jpayne@17
|
1 # SeqSero2
|
jpayne@17
|
2 Salmonella serotype prediction from genome sequencing data.
|
jpayne@17
|
3
|
jpayne@17
|
4 Online version: http://www.denglab.info/SeqSero2
|
jpayne@1
|
5
|
jpayne@1
|
6 # Introduction
|
jpayne@7
|
7 SeqSero2 is a pipeline for Salmonella serotype prediction from raw sequencing reads or genome assemblies
|
jpayne@1
|
8
|
jpayne@1
|
9 # Dependencies
|
jpayne@17
|
10 SeqSero2 has three workflows:
|
jpayne@1
|
11
|
jpayne@7
|
12 (A) Allele micro-assembly (default). This workflow takes raw reads as input and performs targeted assembly of serotype determinant alleles. Assembled alleles are used to predict serotype and flag potential inter-serotype contamination in sequencing data (i.e., presence of reads from multiple serotypes due to, for example, cross or carryover contamination during sequencing).
|
jpayne@1
|
13
|
jpayne@7
|
14 Allele micro-assembly workflow depends on:
|
jpayne@1
|
15
|
jpayne@7
|
16 1. Python 3;
|
jpayne@7
|
17
|
jpayne@17
|
18 2. Biopython 1.73;
|
jpayne@7
|
19
|
jpayne@17
|
20 3. [Burrows-Wheeler Aligner v0.7.12](http://sourceforge.net/projects/bio-bwa/files/);
|
jpayne@7
|
21
|
jpayne@17
|
22 4. [Samtools v1.8](http://sourceforge.net/projects/samtools/files/samtools/);
|
jpayne@7
|
23
|
jpayne@17
|
24 5. [NCBI BLAST v2.2.28+](https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE_TYPE=BlastDocs&DOC_TYPE=Download);
|
jpayne@7
|
25
|
jpayne@17
|
26 6. [SRA Toolkit v2.8.0](http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=software&m=software&s=software);
|
jpayne@7
|
27
|
jpayne@17
|
28 7. [SPAdes v3.15.5](http://bioinf.spbau.ru/spades);
|
jpayne@7
|
29
|
jpayne@17
|
30 8. [Bedtools v2.17.0](http://bedtools.readthedocs.io/en/latest/);
|
jpayne@17
|
31
|
jpayne@17
|
32 9. [SalmID v0.11](https://github.com/hcdenbakker/SalmID).
|
jpayne@7
|
33
|
jpayne@7
|
34
|
jpayne@7
|
35 (B) Raw reads k-mer. This workflow takes raw reads as input and performs rapid serotype prediction based on unique k-mers of serotype determinants.
|
jpayne@7
|
36
|
jpayne@7
|
37 Raw reads k-mer workflow (originally SeqSeroK) depends on:
|
jpayne@1
|
38
|
jpayne@1
|
39 1. Python 3;
|
jpayne@1
|
40 2. [SRA Toolkit](http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=software&m=software&s=software) (optional, just used to fastq-dump sra files);
|
jpayne@1
|
41
|
jpayne@1
|
42
|
jpayne@7
|
43 (C) Genome assembly k-mer. This workflow takes genome assemblies as input and the rest of the workflow largely overlaps with the raw reads k-mer workflow
|
jpayne@1
|
44
|
jpayne@17
|
45 # Installation
|
jpayne@17
|
46 ### Conda
|
jpayne@17
|
47 To install the latest SeqSero2 Conda package (recommended):
|
jpayne@17
|
48 ```
|
jpayne@17
|
49 conda install -c bioconda seqsero2=1.3.1
|
jpayne@17
|
50 ```
|
jpayne@17
|
51 ### Git
|
jpayne@17
|
52 To install the SeqSero2 git repository locally:
|
jpayne@17
|
53 ```
|
jpayne@17
|
54 git clone https://github.com/denglab/SeqSero2.git
|
jpayne@17
|
55 cd SeqSero2
|
jpayne@17
|
56 python3 -m pip install --user .
|
jpayne@17
|
57 ```
|
jpayne@17
|
58 ### Other options
|
jpayne@17
|
59 Third party SeqSero2 installations (may not be the latest version of SeqSero2): \
|
jpayne@17
|
60 https://github.com/B-UMMI/docker-images/tree/master/seqsero2 \
|
jpayne@17
|
61 https://github.com/denglab/SeqSero2/issues/13
|
jpayne@17
|
62
|
jpayne@1
|
63
|
jpayne@1
|
64 # Executing the code
|
jpayne@1
|
65 Make sure all SeqSero2 and its dependency executables are added to your path (e.g. to ~/.bashrc). Then type SeqSero2_package.py to get detailed instructions.
|
jpayne@1
|
66
|
jpayne@1
|
67 Usage: SeqSero2_package.py
|
jpayne@1
|
68
|
jpayne@7
|
69 -m <string> (which workflow to apply, 'a'(raw reads allele micro-assembly), 'k'(raw reads and genome assembly k-mer), default=a)
|
jpayne@1
|
70
|
jpayne@17
|
71 -t <string> (input data type, '1' for interleaved paired-end reads, '2' for separated paired-end reads, '3' for single reads, '4' for genome assembly, '5' for nanopore reads (fasta/fastq))
|
jpayne@1
|
72
|
jpayne@1
|
73 -i <file> (/path/to/input/file)
|
jpayne@1
|
74
|
jpayne@1
|
75 -p <int> (number of threads for allele mode, if p >4, only 4 threads will be used for assembly since the amount of extracted reads is small, default=1)
|
jpayne@1
|
76
|
jpayne@1
|
77 -b <string> (algorithms for bwa mapping for allele mode; 'mem' for mem, 'sam' for samse/sampe; default=mem; optional; for now we only optimized for default "mem" mode)
|
jpayne@1
|
78
|
jpayne@1
|
79 -d <string> (output directory name, if not set, the output directory would be 'SeqSero_result_'+time stamp+one random number)
|
jpayne@1
|
80
|
jpayne@17
|
81 -c <flag> (if '-c' was flagged, SeqSero2 will only output serotype prediction without the directory containing log files)
|
jpayne@17
|
82
|
jpayne@17
|
83 -n <string> (optional, to specify a sample name in the report output)
|
jpayne@17
|
84
|
jpayne@17
|
85 -s <flag> (if '-s' was flagged, SeqSero2 will not output header in SeqSero_result.tsv)
|
jpayne@17
|
86
|
jpayne@17
|
87 --check <flag> (use '--check' flag to check the required dependencies)
|
jpayne@17
|
88
|
jpayne@17
|
89 -v, --version (show program's version number and exit)
|
jpayne@1
|
90
|
jpayne@1
|
91
|
jpayne@1
|
92 # Examples
|
jpayne@7
|
93 Allele mode:
|
jpayne@7
|
94
|
jpayne@7
|
95 # Allele workflow ("-m a", default), for separated paired-end raw reads ("-t 2"), use 10 threads in mapping and assembly ("-p 10")
|
jpayne@7
|
96 SeqSero2_package.py -p 10 -t 2 -i R1.fastq.gz R2.fastq.gz
|
jpayne@7
|
97
|
jpayne@1
|
98 K-mer mode:
|
jpayne@1
|
99
|
jpayne@7
|
100 # Raw reads k-mer ("-m k"), for separated paired-end raw reads ("-t 2")
|
jpayne@7
|
101 SeqSero2_package.py -m k -t 2 -i R1.fastq.gz R2.fastq.gz
|
jpayne@1
|
102
|
jpayne@7
|
103 # Genome assembly k-mer ("-t 4", genome assemblies only predicted by the k-mer workflow, "-m k")
|
jpayne@7
|
104 SeqSero2_package.py -m k -t 4 -i assembly.fasta
|
jpayne@1
|
105
|
jpayne@1
|
106 # Output
|
jpayne@17
|
107 Upon executing the command, a directory named 'SeqSero_result_Time_your_run' will be created. Your result will be stored in 'SeqSero_result.txt' in that directory. And the assembled alleles can also be found in the directory if using "-m a" (allele mode).
|
jpayne@1
|
108
|
jpayne@1
|
109
|
jpayne@1
|
110 # Citation
|
jpayne@17
|
111 Zhang S, Den-Bakker HC, Li S, Dinsmore BA, Lane C, Lauer AC, Fields PI, Deng X.
|
jpayne@17
|
112 SeqSero2: rapid and improved Salmonella serotype determination using whole genome sequencing data.
|
jpayne@17
|
113 **Appl Environ Microbiology. 2019 Sep; 85(23):e01746-19.** [PMID: 31540993](https://aem.asm.org/content/early/2019/09/17/AEM.01746-19.long)
|
jpayne@17
|
114
|
jpayne@1
|
115 Zhang S, Yin Y, Jones MB, Zhang Z, Deatherage Kaiser BL, Dinsmore BA, Fitzgerald C, Fields PI, Deng X.
|
jpayne@1
|
116 Salmonella serotype determination utilizing high-throughput genome sequencing data.
|
jpayne@17
|
117 **J Clin Microbiol. 2015 May;53(5):1685-92.** [PMID: 25762776](http://jcm.asm.org/content/early/2015/03/05/JCM.00323-15)
|