rliterman@0: #!/usr/bin/env python3 rliterman@0: rliterman@0: import sys rliterman@0: import os rliterman@0: import pandas as pd rliterman@0: import datetime rliterman@0: from pybedtools import BedTool,helpers rliterman@0: import concurrent.futures rliterman@0: import time rliterman@0: import uuid rliterman@0: import traceback rliterman@0: import shutil rliterman@0: import argparse rliterman@0: rliterman@0: rliterman@0: def fetchHeaders(snpdiffs_file): rliterman@0: rliterman@0: with open(snpdiffs_file, 'r') as file: rliterman@0: top_line = file.readline().strip().split('\t')[1:] rliterman@0: rliterman@0: header_cols = [item.split(':')[0] for item in top_line] rliterman@0: header_vals = [item.split(':')[1] for item in top_line] rliterman@0: rliterman@0: header_data = pd.DataFrame(columns = header_cols) rliterman@0: header_data.loc[0] = header_vals rliterman@0: header_data.loc[:, 'File_Path'] = snpdiffs_file rliterman@0: rliterman@0: return header_data rliterman@0: rliterman@0: def processBED(bed_rows,snpdiffs_orientation): rliterman@0: rliterman@0: bed_columns = ['Ref_Contig','Ref_Start','Ref_End','Ref_Length','Ref_Aligned', rliterman@0: 'Query_Contig','Query_Start','Query_End','Query_Length','Query_Aligned', rliterman@0: 'Perc_Iden'] rliterman@0: rliterman@0: reverse_columns = ['Query_Contig','Query_Start','Query_End','Query_Length','Query_Aligned', rliterman@0: 'Ref_Contig','Ref_Start','Ref_End','Ref_Length','Ref_Aligned', rliterman@0: 'Perc_Iden'] rliterman@0: rliterman@0: int_columns = ['Ref_Start', 'Ref_End', 'Ref_Length', 'Ref_Aligned', rliterman@0: 'Query_Start', 'Query_End', 'Query_Length', 'Query_Aligned'] rliterman@0: rliterman@0: float_columns = ['Perc_Iden'] rliterman@0: rliterman@0: if len(bed_rows) > 0: rliterman@0: rliterman@0: bed_df = pd.DataFrame(bed_rows, columns=bed_columns) rliterman@0: rliterman@0: # Swap columns if reversed rliterman@0: if snpdiffs_orientation == -1: rliterman@0: bed_df = bed_df[reverse_columns].copy() rliterman@0: bed_df.columns = bed_columns rliterman@0: rliterman@0: # Remove any rows where Query_Contig or Ref_Contig == "." (Unaligned) rliterman@0: covered_bed_df = bed_df[(bed_df['Ref_Start'] != ".") & (bed_df['Query_Start'] != ".")].copy() rliterman@0: rliterman@0: if covered_bed_df.shape[0] > 0: rliterman@0: for col in int_columns: rliterman@0: covered_bed_df.loc[:, col] = covered_bed_df.loc[:, col].astype(float).astype(int) rliterman@0: for col in float_columns: rliterman@0: covered_bed_df.loc[:, col] = covered_bed_df.loc[:, col].astype(float) rliterman@0: return covered_bed_df rliterman@0: else: rliterman@0: return pd.DataFrame(columns=bed_columns) rliterman@0: else: rliterman@0: return pd.DataFrame(columns=bed_columns) rliterman@0: rliterman@0: def processSNPs(snp_rows,snpdiffs_orientation): rliterman@0: rliterman@0: snp_columns = ['Ref_Contig','Start_Ref','Ref_Pos', rliterman@0: 'Query_Contig','Start_Query','Query_Pos', rliterman@0: 'Ref_Loc','Query_Loc', rliterman@0: 'Ref_Start','Ref_End', rliterman@0: 'Query_Start','Query_End', rliterman@0: 'Ref_Base','Query_Base', rliterman@0: 'Dist_to_Ref_End','Dist_to_Query_End', rliterman@0: 'Ref_Aligned','Query_Aligned', rliterman@0: 'Query_Direction','Perc_Iden','Cat'] rliterman@0: rliterman@0: reverse_columns = ['Query_Contig','Start_Query','Query_Pos', rliterman@0: 'Ref_Contig','Start_Ref','Ref_Pos', rliterman@0: 'Query_Loc','Ref_Loc', rliterman@0: 'Query_Start','Query_End', rliterman@0: 'Ref_Start','Ref_End', rliterman@0: 'Query_Base','Ref_Base', rliterman@0: 'Dist_to_Query_End','Dist_to_Ref_End', rliterman@0: 'Query_Aligned','Ref_Aligned', rliterman@0: 'Query_Direction','Perc_Iden','Cat'] rliterman@0: rliterman@0: return_columns = ['Ref_Contig','Start_Ref','Ref_Pos', rliterman@0: 'Query_Contig','Start_Query','Query_Pos', rliterman@0: 'Ref_Loc','Query_Loc', rliterman@0: 'Ref_Start','Ref_End', rliterman@0: 'Query_Start','Query_End', rliterman@0: 'Ref_Base','Query_Base', rliterman@0: 'Dist_to_Ref_End','Dist_to_Query_End', rliterman@0: 'Ref_Aligned','Query_Aligned', rliterman@0: 'Perc_Iden','Cat'] rliterman@0: rliterman@0: reverse_complement = {'A':'T','T':'A','G':'C','C':'G', rliterman@0: 'a':'T','t':'A','c':'G','g':'C'} rliterman@0: rliterman@0: # Columns to convert to integer rliterman@0: int_columns = ['Start_Ref', 'Ref_Pos', 'Start_Query', 'Query_Pos', rliterman@0: 'Dist_to_Ref_End', 'Dist_to_Query_End', 'Ref_Aligned', 'Query_Aligned'] rliterman@0: rliterman@0: # Columns to convert to float rliterman@0: float_columns = ['Perc_Iden'] rliterman@0: rliterman@0: if len(snp_rows) > 0: rliterman@0: snp_df = pd.DataFrame(snp_rows, columns= snp_columns).copy() rliterman@0: rliterman@0: if snpdiffs_orientation == -1: rliterman@0: snp_df = snp_df[reverse_columns].copy() rliterman@0: snp_df.columns = snp_columns rliterman@0: rliterman@0: # Replace Query_Base and Reference_Base with reverse complement if Query_Direction is -1 and base is in ['A','T','G','C','a','c','t','g'] rliterman@0: snp_df.loc[snp_df['Query_Direction'] == '-1','Query_Base'] = snp_df.loc[snp_df['Query_Direction'] == '-1','Query_Base'].apply(lambda x: reverse_complement[x] if x in reverse_complement else x) rliterman@0: snp_df.loc[snp_df['Query_Direction'] == '-1','Ref_Base'] = snp_df.loc[snp_df['Query_Direction'] == '-1','Ref_Base'].apply(lambda x: reverse_complement[x] if x in reverse_complement else x) rliterman@0: rliterman@0: rliterman@0: for col in int_columns: rliterman@0: snp_df.loc[:, col] = snp_df.loc[:, col].astype(float).astype(int) rliterman@0: for col in float_columns: rliterman@0: snp_df.loc[:, col] = snp_df.loc[:, col].astype(float) rliterman@0: rliterman@0: else: rliterman@0: snp_df = pd.DataFrame(columns = return_columns) rliterman@0: rliterman@0: return snp_df[return_columns] rliterman@0: rliterman@0: def swapHeader(header_data): rliterman@0: rliterman@0: raw_header_cols = [x for x in header_data.columns] rliterman@0: reverse_header_cols = [item.replace('Reference', 'temp').replace('Query', 'Reference').replace('temp', 'Query') for item in raw_header_cols] rliterman@0: reversed_header_data = header_data[reverse_header_cols].copy() rliterman@0: reversed_header_data.columns = raw_header_cols rliterman@0: rliterman@0: return reversed_header_data rliterman@0: rliterman@0: def parseSNPDiffs(snpdiffs_file,snpdiffs_orientation): rliterman@0: rliterman@0: bed_rows = [] rliterman@0: snp_rows = [] rliterman@0: rliterman@0: with open(snpdiffs_file, 'r') as file: rliterman@0: lines = file.readlines() rliterman@0: rliterman@0: for line in lines: rliterman@0: if line[0:2] == "#\t": rliterman@0: pass rliterman@0: elif line[0:3] == "##\t": rliterman@0: bed_rows.append(line.strip().split("\t")[1:]) rliterman@0: else: rliterman@0: snp_rows.append(line.strip().split("\t")) rliterman@0: rliterman@0: bed_df = processBED(bed_rows,snpdiffs_orientation) rliterman@0: snp_df = processSNPs(snp_rows,snpdiffs_orientation) rliterman@0: return (bed_df,snp_df) rliterman@0: rliterman@0: def calculate_total_length(bedtool): rliterman@0: return sum(len(interval) for interval in bedtool) rliterman@0: rliterman@0: def filterSNPs(raw_snp_df,bed_df,log_file, min_len, min_iden, ref_edge, query_edge, density_windows, max_snps): rliterman@0: rliterman@0: if temp_dir != "": rliterman@0: helpers.set_tempdir(temp_dir) rliterman@0: rliterman@0: # Grab raw data rliterman@0: total_snp_count = raw_snp_df.shape[0] rliterman@0: rliterman@0: # Get unique SNPs relative to the reference genome rliterman@0: unique_ref_snps = raw_snp_df['Ref_Loc'].unique() rliterman@0: unique_snp_count = len(unique_ref_snps) rliterman@0: rliterman@0: snp_tally_df = pd.DataFrame() rliterman@0: rliterman@0: with open(log_file,"a+") as log: rliterman@0: log.write(f"\n\t- Raw SNP + indel count: {total_snp_count}\n") rliterman@0: log.write(f"\n\t- Unique SNP positions in reference genome: {unique_snp_count}\n") rliterman@0: rliterman@0: # Set all sites to SNP rliterman@0: raw_snp_df['Filter_Cat'] = "SNP" rliterman@0: rliterman@0: # Filter out SNPs based on --min_len and --min_iden rliterman@0: reject_length = raw_snp_df.loc[(raw_snp_df['Ref_Aligned'] < min_len) & (raw_snp_df['Perc_Iden'] >= min_iden)].copy() rliterman@0: if reject_length.shape[0] > 0: rliterman@0: with open(log_file,"a+") as log: rliterman@0: log.write(f"\t\t- Purged (Alignment Length): {reject_length.shape[0]}\n") rliterman@0: reject_length['Filter_Cat'] = "Purged_Length" rliterman@0: snp_tally_df = pd.concat([snp_tally_df,reject_length]).reset_index(drop=True) rliterman@0: rliterman@0: reject_iden = raw_snp_df.loc[(raw_snp_df['Ref_Aligned'] >= min_len) & (raw_snp_df['Perc_Iden'] < min_iden)].copy() rliterman@0: if reject_iden.shape[0] > 0: rliterman@0: with open(log_file,"a+") as log: rliterman@0: log.write(f"\t\t- Purged (Alignment Identity): {reject_iden.shape[0]}\n") rliterman@0: reject_iden['Filter_Cat'] = "Purged_Identity" rliterman@0: snp_tally_df = pd.concat([snp_tally_df,reject_iden]).reset_index(drop=True) rliterman@0: rliterman@0: reject_lenIden = raw_snp_df.loc[(raw_snp_df['Ref_Aligned'] < min_len) & (raw_snp_df['Perc_Iden'] < min_iden)].copy() rliterman@0: if reject_lenIden.shape[0] > 0: rliterman@0: with open(log_file,"a+") as log: rliterman@0: log.write(f"\t\t- Purged (Alignment Length + Identity): {reject_lenIden.shape[0]}\n") rliterman@0: reject_lenIden['Filter_Cat'] = "Purged_LengthIdentity" rliterman@0: snp_tally_df = pd.concat([snp_tally_df,reject_lenIden]).reset_index(drop=True) rliterman@0: rliterman@0: pass_filter = raw_snp_df.loc[(raw_snp_df['Ref_Aligned'] >= min_len) & (raw_snp_df['Perc_Iden'] >= min_iden)].copy().reset_index(drop=True) rliterman@0: rliterman@0: # Invalid processing rliterman@0: reject_invalid = pass_filter[pass_filter['Cat'] == "Invalid"].copy() rliterman@0: if reject_invalid.shape[0] > 0: rliterman@0: with open(log_file,"a+") as log: rliterman@0: log.write(f"\t\t- Purged (Invalid Base): {reject_invalid.shape[0]}\n") rliterman@0: reject_invalid['Filter_Cat'] = "Purged_Invalid" rliterman@0: snp_tally_df = pd.concat([snp_tally_df,reject_invalid]).reset_index(drop=True) rliterman@0: pass_filter = pass_filter.loc[pass_filter['Cat'] != "Invalid"].copy() rliterman@0: rliterman@0: # Indel processing rliterman@0: reject_indel = pass_filter[pass_filter['Cat'] == "Indel"].copy() rliterman@0: if reject_indel.shape[0] > 0: rliterman@0: with open(log_file,"a+") as log: rliterman@0: log.write(f"\t\t- Purged (Indel): {reject_indel.shape[0]}\n") rliterman@0: reject_indel['Filter_Cat'] = "Purged_Indel" rliterman@0: snp_tally_df = pd.concat([snp_tally_df,reject_indel]).reset_index(drop=True) rliterman@0: pass_filter = pass_filter.loc[pass_filter['Cat'] != "Indel"].copy() rliterman@0: rliterman@0: # Check for heterozygous SNPs rliterman@0: check_heterozygous = pass_filter.groupby('Ref_Loc').filter(lambda x: x['Query_Base'].nunique() > 1) rliterman@0: if check_heterozygous.shape[0] > 0: rliterman@0: reject_heterozygous = pass_filter.loc[pass_filter['Ref_Loc'].isin(check_heterozygous['Ref_Loc'])].copy() rliterman@0: reject_heterozygous['Filter_Cat'] = "Purged_Heterozygous" rliterman@0: with open(log_file,"a+") as log: rliterman@0: log.write(f"\t\t- Purged (Heterozygotes): {reject_heterozygous.shape[0]}\n") rliterman@0: snp_tally_df = pd.concat([snp_tally_df,reject_heterozygous]).reset_index(drop=True) rliterman@0: pass_filter = pass_filter.loc[~pass_filter['Ref_Loc'].isin(check_heterozygous['Ref_Loc'])].copy() rliterman@0: rliterman@0: # Check for duplicate SNPs and take the longest, best hit rliterman@0: check_duplicates = pass_filter.groupby('Ref_Loc').filter(lambda x: x.shape[0] > 1) rliterman@0: if check_duplicates.shape[0] > 0: rliterman@0: reject_duplicate = pass_filter.loc[pass_filter['Ref_Loc'].isin(check_duplicates['Ref_Loc'])].copy() rliterman@0: pass_filter = pass_filter.loc[~pass_filter['Ref_Loc'].isin(check_duplicates['Ref_Loc'])].copy() rliterman@0: rliterman@0: best_snp = reject_duplicate.groupby('Ref_Loc').apply(lambda x: x.sort_values(by=['Ref_Aligned', 'Perc_Iden'], ascending=[False, False]).head(1)) rliterman@0: pass_filter = pd.concat([pass_filter,best_snp]).reset_index(drop=True) rliterman@0: rliterman@0: dup_snps = reject_duplicate[~reject_duplicate.apply(lambda x: x in best_snp, axis=1)] rliterman@0: dup_snps['Filter_Cat'] = "Purged_Duplicate" rliterman@0: rliterman@0: snp_tally_df = pd.concat([snp_tally_df,dup_snps]).reset_index(drop=True) rliterman@0: rliterman@0: with open(log_file,"a+") as log: rliterman@0: log.write(f"\t\t- Purged (Duplicates): {dup_snps.shape[0]}\n") rliterman@0: rliterman@0: # Assert that Ref_Loc and Query_Loc are unique in pass_filter rliterman@0: helpers.cleanup(verbose=False,remove_all = False) rliterman@0: assert pass_filter['Ref_Loc'].nunique() == pass_filter.shape[0] rliterman@0: assert pass_filter['Query_Loc'].nunique() == pass_filter.shape[0] rliterman@0: rliterman@0: # Density filtering rliterman@0: density_locs = [] rliterman@0: ref_locs = pass_filter['Ref_Loc'].tolist() rliterman@0: rliterman@0: if len(density_windows) == 0: rliterman@0: with open(log_file,"a+") as log: rliterman@0: log.write("\n\t- Density filtering disabled...\n") rliterman@0: elif len(ref_locs) > 0: rliterman@0: density_df = pd.DataFrame([item.split('/') for item in ref_locs], columns=['Ref_Contig','Ref_End']) rliterman@0: density_df['Ref_Start'] = density_df['Ref_End'].astype(float).astype(int) - 1 rliterman@0: density_bed = BedTool.from_dataframe(density_df[['Ref_Contig','Ref_Start','Ref_End']]) rliterman@0: rliterman@0: # For each density window, remove all SNPs that fall in a window with > max_snps rliterman@0: for i in range(0,len(density_windows)): rliterman@0: window_df = density_bed.window(density_bed,c=True, w=density_windows[i]).to_dataframe() rliterman@0: problematic_windows = window_df[window_df['name'] > max_snps[i]].copy() rliterman@0: if not problematic_windows.empty: rliterman@0: temp_locs = [] rliterman@0: for _, row in problematic_windows.iterrows(): rliterman@0: purge_window_df = window_df[window_df['chrom'] == row['chrom']].copy() rliterman@0: purge_window_df['Dist'] = abs(purge_window_df['end'] - row['end']) rliterman@0: window_snps = purge_window_df.sort_values(by=['Dist'],ascending=True).head(row['name']) rliterman@0: temp_locs = temp_locs + ["/".join([str(x[0]),str(x[1])]) for x in list(zip(window_snps.chrom, window_snps.end))] rliterman@0: density_locs.extend(list(set(temp_locs))) rliterman@0: rliterman@0: density_locs = list(set(density_locs)) rliterman@0: reject_density = pass_filter[pass_filter['Ref_Loc'].isin(density_locs)].copy() rliterman@0: rliterman@0: if reject_density.shape[0] > 0: rliterman@0: with open(log_file,"a+") as log: rliterman@0: log.write(f"\t\t- Purged (Density): {reject_density.shape[0]}\n") rliterman@0: reject_density['Filter_Cat'] = "Purged_Density" rliterman@0: snp_tally_df = pd.concat([snp_tally_df,reject_density]).reset_index(drop=True) rliterman@0: pass_filter = pass_filter[~pass_filter['Ref_Loc'].isin(density_locs)].copy() rliterman@0: rliterman@0: reject_query_edge = pass_filter[(pass_filter['Dist_to_Query_End'] < query_edge) & (pass_filter['Dist_to_Ref_End'] >= ref_edge)].copy() rliterman@0: reject_ref_edge = pass_filter[(pass_filter['Dist_to_Ref_End'] < ref_edge) & (pass_filter['Dist_to_Query_End'] >= query_edge)].copy() rliterman@0: reject_both_edge = pass_filter[(pass_filter['Dist_to_Query_End'] < query_edge) & (pass_filter['Dist_to_Ref_End'] < ref_edge)].copy() rliterman@0: rliterman@0: if reject_query_edge.shape[0] > 0: rliterman@0: with open(log_file,"a+") as log: rliterman@0: log.write(f"\t\t- Purged (Query Edge): {reject_query_edge.shape[0]}\n") rliterman@0: reject_query_edge['Filter_Cat'] = "Filtered_Query_Edge" rliterman@0: snp_tally_df = pd.concat([snp_tally_df,reject_query_edge]).reset_index(drop=True) rliterman@0: rliterman@0: if reject_ref_edge.shape[0] > 0: rliterman@0: with open(log_file,"a+") as log: rliterman@0: log.write(f"\t\t- Purged (Ref Edge): {reject_ref_edge.shape[0]}\n") rliterman@0: reject_ref_edge['Filter_Cat'] = "Filtered_Ref_Edge" rliterman@0: snp_tally_df = pd.concat([snp_tally_df,reject_ref_edge]).reset_index(drop=True) rliterman@0: rliterman@0: if reject_both_edge.shape[0] > 0: rliterman@0: with open(log_file,"a+") as log: rliterman@0: log.write(f"\t\t- Purged (Both Edge): {reject_both_edge.shape[0]}\n") rliterman@0: reject_both_edge['Filter_Cat'] = "Filtered_Both_Edge" rliterman@0: snp_tally_df = pd.concat([snp_tally_df,reject_both_edge]).reset_index(drop=True) rliterman@0: rliterman@0: pass_filter = pass_filter[(pass_filter['Dist_to_Query_End'] >= query_edge) & (pass_filter['Dist_to_Ref_End'] >= ref_edge)].copy() rliterman@0: rliterman@0: helpers.cleanup(verbose=False,remove_all = False) rliterman@0: rliterman@0: assert snp_tally_df.shape[0] + pass_filter.shape[0] == total_snp_count rliterman@0: return_df = pd.concat([pass_filter,snp_tally_df]).reset_index(drop=True).sort_values(by=['Ref_Loc']) rliterman@0: rliterman@0: return return_df.drop(columns=['Cat']).rename({'Filter_Cat':'Cat'}, axis=1) rliterman@0: rliterman@0: rliterman@0: def screenSNPDiffs(snpdiffs_file,trim_name, min_cov, min_len, min_iden, ref_edge, query_edge, density_windows, max_snps,ref_ids): rliterman@0: rliterman@0: if temp_dir != "": rliterman@0: helpers.set_tempdir(temp_dir) rliterman@0: rliterman@0: screen_start_time = time.time() rliterman@0: rliterman@0: # Set CSP2 variables to NA rliterman@0: csp2_screen_snps = purged_length = purged_identity = purged_invalid = purged_indel = purged_lengthIdentity = purged_duplicate = purged_het = purged_density = filtered_ref_edge = filtered_query_edge = filtered_both_edge = "NA" rliterman@0: rliterman@0: # Ensure snpdiffs file exists rliterman@0: if not os.path.exists(snpdiffs_file) or not snpdiffs_file.endswith('.snpdiffs'): rliterman@0: run_failed = True rliterman@0: sys.exit(f"Invalid snpdiffs file provided: {snpdiffs_file}") rliterman@0: rliterman@0: # Ensure header can be read in rliterman@0: try: rliterman@0: header_data = fetchHeaders(snpdiffs_file) rliterman@0: header_query = header_data['Query_ID'][0].replace(trim_name,'') rliterman@0: header_ref = header_data['Reference_ID'][0].replace(trim_name,'') rliterman@0: except: rliterman@0: run_failed = True rliterman@0: sys.exit(f"Error reading headers from snpdiffs file: {snpdiffs_file}") rliterman@0: rliterman@0: # Check snpdiffs orientation rliterman@0: if ref_ids == []: rliterman@0: snpdiffs_orientation = 1 rliterman@0: query_id = header_query rliterman@0: reference_id = header_ref rliterman@0: elif (header_query not in ref_ids) and (header_ref in ref_ids): rliterman@0: snpdiffs_orientation = 1 rliterman@0: query_id = header_query rliterman@0: reference_id = header_ref rliterman@0: elif (header_query in ref_ids) and (header_ref not in ref_ids): rliterman@0: snpdiffs_orientation = -1 rliterman@0: query_id = header_ref rliterman@0: reference_id = header_query rliterman@0: header_data = swapHeader(header_data) rliterman@0: else: rliterman@0: snpdiffs_orientation = 2 rliterman@0: query_id = header_query rliterman@0: reference_id = header_ref rliterman@0: rliterman@0: # Establish log file rliterman@0: log_file = f"{log_dir}/{query_id}__vs__{reference_id}.log" rliterman@0: with open(log_file,"w+") as log: rliterman@0: log.write("Screening Analysis\n") rliterman@0: log.write(f"Query Isolate: {query_id}\n") rliterman@0: log.write(f"Reference Isolate: {reference_id}\n") rliterman@0: log.write(str(datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S"))+"\n") rliterman@0: log.write("-------------------------------------------------------\n\n") rliterman@0: if ref_ids == []: rliterman@0: log.write("\t- No explicit references set, processing in forward orientation\n") rliterman@0: log.write("-------------------------------------------------------\n\n") rliterman@0: elif snpdiffs_orientation == 1: rliterman@0: log.write("\t- SNPDiffs file is in the forward orientation\n") rliterman@0: log.write("-------------------------------------------------------\n\n") rliterman@0: elif snpdiffs_orientation == -1: rliterman@0: log.write("\t- SNPDiffs file is in the reverse orientation\n") rliterman@0: log.write("-------------------------------------------------------\n\n") rliterman@0: else: rliterman@0: snpdiffs_orientation = 1 rliterman@0: log.write("\t- SNPDiffs file not contain a reference and non-reference sample, processing in forward orientation\n") rliterman@0: log.write("-------------------------------------------------------\n\n") rliterman@0: rliterman@0: rliterman@0: # Set variables from header data rliterman@0: raw_snps = int(header_data['SNPs'][0]) rliterman@0: raw_indels = int(header_data['Indels'][0]) rliterman@0: raw_invalid = int(header_data['Invalid'][0]) rliterman@0: rliterman@0: kmer_similarity = float(header_data['Kmer_Similarity'][0]) rliterman@0: shared_kmers = int(header_data['Shared_Kmers'][0]) rliterman@0: query_unique_kmers = int(header_data['Query_Unique_Kmers'][0]) rliterman@0: reference_unique_kmers = int(header_data['Reference_Unique_Kmers'][0]) rliterman@0: mummer_gsnps = int(header_data['gSNPs'][0]) rliterman@0: mummer_gindels = int(header_data['gIndels'][0]) rliterman@0: rliterman@0: query_bases = int(header_data['Query_Assembly_Bases'][0]) rliterman@0: reference_bases = int(header_data['Reference_Assembly_Bases'][0]) rliterman@0: rliterman@0: query_contigs = int(header_data['Query_Contig_Count'][0]) rliterman@0: reference_contigs = int(header_data['Reference_Contig_Count'][0]) rliterman@0: rliterman@0: raw_query_percent_aligned = float(header_data['Query_Percent_Aligned'][0]) rliterman@0: raw_ref_percent_aligned = float(header_data['Reference_Percent_Aligned'][0]) rliterman@0: rliterman@0: # If the reference is not covered by at least min_cov, STOP rliterman@0: if raw_ref_percent_aligned < min_cov: rliterman@0: query_percent_aligned = raw_query_percent_aligned rliterman@0: reference_percent_aligned = raw_ref_percent_aligned rliterman@0: screen_category = "Low_Coverage" rliterman@0: with open(log_file,"a+") as log: rliterman@0: log.write(f"\t- Reference genome coverage: {raw_ref_percent_aligned}% \n") rliterman@0: log.write(f"\t- Query covers less than --min_cov ({min_cov}%)...Screen halted...\n") rliterman@0: log.write("-------------------------------------------------------\n\n") rliterman@0: rliterman@0: elif raw_snps + raw_indels + raw_invalid > 10000: rliterman@0: query_percent_aligned = raw_query_percent_aligned rliterman@0: reference_percent_aligned = raw_ref_percent_aligned rliterman@0: screen_category = "SNP_Cutoff" rliterman@0: with open(log_file,"a+") as log: rliterman@0: log.write(f"\t- {raw_snps} detected...\n") rliterman@0: log.write("\t- > 10,000 SNPs, indels, or invalid sites detected by MUMmer...Screen halted...\n") rliterman@0: log.write("-------------------------------------------------------\n\n") rliterman@0: rliterman@0: else: rliterman@0: rliterman@0: ##### 02: Read in BED/SNP data ##### rliterman@0: with open(log_file,"a+") as log: rliterman@0: log.write("Step 1: Reading in snpdiffs BED/SNP data...") rliterman@0: try: rliterman@0: bed_df,snp_df = parseSNPDiffs(snpdiffs_file,snpdiffs_orientation) rliterman@0: with open(log_file,"a+") as log: rliterman@0: log.write("Done!\n") rliterman@0: log.write("-------------------------------------------------------\n\n") rliterman@0: except: rliterman@0: with open(log_file,"a+") as log: rliterman@0: log.write(f"Error reading BED/SNP data from file: {snpdiffs_file}") rliterman@0: run_failed = True rliterman@0: sys.exit(f"Error reading BED/SNP data from file: {snpdiffs_file}") rliterman@0: rliterman@0: ##### 03: Filter genome overlaps ##### rliterman@0: with open(log_file,"a+") as log: rliterman@0: log.write("Step 2: Filtering for short overlaps and low percent identity...") rliterman@0: rliterman@0: good_bed_df = bed_df[(bed_df['Ref_Aligned'] >= min_len) & (bed_df['Perc_Iden'] >= min_iden)].copy() rliterman@0: rliterman@0: if good_bed_df.shape[0] == 0: rliterman@0: screen_category = "Low_Quality_Coverage" rliterman@0: with open(log_file,"a+") as log: rliterman@0: log.write(f"\n\t- After filtering based on --min_len ({min_len}) and --min_iden ({min_iden}) , no valid alignments remain...Screen halted...\n") rliterman@0: log.write("-------------------------------------------------------\n\n") rliterman@0: rliterman@0: rliterman@0: else: rliterman@0: # Create a BED file for alignments that pass basic QC rliterman@0: good_query_bed_df = good_bed_df[['Query_Contig','Query_Start','Query_End']].copy() rliterman@0: good_reference_bed_df = good_bed_df[['Ref_Contig','Ref_Start','Ref_End']].copy() rliterman@0: rliterman@0: good_query_aligned = calculate_total_length(BedTool.from_dataframe(good_query_bed_df).sort().merge()) rliterman@0: good_reference_aligned = calculate_total_length(BedTool.from_dataframe(good_reference_bed_df).sort().merge()) rliterman@0: rliterman@0: query_percent_aligned = (good_query_aligned / query_bases) * 100 rliterman@0: reference_percent_aligned = (good_reference_aligned / reference_bases) * 100 rliterman@0: rliterman@0: if reference_percent_aligned < min_cov: rliterman@0: screen_category = "Low_Quality_Coverage" rliterman@0: with open(log_file,"a+") as log: rliterman@0: log.write(f"\n\t- Raw reference genome coverage was {raw_ref_percent_aligned}% \n") rliterman@0: log.write(f"\t- After filtering based on --min_len ({min_len}) and --min_iden ({min_iden}), reference genome coverage was {reference_percent_aligned:.2f}% \n") rliterman@0: log.write(f"\t- Query covers less than --min_cov ({min_cov}%) of reference after filtering...Screen halted...\n") rliterman@0: log.write("-------------------------------------------------------\n\n") rliterman@0: rliterman@0: else: rliterman@0: screen_category = "Pass" rliterman@0: with open(log_file,"a+") as log: rliterman@0: log.write("Done!\n") rliterman@0: log.write(f"\t- Raw reference genome coverage was {raw_ref_percent_aligned}% \n") rliterman@0: log.write(f"\t- After filtering based on --min_len ({min_len}) and --min_iden ({min_iden}), reference genome coverage was {reference_percent_aligned:.2f}% \n") rliterman@0: log.write("-------------------------------------------------------\n\n") rliterman@0: rliterman@0: rliterman@0: # Filter SNPs rliterman@0: with open(log_file,"a+") as log: rliterman@0: log.write("Step 3: Filtering SNPs to get final SNP distances...") rliterman@0: rliterman@0: if raw_snps == 0: rliterman@0: csp2_screen_snps = purged_length = purged_identity = purged_lengthIdentity = purged_indel = purged_invalid = purged_duplicate = purged_het = purged_density = filtered_ref_edge = filtered_query_edge = filtered_both_edge = 0 rliterman@0: with open(log_file,"a+") as log: rliterman@0: log.write("Done!\n") rliterman@0: log.write("\t- No SNPs detected in MUMmer output, no filtering required\n") rliterman@0: log.write("-------------------------------------------------------\n\n") rliterman@0: rliterman@0: else: rliterman@0: filtered_snp_df = filterSNPs(snp_df,bed_df,log_file, min_len, min_iden, ref_edge, query_edge, density_windows, max_snps) rliterman@0: rliterman@0: # Write filtered SNP data to file rliterman@0: snp_file = log_file.replace(".log","_SNPs.tsv") rliterman@0: filtered_snp_df.to_csv(snp_file, sep="\t", index=False) rliterman@0: rliterman@0: csp2_screen_snps = filtered_snp_df[filtered_snp_df.Cat == "SNP"].shape[0] rliterman@0: rliterman@0: purged_length = filtered_snp_df[filtered_snp_df.Cat == "Purged_Length"].shape[0] rliterman@0: purged_identity = filtered_snp_df[filtered_snp_df.Cat == "Purged_Identity"].shape[0] rliterman@0: purged_lengthIdentity = filtered_snp_df[filtered_snp_df.Cat == "Purged_LengthIdentity"].shape[0] rliterman@0: purged_invalid = filtered_snp_df[filtered_snp_df.Cat == "Purged_Invalid"].shape[0] rliterman@0: purged_indel = filtered_snp_df[filtered_snp_df.Cat == "Purged_Indel"].shape[0] rliterman@0: purged_het = filtered_snp_df[filtered_snp_df.Cat == "Purged_Heterozygous"].shape[0] rliterman@0: purged_duplicate = filtered_snp_df[filtered_snp_df.Cat == "Purged_Duplicate"].shape[0] rliterman@0: purged_density = filtered_snp_df[filtered_snp_df.Cat == "Purged_Density"].shape[0] rliterman@0: filtered_query_edge = filtered_snp_df[filtered_snp_df.Cat == "Filtered_Query_Edge"].shape[0] rliterman@0: filtered_ref_edge = filtered_snp_df[filtered_snp_df.Cat == "Filtered_Ref_Edge"].shape[0] rliterman@0: filtered_both_edge = filtered_snp_df[filtered_snp_df.Cat == "Filtered_Both_Edge"].shape[0] rliterman@0: rliterman@0: with open(log_file,"a+") as log: rliterman@0: log.write("Done!\n") rliterman@0: log.write(f"\t- {csp2_screen_snps} SNPs detected between {query_id} and {reference_id} after filtering\n") rliterman@0: log.write(f"\t- SNP data saved to {snp_file}\n") rliterman@0: log.write("-------------------------------------------------------\n\n") rliterman@0: rliterman@0: screen_end_time = time.time() rliterman@0: helpers.cleanup(verbose=False, remove_all=False) rliterman@0: rliterman@0: with open(log_file,"a+") as log: rliterman@0: log.write(f"Screening Time: {screen_end_time - screen_start_time:.2f} seconds\n") rliterman@0: rliterman@0: # Clean up pybedtools temp rliterman@0: helpers.cleanup(verbose=False, remove_all=False) rliterman@0: rliterman@0: return [str(item) for item in [query_id,reference_id,screen_category,csp2_screen_snps, rliterman@0: f"{query_percent_aligned:.2f}",f"{reference_percent_aligned:.2f}", rliterman@0: query_contigs,query_bases,reference_contigs,reference_bases, rliterman@0: raw_snps,purged_length,purged_identity,purged_lengthIdentity,purged_invalid,purged_indel,purged_duplicate,purged_het,purged_density, rliterman@0: filtered_query_edge,filtered_ref_edge,filtered_both_edge, rliterman@0: kmer_similarity,shared_kmers,query_unique_kmers,reference_unique_kmers, rliterman@0: mummer_gsnps,mummer_gindels]] rliterman@0: rliterman@0: # Read in arguments rliterman@0: global run_failed rliterman@0: run_failed = False rliterman@0: rliterman@0: parser = argparse.ArgumentParser() rliterman@0: parser.add_argument("--snpdiffs_file", help="Path to the file containing SNP diffs") rliterman@0: parser.add_argument("--log_dir", help="Path to the log directory") rliterman@0: parser.add_argument("--min_cov", type=float, help="Minimum coverage") rliterman@0: parser.add_argument("--min_len", type=int, help="Minimum length") rliterman@0: parser.add_argument("--min_iden", type=float, help="Minimum identity") rliterman@0: parser.add_argument("--ref_edge", type=int, help="Reference edge") rliterman@0: parser.add_argument("--query_edge", type=int, help="Query edge") rliterman@0: parser.add_argument("--density_windows", help="Density windows (comma-separated)") rliterman@0: parser.add_argument("--max_snps", help="Maximum SNPs (comma-separated)") rliterman@0: parser.add_argument("--trim_name", help="Trim name") rliterman@0: parser.add_argument("--output_file", help="Output file") rliterman@0: parser.add_argument("--ref_id", help="Reference IDs file") rliterman@0: parser.add_argument("--tmp_dir", help="TMP dir") rliterman@0: rliterman@0: args = parser.parse_args() rliterman@0: rliterman@0: snpdiffs_list = [line.strip() for line in open(args.snpdiffs_file, 'r')] rliterman@0: snpdiffs_list = [line for line in snpdiffs_list if line] rliterman@0: for snpdiffs_file in snpdiffs_list: rliterman@0: if not os.path.exists(snpdiffs_file): rliterman@0: run_failed = True rliterman@0: sys.exit("Error: File does not exist: " + snpdiffs_file) rliterman@0: rliterman@0: snpdiffs_list = list(set(snpdiffs_list)) rliterman@0: rliterman@0: log_dir = os.path.normpath(os.path.abspath(args.log_dir)) rliterman@0: rliterman@0: min_cov = args.min_cov rliterman@0: min_len = args.min_len rliterman@0: min_iden = args.min_iden rliterman@0: rliterman@0: ref_edge = args.ref_edge rliterman@0: query_edge = args.query_edge rliterman@0: rliterman@0: input_density = args.density_windows rliterman@0: input_maxsnps = args.max_snps rliterman@0: rliterman@0: if input_density == "0": rliterman@0: density_windows = [] rliterman@0: max_snps = [] rliterman@0: else: rliterman@0: density_windows = [int(x) for x in args.density_windows.split(",")] rliterman@0: max_snps = [int(x) for x in args.max_snps.split(",")] rliterman@0: assert len(density_windows) == len(max_snps) rliterman@0: rliterman@0: trim_name = args.trim_name rliterman@0: rliterman@0: output_file = os.path.abspath(args.output_file) rliterman@0: rliterman@0: if os.stat(args.ref_id).st_size == 0: rliterman@0: ref_ids = [] rliterman@0: else: rliterman@0: ref_ids = [line.strip() for line in open(args.ref_id, 'r')] rliterman@0: rliterman@0: global temp_dir rliterman@0: if args.tmp_dir != "": rliterman@0: random_temp_id = str(uuid.uuid4()) rliterman@0: temp_dir = f"{os.path.normpath(os.path.abspath(args.tmp_dir))}/{random_temp_id}" rliterman@0: try: rliterman@0: os.mkdir(temp_dir) rliterman@0: helpers.set_tempdir(temp_dir) rliterman@0: except OSError as e: rliterman@0: run_failed = True rliterman@0: print(f"Error: Failed to create directory '{temp_dir}': {e}") rliterman@0: else: rliterman@0: temp_dir = "" rliterman@0: rliterman@0: try: rliterman@0: with concurrent.futures.ProcessPoolExecutor() as executor: rliterman@0: results = [executor.submit(screenSNPDiffs,snp_diff_file,trim_name, min_cov, min_len, min_iden, ref_edge, query_edge, density_windows, max_snps,ref_ids) for snp_diff_file in snpdiffs_list] rliterman@0: rliterman@0: # Clean up pybedtools temp rliterman@0: helpers.cleanup(verbose=False,remove_all = False) rliterman@0: rliterman@0: # Combine results into a dataframe rliterman@0: output_columns = ['Query_ID','Reference_ID','Screen_Category','CSP2_Screen_SNPs', rliterman@0: 'Query_Percent_Aligned','Reference_Percent_Aligned', rliterman@0: 'Query_Contigs','Query_Bases','Reference_Contigs','Reference_Bases', rliterman@0: 'Raw_SNPs','Purged_Length','Purged_Identity','Purged_LengthIdentity','Purged_Invalid','Purged_Indel','Purged_Duplicate','Purged_Het','Purged_Density', rliterman@0: 'Filtered_Query_Edge','Filtered_Ref_Edge','Filtered_Both_Edge', rliterman@0: 'Kmer_Similarity','Shared_Kmers','Query_Unique_Kmers','Reference_Unique_Kmers', rliterman@0: 'MUMmer_gSNPs','MUMmer_gIndels'] rliterman@0: rliterman@0: results_df = pd.DataFrame([item.result() for item in results], columns = output_columns) rliterman@0: results_df.to_csv(output_file, sep="\t", index=False) rliterman@0: except: rliterman@0: run_failed = True rliterman@0: print("Exception occurred:\n", traceback.format_exc()) rliterman@0: finally: rliterman@0: helpers.cleanup(verbose=False, remove_all=False) rliterman@0: if temp_dir != "": rliterman@0: shutil.rmtree(temp_dir) rliterman@0: if run_failed: rliterman@0: sys.exit(1) rliterman@0: rliterman@0: rliterman@0: rliterman@0: rliterman@0: