(value, ...) \ (*[&] { \ auto _kj_result = ::kj::_::readMaybe(value); \ if (KJ_UNLIKELY(!_kj_result)) { \ ::kj::_::Debug::Fault(__FILE__, __LINE__, ::kj::Exception::Type::FAILED, \ #value " != nullptr", "" #__VA_ARGS__, __VA_ARGS__).fatal(); \ } \ return _kj_result; \ }()) #define KJ_EXCEPTION(type, ...) \ ::kj::Exception(::kj::Exception::Type::type, __FILE__, __LINE__, \ ::kj::_::Debug::makeDescription("" #__VA_ARGS__, __VA_ARGS__)) #else #define KJ_LOG(severity, ...) \ for (bool _kj_shouldLog = ::kj::_::Debug::shouldLog(::kj::LogSeverity::severity); \ _kj_shouldLog; _kj_shouldLog = false) \ ::kj::_::Debug::log(__FILE__, __LINE__, ::kj::LogSeverity::severity, \ #__VA_ARGS__, ##__VA_ARGS__) #define KJ_DBG(...) KJ_LOG(DBG, ##__VA_ARGS__) #define KJ_REQUIRE(cond, ...) \ if (auto _kjCondition = ::kj::_::MAGIC_ASSERT << cond) {} else \ for (::kj::_::Debug::Fault f(__FILE__, __LINE__, ::kj::Exception::Type::FAILED, \ #cond, "_kjCondition," #__VA_ARGS__, _kjCondition, ##__VA_ARGS__);; f.fatal()) #define KJ_FAIL_REQUIRE(...) \ for (::kj::_::Debug::Fault f(__FILE__, __LINE__, ::kj::Exception::Type::FAILED, \ nullptr, #__VA_ARGS__, ##__VA_ARGS__);; f.fatal()) #define KJ_SYSCALL(call, ...) \ if (auto _kjSyscallResult = ::kj::_::Debug::syscall([&](){return (call);}, false)) {} else \ for (::kj::_::Debug::Fault f(__FILE__, __LINE__, \ _kjSyscallResult.getErrorNumber(), #call, #__VA_ARGS__, ##__VA_ARGS__);; f.fatal()) #define KJ_NONBLOCKING_SYSCALL(call, ...) \ if (auto _kjSyscallResult = ::kj::_::Debug::syscall([&](){return (call);}, true)) {} else \ for (::kj::_::Debug::Fault f(__FILE__, __LINE__, \ _kjSyscallResult.getErrorNumber(), #call, #__VA_ARGS__, ##__VA_ARGS__);; f.fatal()) #define KJ_FAIL_SYSCALL(code, errorNumber, ...) \ for (::kj::_::Debug::Fault f(__FILE__, __LINE__, \ errorNumber, code, #__VA_ARGS__, ##__VA_ARGS__);; f.fatal()) #if _WIN32 || __CYGWIN__ #define KJ_WIN32(call, ...) \ if (auto _kjWin32Result = ::kj::_::Debug::win32Call(call)) {} else \ for (::kj::_::Debug::Fault f(__FILE__, __LINE__, \ _kjWin32Result, #call, #__VA_ARGS__, ##__VA_ARGS__);; f.fatal()) // Invoke a Win32 syscall that returns either BOOL or HANDLE, and throw an exception if it fails. #define KJ_WINSOCK(call, ...) \ if (auto _kjWin32Result = ::kj::_::Debug::winsockCall(call)) {} else \ for (::kj::_::Debug::Fault f(__FILE__, __LINE__, \ _kjWin32Result, #call, #__VA_ARGS__, ##__VA_ARGS__);; f.fatal()) // Like KJ_WIN32 but for winsock calls which return `int` with SOCKET_ERROR indicating failure. // // Unfortunately, it's impossible to distinguish these from BOOL-returning Win32 calls by type, // since BOOL is in fact an alias for `int`. :( #define KJ_FAIL_WIN32(code, errorNumber, ...) \ for (::kj::_::Debug::Fault f(__FILE__, __LINE__, \ ::kj::_::Debug::Win32Result(errorNumber), code, #__VA_ARGS__, ##__VA_ARGS__);; f.fatal()) #endif #define KJ_UNIMPLEMENTED(...) \ for (::kj::_::Debug::Fault f(__FILE__, __LINE__, ::kj::Exception::Type::UNIMPLEMENTED, \ nullptr, #__VA_ARGS__, ##__VA_ARGS__);; f.fatal()) #define KJ_CONTEXT(...) \ auto KJ_UNIQUE_NAME(_kjContextFunc) = [&]() -> ::kj::_::Debug::Context::Value { \ return ::kj::_::Debug::Context::Value(__FILE__, __LINE__, \ ::kj::_::Debug::makeDescription(#__VA_ARGS__, ##__VA_ARGS__)); \ }; \ ::kj::_::Debug::ContextImpl<decltype(KJ_UNIQUE_NAME(_kjContextFunc))> \ KJ_UNIQUE_NAME(_kjContext)(KJ_UNIQUE_NAME(_kjContextFunc)) #if _MSC_VER && !defined(__clang__) #define KJ_REQUIRE_NONNULL(value, ...) \ (*([&] { \ auto _kj_result = ::kj::_::readMaybe(value); \ if (KJ_UNLIKELY(!_kj_result)) { \ ::kj::_::Debug::Fault(__FILE__, __LINE__, ::kj::Exception::Type::FAILED, \ #value " != nullptr", #__VA_ARGS__, ##__VA_ARGS__).fatal(); \ } \ return _kj_result; \ }())) #else #define KJ_REQUIRE_NONNULL(value, ...) \ (*({ \ auto _kj_result = ::kj::_::readMaybe(value); \ if (KJ_UNLIKELY(!_kj_result)) { \ ::kj::_::Debug::Fault(__FILE__, __LINE__, ::kj::Exception::Type::FAILED, \ #value " != nullptr", #__VA_ARGS__, ##__VA_ARGS__).fatal(); \ } \ kj::mv(_kj_result); \ })) #endif #define KJ_EXCEPTION(type, ...) \ ::kj::Exception(::kj::Exception::Type::type, __FILE__, __LINE__, \ ::kj::_::Debug::makeDescription(#__VA_ARGS__, ##__VA_ARGS__)) #endif #define KJ_SYSCALL_HANDLE_ERRORS(call) \ if (int _kjSyscallError = ::kj::_::Debug::syscallError([&](){return (call);}, false)) \ switch (int error KJ_UNUSED = _kjSyscallError) // Like KJ_SYSCALL, but doesn't throw. Instead, the block after the macro is a switch block on the // error. Additionally, the int value `error` is defined within the block. So you can do: // // KJ_SYSCALL_HANDLE_ERRORS(foo()) { // case ENOENT: // handleNoSuchFile(); // break; // case EEXIST: // handleExists(); // break; // default: // KJ_FAIL_SYSCALL("foo()", error); // } else { // handleSuccessCase(); // } #if _WIN32 || __CYGWIN__ #define KJ_WIN32_HANDLE_ERRORS(call) \ if (uint _kjWin32Error = ::kj::_::Debug::win32Call(call).number) \ switch (uint error KJ_UNUSED = _kjWin32Error) // Like KJ_WIN32, but doesn't throw. Instead, the block after the macro is a switch block on the // error. Additionally, the int value `error` is defined within the block. So you can do: // // KJ_SYSCALL_HANDLE_ERRORS(foo()) { // case ERROR_FILE_NOT_FOUND: // handleNoSuchFile(); // break; // case ERROR_FILE_EXISTS: // handleExists(); // break; // default: // KJ_FAIL_WIN32("foo()", error); // } else { // handleSuccessCase(); // } #endif #define KJ_ASSERT KJ_REQUIRE #define KJ_FAIL_ASSERT KJ_FAIL_REQUIRE #define KJ_ASSERT_NONNULL KJ_REQUIRE_NONNULL // Use "ASSERT" in place of "REQUIRE" when the problem is local to the immediate surrounding code. // That is, if the assert ever fails, it indicates that the immediate surrounding code is broken. #ifdef KJ_DEBUG #define KJ_DLOG KJ_LOG #define KJ_DASSERT KJ_ASSERT #define KJ_DREQUIRE KJ_REQUIRE #define KJ_ASSUME KJ_ASSERT #else #define KJ_DLOG(...) do {} while (false) #define KJ_DASSERT(...) do {} while (false) #define KJ_DREQUIRE(...) do {} while (false) #if defined(__GNUC__) #define KJ_ASSUME(cond, ...) do { if (cond) {} else __builtin_unreachable(); } while (false) #elif defined(__clang__) #define KJ_ASSUME(cond, ...) __builtin_assume(cond) #elif defined(_MSC_VER) #define KJ_ASSUME(cond, ...) __assume(cond) #else #define KJ_ASSUME(...) do {} while (false) #endif #endif namespace _ { // private class Debug { public: Debug() = delete; typedef LogSeverity Severity; // backwards-compatibility #if _WIN32 || __CYGWIN__ struct Win32Result { uint number; inline explicit Win32Result(uint number): number(number) {} operator bool() const { return number == 0; } }; #endif static inline bool shouldLog(LogSeverity severity) { return severity >= minSeverity; } // Returns whether messages of the given severity should be logged. static inline void setLogLevel(LogSeverity severity) { minSeverity = severity; } // Set the minimum message severity which will be logged. // // TODO(someday): Expose publicly. template <typename... Params> static void log(const char* file, int line, LogSeverity severity, const char* macroArgs, Params&&... params); class Fault { public: template <typename Code, typename... Params> Fault(const char* file, int line, Code code, const char* condition, const char* macroArgs, Params&&... params); Fault(const char* file, int line, Exception::Type type, const char* condition, const char* macroArgs); Fault(const char* file, int line, int osErrorNumber, const char* condition, const char* macroArgs); #if _WIN32 || __CYGWIN__ Fault(const char* file, int line, Win32Result osErrorNumber, const char* condition, const char* macroArgs); #endif ~Fault() noexcept(false); KJ_NOINLINE KJ_NORETURN(void fatal()); // Throw the exception. private: void init(const char* file, int line, Exception::Type type, const char* condition, const char* macroArgs, ArrayPtr<String> argValues); void init(const char* file, int line, int osErrorNumber, const char* condition, const char* macroArgs, ArrayPtr<String> argValues); #if _WIN32 || __CYGWIN__ void init(const char* file, int line, Win32Result osErrorNumber, const char* condition, const char* macroArgs, ArrayPtr<String> argValues); #endif Exception* exception; }; class SyscallResult { public: inline SyscallResult(int errorNumber): errorNumber(errorNumber) {} inline operator void*() { return errorNumber == 0 ? this : nullptr; } inline int getErrorNumber() { return errorNumber; } private: int errorNumber; }; template <typename Call> static SyscallResult syscall(Call&& call, bool nonblocking); template <typename Call> static int syscallError(Call&& call, bool nonblocking); #if _WIN32 || __CYGWIN__ static Win32Result win32Call(int boolean); static Win32Result win32Call(void* handle); static Win32Result winsockCall(int result); static uint getWin32ErrorCode(); #endif class Context: public ExceptionCallback { public: Context(); KJ_DISALLOW_COPY_AND_MOVE(Context); virtual ~Context() noexcept(false); struct Value { const char* file; int line; String description; inline Value(const char* file, int line, String&& description) : file(file), line(line), description(mv(description)) {} }; virtual Value evaluate() = 0; virtual void onRecoverableException(Exception&& exception) override; virtual void onFatalException(Exception&& exception) override; virtual void logMessage(LogSeverity severity, const char* file, int line, int contextDepth, String&& text) override; private: bool logged; Maybe<Value> value; Value ensureInitialized(); }; template <typename Func> class ContextImpl: public Context { public: inline ContextImpl(Func& func): func(func) {} KJ_DISALLOW_COPY_AND_MOVE(ContextImpl); Value evaluate() override { return func(); } private: Func& func; }; template <typename... Params> static String makeDescription(const char* macroArgs, Params&&... params); private: static LogSeverity minSeverity; static void logInternal(const char* file, int line, LogSeverity severity, const char* macroArgs, ArrayPtr<String> argValues); static String makeDescriptionInternal(const char* macroArgs, ArrayPtr<String> argValues); static int getOsErrorNumber(bool nonblocking); // Get the error code of the last error (e.g. from errno). Returns -1 on EINTR. }; template <typename... Params> void Debug::log(const char* file, int line, LogSeverity severity, const char* macroArgs, Params&&... params) { String argValues[sizeof...(Params)] = {str(params)...}; logInternal(file, line, severity, macroArgs, arrayPtr(argValues, sizeof...(Params))); } template <> inline void Debug::log<>(const char* file, int line, LogSeverity severity, const char* macroArgs) { logInternal(file, line, severity, macroArgs, nullptr); } template <typename Code, typename... Params> Debug::Fault::Fault(const char* file, int line, Code code, const char* condition, const char* macroArgs, Params&&... params) : exception(nullptr) { String argValues[sizeof...(Params)] = {str(params)...}; init(file, line, code, condition, macroArgs, arrayPtr(argValues, sizeof...(Params))); } inline Debug::Fault::Fault(const char* file, int line, int osErrorNumber, const char* condition, const char* macroArgs) : exception(nullptr) { init(file, line, osErrorNumber, condition, macroArgs, nullptr); } inline Debug::Fault::Fault(const char* file, int line, kj::Exception::Type type, const char* condition, const char* macroArgs) : exception(nullptr) { init(file, line, type, condition, macroArgs, nullptr); } #if _WIN32 || __CYGWIN__ inline Debug::Fault::Fault(const char* file, int line, Win32Result osErrorNumber, const char* condition, const char* macroArgs) : exception(nullptr) { init(file, line, osErrorNumber, condition, macroArgs, nullptr); } inline Debug::Win32Result Debug::win32Call(int boolean) { return boolean ? Win32Result(0) : Win32Result(getWin32ErrorCode()); } inline Debug::Win32Result Debug::win32Call(void* handle) { // Assume null and INVALID_HANDLE_VALUE mean failure. return win32Call(handle != nullptr && handle != (void*)-1); } inline Debug::Win32Result Debug::winsockCall(int result) { // Expect a return value of SOCKET_ERROR means failure. return win32Call(result != -1); } #endif template <typename Call> Debug::SyscallResult Debug::syscall(Call&& call, bool nonblocking) { while (call() < 0) { int errorNum = getOsErrorNumber(nonblocking); // getOsErrorNumber() returns -1 to indicate EINTR. // Also, if nonblocking is true, then it returns 0 on EAGAIN, which will then be treated as a // non-error. if (errorNum != -1) { return SyscallResult(errorNum); } } return SyscallResult(0); } template <typename Call> int Debug::syscallError(Call&& call, bool nonblocking) { while (call() < 0) { int errorNum = getOsErrorNumber(nonblocking); // getOsErrorNumber() returns -1 to indicate EINTR. // Also, if nonblocking is true, then it returns 0 on EAGAIN, which will then be treated as a // non-error. if (errorNum != -1) { return errorNum; } } return 0; } template <typename... Params> String Debug::makeDescription(const char* macroArgs, Params&&... params) { String argValues[sizeof...(Params)] = {str(params)...}; return makeDescriptionInternal(macroArgs, arrayPtr(argValues, sizeof...(Params))); } template <> inline String Debug::makeDescription<>(const char* macroArgs) { return makeDescriptionInternal(macroArgs, nullptr); } // ======================================================================================= // Magic Asserts! // // When KJ_ASSERT(foo == bar) fails, `foo` and `bar`'s actual values will be stringified in the // error message. How does it work? We use template magic and operator precedence. The assertion // actually evaluates something like this: // // if (auto _kjCondition = kj::_::MAGIC_ASSERT << foo == bar) // // `<<` has operator precedence slightly above `==`, so `kj::_::MAGIC_ASSERT << foo` gets evaluated // first. This wraps `foo` in a little wrapper that captures the comparison operators and keeps // enough information around to be able to stringify the left and right sides of the comparison // independently. As always, the stringification only actually occurs if the assert fails. // // You might ask why we use operator `<<` and not e.g. operator `<=`, since operators of the same // precedence are evaluated left-to-right. The answer is that some compilers trigger all sorts of // warnings when you seem to be using a comparison as the input to another comparison. The // particular warning GCC produces is its general "-Wparentheses" warning which is broadly useful, // so we don't want to disable it. `<<` also produces some warnings, but only on Clang and the // specific warning is one we're comfortable disabling (see below). This does mean that we have to // explicitly overload `operator<<` ourselves to make sure using it in an assert still works. // // You might also ask, if we're using operator `<<` anyway, why not start it from the right, in // which case it would bind after computing any `<<` operators that were actually in the user's // code? I tried this, but it resulted in a somewhat broader warning from clang that I felt worse // about disabling (a warning about `<<` precedence not applying specifically to overloads) and // also created ambiguous overload errors in the KJ units code. #if __clang__ // We intentionally overload operator << for the specific purpose of evaluating it before // evaluating comparison expressions, so stop Clang from warning about it. Unfortunately this means // eliminating a warning that would otherwise be useful for people using iostreams... sorry. #pragma GCC diagnostic ignored "-Woverloaded-shift-op-parentheses" #endif template <typename T> struct DebugExpression; template <typename T, typename = decltype(toCharSequence(instance<T&>()))> inline auto tryToCharSequence(T* value) { return kj::toCharSequence(*value); } inline StringPtr tryToCharSequence(...) { return "(can't stringify)"_kj; } // SFINAE to stringify a value if and only if it can be stringified. template <typename Left, typename Right> struct DebugComparison { Left left; Right right; StringPtr op; bool result; inline operator bool() const { return KJ_LIKELY(result); } template <typename T> inline void operator&(T&& other) = delete; template <typename T> inline void operator^(T&& other) = delete; template <typename T> inline void operator|(T&& other) = delete; }; template <typename Left, typename Right> String KJ_STRINGIFY(DebugComparison<Left, Right>& cmp) { return _::concat(tryToCharSequence(&cmp.left), cmp.op, tryToCharSequence(&cmp.right)); } template <typename T> struct DebugExpression { DebugExpression(T&& value): value(kj::fwd<T>(value)) {} T value; // Handle comparison operations by constructing a DebugComparison value. #define DEFINE_OPERATOR(OP) \ template <typename U> \ DebugComparison<T, U> operator OP(U&& other) { \ bool result = value OP other; \ return { kj::fwd<T>(value), kj::fwd<U>(other), " " #OP " "_kj, result }; \ } DEFINE_OPERATOR(==); DEFINE_OPERATOR(!=); DEFINE_OPERATOR(<=); DEFINE_OPERATOR(>=); DEFINE_OPERATOR(< ); DEFINE_OPERATOR(> ); #undef DEFINE_OPERATOR // Handle binary operators that have equal or lower precedence than comparisons by performing // the operation and wrapping the result. #define DEFINE_OPERATOR(OP) \ template <typename U> inline auto operator OP(U&& other) { \ return DebugExpression<decltype(kj::fwd<T>(value) OP kj::fwd<U>(other))>(\ kj::fwd<T>(value) OP kj::fwd<U>(other)); \ } DEFINE_OPERATOR(<<); DEFINE_OPERATOR(>>); DEFINE_OPERATOR(&); DEFINE_OPERATOR(^); DEFINE_OPERATOR(|); #undef DEFINE_OPERATOR inline operator bool() { // No comparison performed, we're just asserting the expression is truthy. This also covers // the case of the logic operators && and || -- we cannot overload those because doing so would // break short-circuiting behavior. return value; } }; template <typename T> StringPtr KJ_STRINGIFY(const DebugExpression<T>& exp) { // Hack: This will only ever be called in cases where the expression's truthiness was asserted // directly, and was determined to be falsy. return "false"_kj; } struct DebugExpressionStart { template <typename T> DebugExpression<T> operator<<(T&& value) const { return DebugExpression<T>(kj::fwd<T>(value)); } }; static constexpr DebugExpressionStart MAGIC_ASSERT; } // namespace _ (private) } // namespace kj KJ_END_HEADER