annotate CSP2/CSP2_env/env-d9b9114564458d9d-741b3de822f2aaca6c6caa4325c4afce/lib/python3.8/site-packages/pandas-2.0.3.dist-info/METADATA @ 69:33d812a61356

planemo upload commit 2e9511a184a1ca667c7be0c6321a36dc4e3d116d
author jpayne
date Tue, 18 Mar 2025 17:55:14 -0400
parents
children
rev   line source
jpayne@69 1 Metadata-Version: 2.1
jpayne@69 2 Name: pandas
jpayne@69 3 Version: 2.0.3
jpayne@69 4 Summary: Powerful data structures for data analysis, time series, and statistics
jpayne@69 5 Author-email: The Pandas Development Team <pandas-dev@python.org>
jpayne@69 6 License: BSD 3-Clause License
jpayne@69 7
jpayne@69 8 Copyright (c) 2008-2011, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
jpayne@69 9 All rights reserved.
jpayne@69 10
jpayne@69 11 Copyright (c) 2011-2023, Open source contributors.
jpayne@69 12
jpayne@69 13 Redistribution and use in source and binary forms, with or without
jpayne@69 14 modification, are permitted provided that the following conditions are met:
jpayne@69 15
jpayne@69 16 * Redistributions of source code must retain the above copyright notice, this
jpayne@69 17 list of conditions and the following disclaimer.
jpayne@69 18
jpayne@69 19 * Redistributions in binary form must reproduce the above copyright notice,
jpayne@69 20 this list of conditions and the following disclaimer in the documentation
jpayne@69 21 and/or other materials provided with the distribution.
jpayne@69 22
jpayne@69 23 * Neither the name of the copyright holder nor the names of its
jpayne@69 24 contributors may be used to endorse or promote products derived from
jpayne@69 25 this software without specific prior written permission.
jpayne@69 26
jpayne@69 27 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
jpayne@69 28 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
jpayne@69 29 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
jpayne@69 30 DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
jpayne@69 31 FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
jpayne@69 32 DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
jpayne@69 33 SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
jpayne@69 34 CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
jpayne@69 35 OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
jpayne@69 36 OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
jpayne@69 37
jpayne@69 38 Project-URL: homepage, https://pandas.pydata.org
jpayne@69 39 Project-URL: documentation, https://pandas.pydata.org/docs/
jpayne@69 40 Project-URL: repository, https://github.com/pandas-dev/pandas
jpayne@69 41 Classifier: Development Status :: 5 - Production/Stable
jpayne@69 42 Classifier: Environment :: Console
jpayne@69 43 Classifier: Intended Audience :: Science/Research
jpayne@69 44 Classifier: License :: OSI Approved :: BSD License
jpayne@69 45 Classifier: Operating System :: OS Independent
jpayne@69 46 Classifier: Programming Language :: Cython
jpayne@69 47 Classifier: Programming Language :: Python
jpayne@69 48 Classifier: Programming Language :: Python :: 3
jpayne@69 49 Classifier: Programming Language :: Python :: 3 :: Only
jpayne@69 50 Classifier: Programming Language :: Python :: 3.8
jpayne@69 51 Classifier: Programming Language :: Python :: 3.9
jpayne@69 52 Classifier: Programming Language :: Python :: 3.10
jpayne@69 53 Classifier: Programming Language :: Python :: 3.11
jpayne@69 54 Classifier: Topic :: Scientific/Engineering
jpayne@69 55 Requires-Python: >=3.8
jpayne@69 56 Description-Content-Type: text/markdown
jpayne@69 57 License-File: LICENSE
jpayne@69 58 License-File: AUTHORS.md
jpayne@69 59 Requires-Dist: python-dateutil (>=2.8.2)
jpayne@69 60 Requires-Dist: pytz (>=2020.1)
jpayne@69 61 Requires-Dist: tzdata (>=2022.1)
jpayne@69 62 Requires-Dist: numpy (>=1.20.3) ; python_version < "3.10"
jpayne@69 63 Requires-Dist: numpy (>=1.21.0) ; python_version >= "3.10"
jpayne@69 64 Requires-Dist: numpy (>=1.23.2) ; python_version >= "3.11"
jpayne@69 65 Provides-Extra: all
jpayne@69 66 Requires-Dist: beautifulsoup4 (>=4.9.3) ; extra == 'all'
jpayne@69 67 Requires-Dist: bottleneck (>=1.3.2) ; extra == 'all'
jpayne@69 68 Requires-Dist: brotlipy (>=0.7.0) ; extra == 'all'
jpayne@69 69 Requires-Dist: fastparquet (>=0.6.3) ; extra == 'all'
jpayne@69 70 Requires-Dist: fsspec (>=2021.07.0) ; extra == 'all'
jpayne@69 71 Requires-Dist: gcsfs (>=2021.07.0) ; extra == 'all'
jpayne@69 72 Requires-Dist: html5lib (>=1.1) ; extra == 'all'
jpayne@69 73 Requires-Dist: hypothesis (>=6.34.2) ; extra == 'all'
jpayne@69 74 Requires-Dist: jinja2 (>=3.0.0) ; extra == 'all'
jpayne@69 75 Requires-Dist: lxml (>=4.6.3) ; extra == 'all'
jpayne@69 76 Requires-Dist: matplotlib (>=3.6.1) ; extra == 'all'
jpayne@69 77 Requires-Dist: numba (>=0.53.1) ; extra == 'all'
jpayne@69 78 Requires-Dist: numexpr (>=2.7.3) ; extra == 'all'
jpayne@69 79 Requires-Dist: odfpy (>=1.4.1) ; extra == 'all'
jpayne@69 80 Requires-Dist: openpyxl (>=3.0.7) ; extra == 'all'
jpayne@69 81 Requires-Dist: pandas-gbq (>=0.15.0) ; extra == 'all'
jpayne@69 82 Requires-Dist: psycopg2 (>=2.8.6) ; extra == 'all'
jpayne@69 83 Requires-Dist: pyarrow (>=7.0.0) ; extra == 'all'
jpayne@69 84 Requires-Dist: pymysql (>=1.0.2) ; extra == 'all'
jpayne@69 85 Requires-Dist: PyQt5 (>=5.15.1) ; extra == 'all'
jpayne@69 86 Requires-Dist: pyreadstat (>=1.1.2) ; extra == 'all'
jpayne@69 87 Requires-Dist: pytest (>=7.3.2) ; extra == 'all'
jpayne@69 88 Requires-Dist: pytest-xdist (>=2.2.0) ; extra == 'all'
jpayne@69 89 Requires-Dist: pytest-asyncio (>=0.17.0) ; extra == 'all'
jpayne@69 90 Requires-Dist: python-snappy (>=0.6.0) ; extra == 'all'
jpayne@69 91 Requires-Dist: pyxlsb (>=1.0.8) ; extra == 'all'
jpayne@69 92 Requires-Dist: qtpy (>=2.2.0) ; extra == 'all'
jpayne@69 93 Requires-Dist: scipy (>=1.7.1) ; extra == 'all'
jpayne@69 94 Requires-Dist: s3fs (>=2021.08.0) ; extra == 'all'
jpayne@69 95 Requires-Dist: SQLAlchemy (>=1.4.16) ; extra == 'all'
jpayne@69 96 Requires-Dist: tables (>=3.6.1) ; extra == 'all'
jpayne@69 97 Requires-Dist: tabulate (>=0.8.9) ; extra == 'all'
jpayne@69 98 Requires-Dist: xarray (>=0.21.0) ; extra == 'all'
jpayne@69 99 Requires-Dist: xlrd (>=2.0.1) ; extra == 'all'
jpayne@69 100 Requires-Dist: xlsxwriter (>=1.4.3) ; extra == 'all'
jpayne@69 101 Requires-Dist: zstandard (>=0.15.2) ; extra == 'all'
jpayne@69 102 Provides-Extra: aws
jpayne@69 103 Requires-Dist: s3fs (>=2021.08.0) ; extra == 'aws'
jpayne@69 104 Provides-Extra: clipboard
jpayne@69 105 Requires-Dist: PyQt5 (>=5.15.1) ; extra == 'clipboard'
jpayne@69 106 Requires-Dist: qtpy (>=2.2.0) ; extra == 'clipboard'
jpayne@69 107 Provides-Extra: compression
jpayne@69 108 Requires-Dist: brotlipy (>=0.7.0) ; extra == 'compression'
jpayne@69 109 Requires-Dist: python-snappy (>=0.6.0) ; extra == 'compression'
jpayne@69 110 Requires-Dist: zstandard (>=0.15.2) ; extra == 'compression'
jpayne@69 111 Provides-Extra: computation
jpayne@69 112 Requires-Dist: scipy (>=1.7.1) ; extra == 'computation'
jpayne@69 113 Requires-Dist: xarray (>=0.21.0) ; extra == 'computation'
jpayne@69 114 Provides-Extra: excel
jpayne@69 115 Requires-Dist: odfpy (>=1.4.1) ; extra == 'excel'
jpayne@69 116 Requires-Dist: openpyxl (>=3.0.7) ; extra == 'excel'
jpayne@69 117 Requires-Dist: pyxlsb (>=1.0.8) ; extra == 'excel'
jpayne@69 118 Requires-Dist: xlrd (>=2.0.1) ; extra == 'excel'
jpayne@69 119 Requires-Dist: xlsxwriter (>=1.4.3) ; extra == 'excel'
jpayne@69 120 Provides-Extra: feather
jpayne@69 121 Requires-Dist: pyarrow (>=7.0.0) ; extra == 'feather'
jpayne@69 122 Provides-Extra: fss
jpayne@69 123 Requires-Dist: fsspec (>=2021.07.0) ; extra == 'fss'
jpayne@69 124 Provides-Extra: gcp
jpayne@69 125 Requires-Dist: gcsfs (>=2021.07.0) ; extra == 'gcp'
jpayne@69 126 Requires-Dist: pandas-gbq (>=0.15.0) ; extra == 'gcp'
jpayne@69 127 Provides-Extra: hdf5
jpayne@69 128 Requires-Dist: tables (>=3.6.1) ; extra == 'hdf5'
jpayne@69 129 Provides-Extra: html
jpayne@69 130 Requires-Dist: beautifulsoup4 (>=4.9.3) ; extra == 'html'
jpayne@69 131 Requires-Dist: html5lib (>=1.1) ; extra == 'html'
jpayne@69 132 Requires-Dist: lxml (>=4.6.3) ; extra == 'html'
jpayne@69 133 Provides-Extra: mysql
jpayne@69 134 Requires-Dist: SQLAlchemy (>=1.4.16) ; extra == 'mysql'
jpayne@69 135 Requires-Dist: pymysql (>=1.0.2) ; extra == 'mysql'
jpayne@69 136 Provides-Extra: output_formatting
jpayne@69 137 Requires-Dist: jinja2 (>=3.0.0) ; extra == 'output_formatting'
jpayne@69 138 Requires-Dist: tabulate (>=0.8.9) ; extra == 'output_formatting'
jpayne@69 139 Provides-Extra: parquet
jpayne@69 140 Requires-Dist: pyarrow (>=7.0.0) ; extra == 'parquet'
jpayne@69 141 Provides-Extra: performance
jpayne@69 142 Requires-Dist: bottleneck (>=1.3.2) ; extra == 'performance'
jpayne@69 143 Requires-Dist: numba (>=0.53.1) ; extra == 'performance'
jpayne@69 144 Requires-Dist: numexpr (>=2.7.1) ; extra == 'performance'
jpayne@69 145 Provides-Extra: plot
jpayne@69 146 Requires-Dist: matplotlib (>=3.6.1) ; extra == 'plot'
jpayne@69 147 Provides-Extra: postgresql
jpayne@69 148 Requires-Dist: SQLAlchemy (>=1.4.16) ; extra == 'postgresql'
jpayne@69 149 Requires-Dist: psycopg2 (>=2.8.6) ; extra == 'postgresql'
jpayne@69 150 Provides-Extra: spss
jpayne@69 151 Requires-Dist: pyreadstat (>=1.1.2) ; extra == 'spss'
jpayne@69 152 Provides-Extra: sql-other
jpayne@69 153 Requires-Dist: SQLAlchemy (>=1.4.16) ; extra == 'sql-other'
jpayne@69 154 Provides-Extra: test
jpayne@69 155 Requires-Dist: hypothesis (>=6.34.2) ; extra == 'test'
jpayne@69 156 Requires-Dist: pytest (>=7.3.2) ; extra == 'test'
jpayne@69 157 Requires-Dist: pytest-xdist (>=2.2.0) ; extra == 'test'
jpayne@69 158 Requires-Dist: pytest-asyncio (>=0.17.0) ; extra == 'test'
jpayne@69 159 Provides-Extra: xml
jpayne@69 160 Requires-Dist: lxml (>=4.6.3) ; extra == 'xml'
jpayne@69 161
jpayne@69 162 <div align="center">
jpayne@69 163 <img src="https://pandas.pydata.org/static/img/pandas.svg"><br>
jpayne@69 164 </div>
jpayne@69 165
jpayne@69 166 -----------------
jpayne@69 167
jpayne@69 168 # pandas: powerful Python data analysis toolkit
jpayne@69 169 [![PyPI Latest Release](https://img.shields.io/pypi/v/pandas.svg)](https://pypi.org/project/pandas/)
jpayne@69 170 [![Conda Latest Release](https://anaconda.org/conda-forge/pandas/badges/version.svg)](https://anaconda.org/anaconda/pandas/)
jpayne@69 171 [![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.3509134.svg)](https://doi.org/10.5281/zenodo.3509134)
jpayne@69 172 [![Package Status](https://img.shields.io/pypi/status/pandas.svg)](https://pypi.org/project/pandas/)
jpayne@69 173 [![License](https://img.shields.io/pypi/l/pandas.svg)](https://github.com/pandas-dev/pandas/blob/main/LICENSE)
jpayne@69 174 [![Coverage](https://codecov.io/github/pandas-dev/pandas/coverage.svg?branch=main)](https://codecov.io/gh/pandas-dev/pandas)
jpayne@69 175 [![Downloads](https://static.pepy.tech/personalized-badge/pandas?period=month&units=international_system&left_color=black&right_color=orange&left_text=PyPI%20downloads%20per%20month)](https://pepy.tech/project/pandas)
jpayne@69 176 [![Slack](https://img.shields.io/badge/join_Slack-information-brightgreen.svg?logo=slack)](https://pandas.pydata.org/docs/dev/development/community.html?highlight=slack#community-slack)
jpayne@69 177 [![Powered by NumFOCUS](https://img.shields.io/badge/powered%20by-NumFOCUS-orange.svg?style=flat&colorA=E1523D&colorB=007D8A)](https://numfocus.org)
jpayne@69 178 [![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)
jpayne@69 179 [![Imports: isort](https://img.shields.io/badge/%20imports-isort-%231674b1?style=flat&labelColor=ef8336)](https://pycqa.github.io/isort/)
jpayne@69 180
jpayne@69 181 ## What is it?
jpayne@69 182
jpayne@69 183 **pandas** is a Python package that provides fast, flexible, and expressive data
jpayne@69 184 structures designed to make working with "relational" or "labeled" data both
jpayne@69 185 easy and intuitive. It aims to be the fundamental high-level building block for
jpayne@69 186 doing practical, **real world** data analysis in Python. Additionally, it has
jpayne@69 187 the broader goal of becoming **the most powerful and flexible open source data
jpayne@69 188 analysis / manipulation tool available in any language**. It is already well on
jpayne@69 189 its way towards this goal.
jpayne@69 190
jpayne@69 191 ## Main Features
jpayne@69 192 Here are just a few of the things that pandas does well:
jpayne@69 193
jpayne@69 194 - Easy handling of [**missing data**][missing-data] (represented as
jpayne@69 195 `NaN`, `NA`, or `NaT`) in floating point as well as non-floating point data
jpayne@69 196 - Size mutability: columns can be [**inserted and
jpayne@69 197 deleted**][insertion-deletion] from DataFrame and higher dimensional
jpayne@69 198 objects
jpayne@69 199 - Automatic and explicit [**data alignment**][alignment]: objects can
jpayne@69 200 be explicitly aligned to a set of labels, or the user can simply
jpayne@69 201 ignore the labels and let `Series`, `DataFrame`, etc. automatically
jpayne@69 202 align the data for you in computations
jpayne@69 203 - Powerful, flexible [**group by**][groupby] functionality to perform
jpayne@69 204 split-apply-combine operations on data sets, for both aggregating
jpayne@69 205 and transforming data
jpayne@69 206 - Make it [**easy to convert**][conversion] ragged,
jpayne@69 207 differently-indexed data in other Python and NumPy data structures
jpayne@69 208 into DataFrame objects
jpayne@69 209 - Intelligent label-based [**slicing**][slicing], [**fancy
jpayne@69 210 indexing**][fancy-indexing], and [**subsetting**][subsetting] of
jpayne@69 211 large data sets
jpayne@69 212 - Intuitive [**merging**][merging] and [**joining**][joining] data
jpayne@69 213 sets
jpayne@69 214 - Flexible [**reshaping**][reshape] and [**pivoting**][pivot-table] of
jpayne@69 215 data sets
jpayne@69 216 - [**Hierarchical**][mi] labeling of axes (possible to have multiple
jpayne@69 217 labels per tick)
jpayne@69 218 - Robust IO tools for loading data from [**flat files**][flat-files]
jpayne@69 219 (CSV and delimited), [**Excel files**][excel], [**databases**][db],
jpayne@69 220 and saving/loading data from the ultrafast [**HDF5 format**][hdfstore]
jpayne@69 221 - [**Time series**][timeseries]-specific functionality: date range
jpayne@69 222 generation and frequency conversion, moving window statistics,
jpayne@69 223 date shifting and lagging
jpayne@69 224
jpayne@69 225
jpayne@69 226 [missing-data]: https://pandas.pydata.org/pandas-docs/stable/user_guide/missing_data.html
jpayne@69 227 [insertion-deletion]: https://pandas.pydata.org/pandas-docs/stable/user_guide/dsintro.html#column-selection-addition-deletion
jpayne@69 228 [alignment]: https://pandas.pydata.org/pandas-docs/stable/user_guide/dsintro.html?highlight=alignment#intro-to-data-structures
jpayne@69 229 [groupby]: https://pandas.pydata.org/pandas-docs/stable/user_guide/groupby.html#group-by-split-apply-combine
jpayne@69 230 [conversion]: https://pandas.pydata.org/pandas-docs/stable/user_guide/dsintro.html#dataframe
jpayne@69 231 [slicing]: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#slicing-ranges
jpayne@69 232 [fancy-indexing]: https://pandas.pydata.org/pandas-docs/stable/user_guide/advanced.html#advanced
jpayne@69 233 [subsetting]: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#boolean-indexing
jpayne@69 234 [merging]: https://pandas.pydata.org/pandas-docs/stable/user_guide/merging.html#database-style-dataframe-or-named-series-joining-merging
jpayne@69 235 [joining]: https://pandas.pydata.org/pandas-docs/stable/user_guide/merging.html#joining-on-index
jpayne@69 236 [reshape]: https://pandas.pydata.org/pandas-docs/stable/user_guide/reshaping.html
jpayne@69 237 [pivot-table]: https://pandas.pydata.org/pandas-docs/stable/user_guide/reshaping.html
jpayne@69 238 [mi]: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#hierarchical-indexing-multiindex
jpayne@69 239 [flat-files]: https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#csv-text-files
jpayne@69 240 [excel]: https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#excel-files
jpayne@69 241 [db]: https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#sql-queries
jpayne@69 242 [hdfstore]: https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#hdf5-pytables
jpayne@69 243 [timeseries]: https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#time-series-date-functionality
jpayne@69 244
jpayne@69 245 ## Where to get it
jpayne@69 246 The source code is currently hosted on GitHub at:
jpayne@69 247 https://github.com/pandas-dev/pandas
jpayne@69 248
jpayne@69 249 Binary installers for the latest released version are available at the [Python
jpayne@69 250 Package Index (PyPI)](https://pypi.org/project/pandas) and on [Conda](https://docs.conda.io/en/latest/).
jpayne@69 251
jpayne@69 252 ```sh
jpayne@69 253 # conda
jpayne@69 254 conda install pandas
jpayne@69 255 ```
jpayne@69 256
jpayne@69 257 ```sh
jpayne@69 258 # or PyPI
jpayne@69 259 pip install pandas
jpayne@69 260 ```
jpayne@69 261
jpayne@69 262 ## Dependencies
jpayne@69 263 - [NumPy - Adds support for large, multi-dimensional arrays, matrices and high-level mathematical functions to operate on these arrays](https://www.numpy.org)
jpayne@69 264 - [python-dateutil - Provides powerful extensions to the standard datetime module](https://dateutil.readthedocs.io/en/stable/index.html)
jpayne@69 265 - [pytz - Brings the Olson tz database into Python which allows accurate and cross platform timezone calculations](https://github.com/stub42/pytz)
jpayne@69 266
jpayne@69 267 See the [full installation instructions](https://pandas.pydata.org/pandas-docs/stable/install.html#dependencies) for minimum supported versions of required, recommended and optional dependencies.
jpayne@69 268
jpayne@69 269 ## Installation from sources
jpayne@69 270 To install pandas from source you need [Cython](https://cython.org/) in addition to the normal
jpayne@69 271 dependencies above. Cython can be installed from PyPI:
jpayne@69 272
jpayne@69 273 ```sh
jpayne@69 274 pip install cython
jpayne@69 275 ```
jpayne@69 276
jpayne@69 277 In the `pandas` directory (same one where you found this file after
jpayne@69 278 cloning the git repo), execute:
jpayne@69 279
jpayne@69 280 ```sh
jpayne@69 281 python setup.py install
jpayne@69 282 ```
jpayne@69 283
jpayne@69 284 or for installing in [development mode](https://pip.pypa.io/en/latest/cli/pip_install/#install-editable):
jpayne@69 285
jpayne@69 286
jpayne@69 287 ```sh
jpayne@69 288 python -m pip install -e . --no-build-isolation --no-use-pep517
jpayne@69 289 ```
jpayne@69 290
jpayne@69 291 or alternatively
jpayne@69 292
jpayne@69 293 ```sh
jpayne@69 294 python setup.py develop
jpayne@69 295 ```
jpayne@69 296
jpayne@69 297 See the full instructions for [installing from source](https://pandas.pydata.org/pandas-docs/stable/getting_started/install.html#installing-from-source).
jpayne@69 298
jpayne@69 299 ## License
jpayne@69 300 [BSD 3](LICENSE)
jpayne@69 301
jpayne@69 302 ## Documentation
jpayne@69 303 The official documentation is hosted on PyData.org: https://pandas.pydata.org/pandas-docs/stable
jpayne@69 304
jpayne@69 305 ## Background
jpayne@69 306 Work on ``pandas`` started at [AQR](https://www.aqr.com/) (a quantitative hedge fund) in 2008 and
jpayne@69 307 has been under active development since then.
jpayne@69 308
jpayne@69 309 ## Getting Help
jpayne@69 310
jpayne@69 311 For usage questions, the best place to go to is [StackOverflow](https://stackoverflow.com/questions/tagged/pandas).
jpayne@69 312 Further, general questions and discussions can also take place on the [pydata mailing list](https://groups.google.com/forum/?fromgroups#!forum/pydata).
jpayne@69 313
jpayne@69 314 ## Discussion and Development
jpayne@69 315 Most development discussions take place on GitHub in this repo. Further, the [pandas-dev mailing list](https://mail.python.org/mailman/listinfo/pandas-dev) can also be used for specialized discussions or design issues, and a [Slack channel](https://pandas.pydata.org/docs/dev/development/community.html?highlight=slack#community-slack) is available for quick development related questions.
jpayne@69 316
jpayne@69 317 ## Contributing to pandas [![Open Source Helpers](https://www.codetriage.com/pandas-dev/pandas/badges/users.svg)](https://www.codetriage.com/pandas-dev/pandas)
jpayne@69 318
jpayne@69 319 All contributions, bug reports, bug fixes, documentation improvements, enhancements, and ideas are welcome.
jpayne@69 320
jpayne@69 321 A detailed overview on how to contribute can be found in the **[contributing guide](https://pandas.pydata.org/docs/dev/development/contributing.html)**.
jpayne@69 322
jpayne@69 323 If you are simply looking to start working with the pandas codebase, navigate to the [GitHub "issues" tab](https://github.com/pandas-dev/pandas/issues) and start looking through interesting issues. There are a number of issues listed under [Docs](https://github.com/pandas-dev/pandas/issues?labels=Docs&sort=updated&state=open) and [good first issue](https://github.com/pandas-dev/pandas/issues?labels=good+first+issue&sort=updated&state=open) where you could start out.
jpayne@69 324
jpayne@69 325 You can also triage issues which may include reproducing bug reports, or asking for vital information such as version numbers or reproduction instructions. If you would like to start triaging issues, one easy way to get started is to [subscribe to pandas on CodeTriage](https://www.codetriage.com/pandas-dev/pandas).
jpayne@69 326
jpayne@69 327 Or maybe through using pandas you have an idea of your own or are looking for something in the documentation and thinking ‘this can be improved’...you can do something about it!
jpayne@69 328
jpayne@69 329 Feel free to ask questions on the [mailing list](https://groups.google.com/forum/?fromgroups#!forum/pydata) or on [Slack](https://pandas.pydata.org/docs/dev/development/community.html?highlight=slack#community-slack).
jpayne@69 330
jpayne@69 331 As contributors and maintainers to this project, you are expected to abide by pandas' code of conduct. More information can be found at: [Contributor Code of Conduct](https://github.com/pandas-dev/.github/blob/master/CODE_OF_CONDUCT.md)