Mercurial > repos > rliterman > csp2
view CSP2/CSP2_env/env-d9b9114564458d9d-741b3de822f2aaca6c6caa4325c4afce/include/kj/map.h @ 69:33d812a61356
planemo upload commit 2e9511a184a1ca667c7be0c6321a36dc4e3d116d
author | jpayne |
---|---|
date | Tue, 18 Mar 2025 17:55:14 -0400 |
parents | |
children |
line wrap: on
line source
// Copyright (c) 2018 Kenton Varda and contributors // Licensed under the MIT License: // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN // THE SOFTWARE. #pragma once #include "table.h" #include "hash.h" KJ_BEGIN_HEADER namespace kj { template <typename Key, typename Value> class HashMap { // A key/value mapping backed by hashing. // // `Key` must be hashable (via a `.hashCode()` method or `KJ_HASHCODE()`; see `hash.h`) and must // implement `operator==()`. Additionally, when performing lookups, you can use key types other // than `Key` as long as the other type is also hashable (producing the same hash codes) and // there is an `operator==` implementation with `Key` on the left and that other type on the // right. For example, if the key type is `String`, you can pass `StringPtr` to `find()`. public: void reserve(size_t size); // Pre-allocates space for a map of the given size. size_t size() const; size_t capacity() const; void clear(); struct Entry { Key key; Value value; }; Entry* begin(); Entry* end(); const Entry* begin() const; const Entry* end() const; // Deterministic iteration. If you only ever insert(), iteration order will be insertion order. // If you erase(), the erased element is swapped with the last element in the ordering. Entry& insert(Key key, Value value); // Inserts a new entry. Throws if the key already exists. template <typename Collection> void insertAll(Collection&& collection); // Given an iterable collection of `Entry`s, inserts all of them into this map. If the // input is an rvalue, the entries will be moved rather than copied. template <typename UpdateFunc> Entry& upsert(Key key, Value value, UpdateFunc&& update); Entry& upsert(Key key, Value value); // Tries to insert a new entry. However, if a duplicate already exists (according to some index), // then update(Value& existingValue, Value&& newValue) is called to modify the existing value. // If no function is provided, the default is to simply replace the value (but not the key). template <typename KeyLike> kj::Maybe<Value&> find(KeyLike&& key); template <typename KeyLike> kj::Maybe<const Value&> find(KeyLike&& key) const; // Search for a matching key. The input does not have to be of type `Key`; it merely has to // be something that the Hasher accepts. // // Note that the default hasher for String accepts StringPtr. template <typename KeyLike, typename Func> Value& findOrCreate(KeyLike&& key, Func&& createEntry); // Like find() but if the key isn't present then call createEntry() to create the corresponding // entry and insert it. createEntry() must return type `Entry`. template <typename KeyLike> kj::Maybe<Entry&> findEntry(KeyLike&& key); template <typename KeyLike> kj::Maybe<const Entry&> findEntry(KeyLike&& key) const; template <typename KeyLike, typename Func> Entry& findOrCreateEntry(KeyLike&& key, Func&& createEntry); // Sometimes you need to see the whole matching Entry, not just the Value. template <typename KeyLike> bool erase(KeyLike&& key); // Erase the entry with the matching key. // // WARNING: This invalidates all pointers and iterators into the map. Use eraseAll() if you need // to iterate and erase multiple entries. void erase(Entry& entry); // Erase an entry by reference. Entry release(Entry& row); // Erase an entry and return its content by move. template <typename Predicate, typename = decltype(instance<Predicate>()(instance<Key&>(), instance<Value&>()))> size_t eraseAll(Predicate&& predicate); // Erase all values for which predicate(key, value) returns true. This scans over the entire map. private: class Callbacks { public: inline const Key& keyForRow(const Entry& entry) const { return entry.key; } inline Key& keyForRow(Entry& entry) const { return entry.key; } template <typename KeyLike> inline bool matches(Entry& e, KeyLike&& key) const { return e.key == key; } template <typename KeyLike> inline bool matches(const Entry& e, KeyLike&& key) const { return e.key == key; } template <typename KeyLike> inline auto hashCode(KeyLike&& key) const { return kj::hashCode(key); } }; kj::Table<Entry, HashIndex<Callbacks>> table; }; template <typename Key, typename Value> class TreeMap { // A key/value mapping backed by a B-tree. // // `Key` must support `operator<` and `operator==` against other Keys, and against any type // which you might want to pass to find() (with `Key` always on the left of the comparison). public: void reserve(size_t size); // Pre-allocates space for a map of the given size. size_t size() const; size_t capacity() const; void clear(); struct Entry { Key key; Value value; }; auto begin(); auto end(); auto begin() const; auto end() const; // Iteration is in sorted order by key. Entry& insert(Key key, Value value); // Inserts a new entry. Throws if the key already exists. template <typename Collection> void insertAll(Collection&& collection); // Given an iterable collection of `Entry`s, inserts all of them into this map. If the // input is an rvalue, the entries will be moved rather than copied. template <typename UpdateFunc> Entry& upsert(Key key, Value value, UpdateFunc&& update); Entry& upsert(Key key, Value value); // Tries to insert a new entry. However, if a duplicate already exists (according to some index), // then update(Value& existingValue, Value&& newValue) is called to modify the existing value. // If no function is provided, the default is to simply replace the value (but not the key). template <typename KeyLike> kj::Maybe<Value&> find(KeyLike&& key); template <typename KeyLike> kj::Maybe<const Value&> find(KeyLike&& key) const; // Search for a matching key. The input does not have to be of type `Key`; it merely has to // be something that can be compared against `Key`. template <typename KeyLike, typename Func> Value& findOrCreate(KeyLike&& key, Func&& createEntry); // Like find() but if the key isn't present then call createEntry() to create the corresponding // entry and insert it. createEntry() must return type `Entry`. template <typename KeyLike> kj::Maybe<Entry&> findEntry(KeyLike&& key); template <typename KeyLike> kj::Maybe<const Entry&> findEntry(KeyLike&& key) const; template <typename KeyLike, typename Func> Entry& findOrCreateEntry(KeyLike&& key, Func&& createEntry); // Sometimes you need to see the whole matching Entry, not just the Value. template <typename K1, typename K2> auto range(K1&& k1, K2&& k2); template <typename K1, typename K2> auto range(K1&& k1, K2&& k2) const; // Returns an iterable range of entries with keys between k1 (inclusive) and k2 (exclusive). template <typename KeyLike> bool erase(KeyLike&& key); // Erase the entry with the matching key. // // WARNING: This invalidates all pointers and iterators into the map. Use eraseAll() if you need // to iterate and erase multiple entries. void erase(Entry& entry); // Erase an entry by reference. Entry release(Entry& row); // Erase an entry and return its content by move. template <typename Predicate, typename = decltype(instance<Predicate>()(instance<Key&>(), instance<Value&>()))> size_t eraseAll(Predicate&& predicate); // Erase all values for which predicate(key, value) returns true. This scans over the entire map. template <typename K1, typename K2> size_t eraseRange(K1&& k1, K2&& k2); // Erases all entries with keys between k1 (inclusive) and k2 (exclusive). private: class Callbacks { public: inline const Key& keyForRow(const Entry& entry) const { return entry.key; } inline Key& keyForRow(Entry& entry) const { return entry.key; } template <typename KeyLike> inline bool matches(Entry& e, KeyLike&& key) const { return e.key == key; } template <typename KeyLike> inline bool matches(const Entry& e, KeyLike&& key) const { return e.key == key; } template <typename KeyLike> inline bool isBefore(Entry& e, KeyLike&& key) const { return e.key < key; } template <typename KeyLike> inline bool isBefore(const Entry& e, KeyLike&& key) const { return e.key < key; } }; kj::Table<Entry, TreeIndex<Callbacks>> table; }; namespace _ { // private class HashSetCallbacks { public: template <typename Row> inline Row& keyForRow(Row& row) const { return row; } template <typename T, typename U> inline bool matches(T& a, U& b) const { return a == b; } template <typename KeyLike> inline auto hashCode(KeyLike&& key) const { return kj::hashCode(key); } }; class TreeSetCallbacks { public: template <typename Row> inline Row& keyForRow(Row& row) const { return row; } template <typename T, typename U> inline bool matches(T& a, U& b) const { return a == b; } template <typename T, typename U> inline bool isBefore(T& a, U& b) const { return a < b; } }; } // namespace _ (private) template <typename Element> class HashSet: public Table<Element, HashIndex<_::HashSetCallbacks>> { // A simple hashtable-based set, using kj::hashCode() and operator==(). public: // Everything is inherited. template <typename... Params> inline bool contains(Params&&... params) const { return this->find(kj::fwd<Params>(params)...) != nullptr; } }; template <typename Element> class TreeSet: public Table<Element, TreeIndex<_::TreeSetCallbacks>> { // A simple b-tree-based set, using operator<() and operator==(). public: // Everything is inherited. }; // ======================================================================================= // inline implementation details template <typename Key, typename Value> void HashMap<Key, Value>::reserve(size_t size) { table.reserve(size); } template <typename Key, typename Value> size_t HashMap<Key, Value>::size() const { return table.size(); } template <typename Key, typename Value> size_t HashMap<Key, Value>::capacity() const { return table.capacity(); } template <typename Key, typename Value> void HashMap<Key, Value>::clear() { return table.clear(); } template <typename Key, typename Value> typename HashMap<Key, Value>::Entry* HashMap<Key, Value>::begin() { return table.begin(); } template <typename Key, typename Value> typename HashMap<Key, Value>::Entry* HashMap<Key, Value>::end() { return table.end(); } template <typename Key, typename Value> const typename HashMap<Key, Value>::Entry* HashMap<Key, Value>::begin() const { return table.begin(); } template <typename Key, typename Value> const typename HashMap<Key, Value>::Entry* HashMap<Key, Value>::end() const { return table.end(); } template <typename Key, typename Value> typename HashMap<Key, Value>::Entry& HashMap<Key, Value>::insert(Key key, Value value) { return table.insert(Entry { kj::mv(key), kj::mv(value) }); } template <typename Key, typename Value> template <typename Collection> void HashMap<Key, Value>::insertAll(Collection&& collection) { return table.insertAll(kj::fwd<Collection>(collection)); } template <typename Key, typename Value> template <typename UpdateFunc> typename HashMap<Key, Value>::Entry& HashMap<Key, Value>::upsert( Key key, Value value, UpdateFunc&& update) { return table.upsert(Entry { kj::mv(key), kj::mv(value) }, [&](Entry& existingEntry, Entry&& newEntry) { update(existingEntry.value, kj::mv(newEntry.value)); }); } template <typename Key, typename Value> typename HashMap<Key, Value>::Entry& HashMap<Key, Value>::upsert( Key key, Value value) { return table.upsert(Entry { kj::mv(key), kj::mv(value) }, [&](Entry& existingEntry, Entry&& newEntry) { existingEntry.value = kj::mv(newEntry.value); }); } template <typename Key, typename Value> template <typename KeyLike> kj::Maybe<Value&> HashMap<Key, Value>::find(KeyLike&& key) { return table.find(key).map([](Entry& e) -> Value& { return e.value; }); } template <typename Key, typename Value> template <typename KeyLike> kj::Maybe<const Value&> HashMap<Key, Value>::find(KeyLike&& key) const { return table.find(key).map([](const Entry& e) -> const Value& { return e.value; }); } template <typename Key, typename Value> template <typename KeyLike, typename Func> Value& HashMap<Key, Value>::findOrCreate(KeyLike&& key, Func&& createEntry) { return table.findOrCreate(key, kj::fwd<Func>(createEntry)).value; } template <typename Key, typename Value> template <typename KeyLike> kj::Maybe<typename HashMap<Key, Value>::Entry&> HashMap<Key, Value>::findEntry(KeyLike&& key) { return table.find(kj::fwd<KeyLike>(key)); } template <typename Key, typename Value> template <typename KeyLike> kj::Maybe<const typename HashMap<Key, Value>::Entry&> HashMap<Key, Value>::findEntry(KeyLike&& key) const { return table.find(kj::fwd<KeyLike>(key)); } template <typename Key, typename Value> template <typename KeyLike, typename Func> typename HashMap<Key, Value>::Entry& HashMap<Key, Value>::findOrCreateEntry(KeyLike&& key, Func&& createEntry) { return table.findOrCreate(kj::fwd<KeyLike>(key), kj::fwd<Func>(createEntry)); } template <typename Key, typename Value> template <typename KeyLike> bool HashMap<Key, Value>::erase(KeyLike&& key) { return table.eraseMatch(key); } template <typename Key, typename Value> void HashMap<Key, Value>::erase(Entry& entry) { table.erase(entry); } template <typename Key, typename Value> typename HashMap<Key, Value>::Entry HashMap<Key, Value>::release(Entry& entry) { return table.release(entry); } template <typename Key, typename Value> template <typename Predicate, typename> size_t HashMap<Key, Value>::eraseAll(Predicate&& predicate) { return table.eraseAll([&](Entry& entry) { return predicate(entry.key, entry.value); }); } // ----------------------------------------------------------------------------- template <typename Key, typename Value> void TreeMap<Key, Value>::reserve(size_t size) { table.reserve(size); } template <typename Key, typename Value> size_t TreeMap<Key, Value>::size() const { return table.size(); } template <typename Key, typename Value> size_t TreeMap<Key, Value>::capacity() const { return table.capacity(); } template <typename Key, typename Value> void TreeMap<Key, Value>::clear() { return table.clear(); } template <typename Key, typename Value> auto TreeMap<Key, Value>::begin() { return table.ordered().begin(); } template <typename Key, typename Value> auto TreeMap<Key, Value>::end() { return table.ordered().end(); } template <typename Key, typename Value> auto TreeMap<Key, Value>::begin() const { return table.ordered().begin(); } template <typename Key, typename Value> auto TreeMap<Key, Value>::end() const { return table.ordered().end(); } template <typename Key, typename Value> typename TreeMap<Key, Value>::Entry& TreeMap<Key, Value>::insert(Key key, Value value) { return table.insert(Entry { kj::mv(key), kj::mv(value) }); } template <typename Key, typename Value> template <typename Collection> void TreeMap<Key, Value>::insertAll(Collection&& collection) { return table.insertAll(kj::fwd<Collection>(collection)); } template <typename Key, typename Value> template <typename UpdateFunc> typename TreeMap<Key, Value>::Entry& TreeMap<Key, Value>::upsert( Key key, Value value, UpdateFunc&& update) { return table.upsert(Entry { kj::mv(key), kj::mv(value) }, [&](Entry& existingEntry, Entry&& newEntry) { update(existingEntry.value, kj::mv(newEntry.value)); }); } template <typename Key, typename Value> typename TreeMap<Key, Value>::Entry& TreeMap<Key, Value>::upsert( Key key, Value value) { return table.upsert(Entry { kj::mv(key), kj::mv(value) }, [&](Entry& existingEntry, Entry&& newEntry) { existingEntry.value = kj::mv(newEntry.value); }); } template <typename Key, typename Value> template <typename KeyLike> kj::Maybe<Value&> TreeMap<Key, Value>::find(KeyLike&& key) { return table.find(key).map([](Entry& e) -> Value& { return e.value; }); } template <typename Key, typename Value> template <typename KeyLike> kj::Maybe<const Value&> TreeMap<Key, Value>::find(KeyLike&& key) const { return table.find(key).map([](const Entry& e) -> const Value& { return e.value; }); } template <typename Key, typename Value> template <typename KeyLike, typename Func> Value& TreeMap<Key, Value>::findOrCreate(KeyLike&& key, Func&& createEntry) { return table.findOrCreate(key, kj::fwd<Func>(createEntry)).value; } template <typename Key, typename Value> template <typename KeyLike> kj::Maybe<typename TreeMap<Key, Value>::Entry&> TreeMap<Key, Value>::findEntry(KeyLike&& key) { return table.find(kj::fwd<KeyLike>(key)); } template <typename Key, typename Value> template <typename KeyLike> kj::Maybe<const typename TreeMap<Key, Value>::Entry&> TreeMap<Key, Value>::findEntry(KeyLike&& key) const { return table.find(kj::fwd<KeyLike>(key)); } template <typename Key, typename Value> template <typename KeyLike, typename Func> typename TreeMap<Key, Value>::Entry& TreeMap<Key, Value>::findOrCreateEntry(KeyLike&& key, Func&& createEntry) { return table.findOrCreate(kj::fwd<KeyLike>(key), kj::fwd<Func>(createEntry)); } template <typename Key, typename Value> template <typename K1, typename K2> auto TreeMap<Key, Value>::range(K1&& k1, K2&& k2) { return table.range(kj::fwd<K1>(k1), kj::fwd<K2>(k2)); } template <typename Key, typename Value> template <typename K1, typename K2> auto TreeMap<Key, Value>::range(K1&& k1, K2&& k2) const { return table.range(kj::fwd<K1>(k1), kj::fwd<K2>(k2)); } template <typename Key, typename Value> template <typename KeyLike> bool TreeMap<Key, Value>::erase(KeyLike&& key) { return table.eraseMatch(key); } template <typename Key, typename Value> void TreeMap<Key, Value>::erase(Entry& entry) { table.erase(entry); } template <typename Key, typename Value> typename TreeMap<Key, Value>::Entry TreeMap<Key, Value>::release(Entry& entry) { return table.release(entry); } template <typename Key, typename Value> template <typename Predicate, typename> size_t TreeMap<Key, Value>::eraseAll(Predicate&& predicate) { return table.eraseAll([&](Entry& entry) { return predicate(entry.key, entry.value); }); } template <typename Key, typename Value> template <typename K1, typename K2> size_t TreeMap<Key, Value>::eraseRange(K1&& k1, K2&& k2) { return table.eraseRange(kj::fwd<K1>(k1), kj::fwd<K2>(k2)); } } // namespace kj KJ_END_HEADER