jpayne@68
|
1 # Copyright (C) 2002-2007 Python Software Foundation
|
jpayne@68
|
2 # Author: Ben Gertzfield, Barry Warsaw
|
jpayne@68
|
3 # Contact: email-sig@python.org
|
jpayne@68
|
4
|
jpayne@68
|
5 """Header encoding and decoding functionality."""
|
jpayne@68
|
6
|
jpayne@68
|
7 __all__ = [
|
jpayne@68
|
8 'Header',
|
jpayne@68
|
9 'decode_header',
|
jpayne@68
|
10 'make_header',
|
jpayne@68
|
11 ]
|
jpayne@68
|
12
|
jpayne@68
|
13 import re
|
jpayne@68
|
14 import binascii
|
jpayne@68
|
15
|
jpayne@68
|
16 import email.quoprimime
|
jpayne@68
|
17 import email.base64mime
|
jpayne@68
|
18
|
jpayne@68
|
19 from email.errors import HeaderParseError
|
jpayne@68
|
20 from email import charset as _charset
|
jpayne@68
|
21 Charset = _charset.Charset
|
jpayne@68
|
22
|
jpayne@68
|
23 NL = '\n'
|
jpayne@68
|
24 SPACE = ' '
|
jpayne@68
|
25 BSPACE = b' '
|
jpayne@68
|
26 SPACE8 = ' ' * 8
|
jpayne@68
|
27 EMPTYSTRING = ''
|
jpayne@68
|
28 MAXLINELEN = 78
|
jpayne@68
|
29 FWS = ' \t'
|
jpayne@68
|
30
|
jpayne@68
|
31 USASCII = Charset('us-ascii')
|
jpayne@68
|
32 UTF8 = Charset('utf-8')
|
jpayne@68
|
33
|
jpayne@68
|
34 # Match encoded-word strings in the form =?charset?q?Hello_World?=
|
jpayne@68
|
35 ecre = re.compile(r'''
|
jpayne@68
|
36 =\? # literal =?
|
jpayne@68
|
37 (?P<charset>[^?]*?) # non-greedy up to the next ? is the charset
|
jpayne@68
|
38 \? # literal ?
|
jpayne@68
|
39 (?P<encoding>[qQbB]) # either a "q" or a "b", case insensitive
|
jpayne@68
|
40 \? # literal ?
|
jpayne@68
|
41 (?P<encoded>.*?) # non-greedy up to the next ?= is the encoded string
|
jpayne@68
|
42 \?= # literal ?=
|
jpayne@68
|
43 ''', re.VERBOSE | re.MULTILINE)
|
jpayne@68
|
44
|
jpayne@68
|
45 # Field name regexp, including trailing colon, but not separating whitespace,
|
jpayne@68
|
46 # according to RFC 2822. Character range is from tilde to exclamation mark.
|
jpayne@68
|
47 # For use with .match()
|
jpayne@68
|
48 fcre = re.compile(r'[\041-\176]+:$')
|
jpayne@68
|
49
|
jpayne@68
|
50 # Find a header embedded in a putative header value. Used to check for
|
jpayne@68
|
51 # header injection attack.
|
jpayne@68
|
52 _embedded_header = re.compile(r'\n[^ \t]+:')
|
jpayne@68
|
53
|
jpayne@68
|
54
|
jpayne@68
|
55
|
jpayne@68
|
56 # Helpers
|
jpayne@68
|
57 _max_append = email.quoprimime._max_append
|
jpayne@68
|
58
|
jpayne@68
|
59
|
jpayne@68
|
60
|
jpayne@68
|
61 def decode_header(header):
|
jpayne@68
|
62 """Decode a message header value without converting charset.
|
jpayne@68
|
63
|
jpayne@68
|
64 Returns a list of (string, charset) pairs containing each of the decoded
|
jpayne@68
|
65 parts of the header. Charset is None for non-encoded parts of the header,
|
jpayne@68
|
66 otherwise a lower-case string containing the name of the character set
|
jpayne@68
|
67 specified in the encoded string.
|
jpayne@68
|
68
|
jpayne@68
|
69 header may be a string that may or may not contain RFC2047 encoded words,
|
jpayne@68
|
70 or it may be a Header object.
|
jpayne@68
|
71
|
jpayne@68
|
72 An email.errors.HeaderParseError may be raised when certain decoding error
|
jpayne@68
|
73 occurs (e.g. a base64 decoding exception).
|
jpayne@68
|
74 """
|
jpayne@68
|
75 # If it is a Header object, we can just return the encoded chunks.
|
jpayne@68
|
76 if hasattr(header, '_chunks'):
|
jpayne@68
|
77 return [(_charset._encode(string, str(charset)), str(charset))
|
jpayne@68
|
78 for string, charset in header._chunks]
|
jpayne@68
|
79 # If no encoding, just return the header with no charset.
|
jpayne@68
|
80 if not ecre.search(header):
|
jpayne@68
|
81 return [(header, None)]
|
jpayne@68
|
82 # First step is to parse all the encoded parts into triplets of the form
|
jpayne@68
|
83 # (encoded_string, encoding, charset). For unencoded strings, the last
|
jpayne@68
|
84 # two parts will be None.
|
jpayne@68
|
85 words = []
|
jpayne@68
|
86 for line in header.splitlines():
|
jpayne@68
|
87 parts = ecre.split(line)
|
jpayne@68
|
88 first = True
|
jpayne@68
|
89 while parts:
|
jpayne@68
|
90 unencoded = parts.pop(0)
|
jpayne@68
|
91 if first:
|
jpayne@68
|
92 unencoded = unencoded.lstrip()
|
jpayne@68
|
93 first = False
|
jpayne@68
|
94 if unencoded:
|
jpayne@68
|
95 words.append((unencoded, None, None))
|
jpayne@68
|
96 if parts:
|
jpayne@68
|
97 charset = parts.pop(0).lower()
|
jpayne@68
|
98 encoding = parts.pop(0).lower()
|
jpayne@68
|
99 encoded = parts.pop(0)
|
jpayne@68
|
100 words.append((encoded, encoding, charset))
|
jpayne@68
|
101 # Now loop over words and remove words that consist of whitespace
|
jpayne@68
|
102 # between two encoded strings.
|
jpayne@68
|
103 droplist = []
|
jpayne@68
|
104 for n, w in enumerate(words):
|
jpayne@68
|
105 if n>1 and w[1] and words[n-2][1] and words[n-1][0].isspace():
|
jpayne@68
|
106 droplist.append(n-1)
|
jpayne@68
|
107 for d in reversed(droplist):
|
jpayne@68
|
108 del words[d]
|
jpayne@68
|
109
|
jpayne@68
|
110 # The next step is to decode each encoded word by applying the reverse
|
jpayne@68
|
111 # base64 or quopri transformation. decoded_words is now a list of the
|
jpayne@68
|
112 # form (decoded_word, charset).
|
jpayne@68
|
113 decoded_words = []
|
jpayne@68
|
114 for encoded_string, encoding, charset in words:
|
jpayne@68
|
115 if encoding is None:
|
jpayne@68
|
116 # This is an unencoded word.
|
jpayne@68
|
117 decoded_words.append((encoded_string, charset))
|
jpayne@68
|
118 elif encoding == 'q':
|
jpayne@68
|
119 word = email.quoprimime.header_decode(encoded_string)
|
jpayne@68
|
120 decoded_words.append((word, charset))
|
jpayne@68
|
121 elif encoding == 'b':
|
jpayne@68
|
122 paderr = len(encoded_string) % 4 # Postel's law: add missing padding
|
jpayne@68
|
123 if paderr:
|
jpayne@68
|
124 encoded_string += '==='[:4 - paderr]
|
jpayne@68
|
125 try:
|
jpayne@68
|
126 word = email.base64mime.decode(encoded_string)
|
jpayne@68
|
127 except binascii.Error:
|
jpayne@68
|
128 raise HeaderParseError('Base64 decoding error')
|
jpayne@68
|
129 else:
|
jpayne@68
|
130 decoded_words.append((word, charset))
|
jpayne@68
|
131 else:
|
jpayne@68
|
132 raise AssertionError('Unexpected encoding: ' + encoding)
|
jpayne@68
|
133 # Now convert all words to bytes and collapse consecutive runs of
|
jpayne@68
|
134 # similarly encoded words.
|
jpayne@68
|
135 collapsed = []
|
jpayne@68
|
136 last_word = last_charset = None
|
jpayne@68
|
137 for word, charset in decoded_words:
|
jpayne@68
|
138 if isinstance(word, str):
|
jpayne@68
|
139 word = bytes(word, 'raw-unicode-escape')
|
jpayne@68
|
140 if last_word is None:
|
jpayne@68
|
141 last_word = word
|
jpayne@68
|
142 last_charset = charset
|
jpayne@68
|
143 elif charset != last_charset:
|
jpayne@68
|
144 collapsed.append((last_word, last_charset))
|
jpayne@68
|
145 last_word = word
|
jpayne@68
|
146 last_charset = charset
|
jpayne@68
|
147 elif last_charset is None:
|
jpayne@68
|
148 last_word += BSPACE + word
|
jpayne@68
|
149 else:
|
jpayne@68
|
150 last_word += word
|
jpayne@68
|
151 collapsed.append((last_word, last_charset))
|
jpayne@68
|
152 return collapsed
|
jpayne@68
|
153
|
jpayne@68
|
154
|
jpayne@68
|
155
|
jpayne@68
|
156 def make_header(decoded_seq, maxlinelen=None, header_name=None,
|
jpayne@68
|
157 continuation_ws=' '):
|
jpayne@68
|
158 """Create a Header from a sequence of pairs as returned by decode_header()
|
jpayne@68
|
159
|
jpayne@68
|
160 decode_header() takes a header value string and returns a sequence of
|
jpayne@68
|
161 pairs of the format (decoded_string, charset) where charset is the string
|
jpayne@68
|
162 name of the character set.
|
jpayne@68
|
163
|
jpayne@68
|
164 This function takes one of those sequence of pairs and returns a Header
|
jpayne@68
|
165 instance. Optional maxlinelen, header_name, and continuation_ws are as in
|
jpayne@68
|
166 the Header constructor.
|
jpayne@68
|
167 """
|
jpayne@68
|
168 h = Header(maxlinelen=maxlinelen, header_name=header_name,
|
jpayne@68
|
169 continuation_ws=continuation_ws)
|
jpayne@68
|
170 for s, charset in decoded_seq:
|
jpayne@68
|
171 # None means us-ascii but we can simply pass it on to h.append()
|
jpayne@68
|
172 if charset is not None and not isinstance(charset, Charset):
|
jpayne@68
|
173 charset = Charset(charset)
|
jpayne@68
|
174 h.append(s, charset)
|
jpayne@68
|
175 return h
|
jpayne@68
|
176
|
jpayne@68
|
177
|
jpayne@68
|
178
|
jpayne@68
|
179 class Header:
|
jpayne@68
|
180 def __init__(self, s=None, charset=None,
|
jpayne@68
|
181 maxlinelen=None, header_name=None,
|
jpayne@68
|
182 continuation_ws=' ', errors='strict'):
|
jpayne@68
|
183 """Create a MIME-compliant header that can contain many character sets.
|
jpayne@68
|
184
|
jpayne@68
|
185 Optional s is the initial header value. If None, the initial header
|
jpayne@68
|
186 value is not set. You can later append to the header with .append()
|
jpayne@68
|
187 method calls. s may be a byte string or a Unicode string, but see the
|
jpayne@68
|
188 .append() documentation for semantics.
|
jpayne@68
|
189
|
jpayne@68
|
190 Optional charset serves two purposes: it has the same meaning as the
|
jpayne@68
|
191 charset argument to the .append() method. It also sets the default
|
jpayne@68
|
192 character set for all subsequent .append() calls that omit the charset
|
jpayne@68
|
193 argument. If charset is not provided in the constructor, the us-ascii
|
jpayne@68
|
194 charset is used both as s's initial charset and as the default for
|
jpayne@68
|
195 subsequent .append() calls.
|
jpayne@68
|
196
|
jpayne@68
|
197 The maximum line length can be specified explicitly via maxlinelen. For
|
jpayne@68
|
198 splitting the first line to a shorter value (to account for the field
|
jpayne@68
|
199 header which isn't included in s, e.g. `Subject') pass in the name of
|
jpayne@68
|
200 the field in header_name. The default maxlinelen is 78 as recommended
|
jpayne@68
|
201 by RFC 2822.
|
jpayne@68
|
202
|
jpayne@68
|
203 continuation_ws must be RFC 2822 compliant folding whitespace (usually
|
jpayne@68
|
204 either a space or a hard tab) which will be prepended to continuation
|
jpayne@68
|
205 lines.
|
jpayne@68
|
206
|
jpayne@68
|
207 errors is passed through to the .append() call.
|
jpayne@68
|
208 """
|
jpayne@68
|
209 if charset is None:
|
jpayne@68
|
210 charset = USASCII
|
jpayne@68
|
211 elif not isinstance(charset, Charset):
|
jpayne@68
|
212 charset = Charset(charset)
|
jpayne@68
|
213 self._charset = charset
|
jpayne@68
|
214 self._continuation_ws = continuation_ws
|
jpayne@68
|
215 self._chunks = []
|
jpayne@68
|
216 if s is not None:
|
jpayne@68
|
217 self.append(s, charset, errors)
|
jpayne@68
|
218 if maxlinelen is None:
|
jpayne@68
|
219 maxlinelen = MAXLINELEN
|
jpayne@68
|
220 self._maxlinelen = maxlinelen
|
jpayne@68
|
221 if header_name is None:
|
jpayne@68
|
222 self._headerlen = 0
|
jpayne@68
|
223 else:
|
jpayne@68
|
224 # Take the separating colon and space into account.
|
jpayne@68
|
225 self._headerlen = len(header_name) + 2
|
jpayne@68
|
226
|
jpayne@68
|
227 def __str__(self):
|
jpayne@68
|
228 """Return the string value of the header."""
|
jpayne@68
|
229 self._normalize()
|
jpayne@68
|
230 uchunks = []
|
jpayne@68
|
231 lastcs = None
|
jpayne@68
|
232 lastspace = None
|
jpayne@68
|
233 for string, charset in self._chunks:
|
jpayne@68
|
234 # We must preserve spaces between encoded and non-encoded word
|
jpayne@68
|
235 # boundaries, which means for us we need to add a space when we go
|
jpayne@68
|
236 # from a charset to None/us-ascii, or from None/us-ascii to a
|
jpayne@68
|
237 # charset. Only do this for the second and subsequent chunks.
|
jpayne@68
|
238 # Don't add a space if the None/us-ascii string already has
|
jpayne@68
|
239 # a space (trailing or leading depending on transition)
|
jpayne@68
|
240 nextcs = charset
|
jpayne@68
|
241 if nextcs == _charset.UNKNOWN8BIT:
|
jpayne@68
|
242 original_bytes = string.encode('ascii', 'surrogateescape')
|
jpayne@68
|
243 string = original_bytes.decode('ascii', 'replace')
|
jpayne@68
|
244 if uchunks:
|
jpayne@68
|
245 hasspace = string and self._nonctext(string[0])
|
jpayne@68
|
246 if lastcs not in (None, 'us-ascii'):
|
jpayne@68
|
247 if nextcs in (None, 'us-ascii') and not hasspace:
|
jpayne@68
|
248 uchunks.append(SPACE)
|
jpayne@68
|
249 nextcs = None
|
jpayne@68
|
250 elif nextcs not in (None, 'us-ascii') and not lastspace:
|
jpayne@68
|
251 uchunks.append(SPACE)
|
jpayne@68
|
252 lastspace = string and self._nonctext(string[-1])
|
jpayne@68
|
253 lastcs = nextcs
|
jpayne@68
|
254 uchunks.append(string)
|
jpayne@68
|
255 return EMPTYSTRING.join(uchunks)
|
jpayne@68
|
256
|
jpayne@68
|
257 # Rich comparison operators for equality only. BAW: does it make sense to
|
jpayne@68
|
258 # have or explicitly disable <, <=, >, >= operators?
|
jpayne@68
|
259 def __eq__(self, other):
|
jpayne@68
|
260 # other may be a Header or a string. Both are fine so coerce
|
jpayne@68
|
261 # ourselves to a unicode (of the unencoded header value), swap the
|
jpayne@68
|
262 # args and do another comparison.
|
jpayne@68
|
263 return other == str(self)
|
jpayne@68
|
264
|
jpayne@68
|
265 def append(self, s, charset=None, errors='strict'):
|
jpayne@68
|
266 """Append a string to the MIME header.
|
jpayne@68
|
267
|
jpayne@68
|
268 Optional charset, if given, should be a Charset instance or the name
|
jpayne@68
|
269 of a character set (which will be converted to a Charset instance). A
|
jpayne@68
|
270 value of None (the default) means that the charset given in the
|
jpayne@68
|
271 constructor is used.
|
jpayne@68
|
272
|
jpayne@68
|
273 s may be a byte string or a Unicode string. If it is a byte string
|
jpayne@68
|
274 (i.e. isinstance(s, str) is false), then charset is the encoding of
|
jpayne@68
|
275 that byte string, and a UnicodeError will be raised if the string
|
jpayne@68
|
276 cannot be decoded with that charset. If s is a Unicode string, then
|
jpayne@68
|
277 charset is a hint specifying the character set of the characters in
|
jpayne@68
|
278 the string. In either case, when producing an RFC 2822 compliant
|
jpayne@68
|
279 header using RFC 2047 rules, the string will be encoded using the
|
jpayne@68
|
280 output codec of the charset. If the string cannot be encoded to the
|
jpayne@68
|
281 output codec, a UnicodeError will be raised.
|
jpayne@68
|
282
|
jpayne@68
|
283 Optional `errors' is passed as the errors argument to the decode
|
jpayne@68
|
284 call if s is a byte string.
|
jpayne@68
|
285 """
|
jpayne@68
|
286 if charset is None:
|
jpayne@68
|
287 charset = self._charset
|
jpayne@68
|
288 elif not isinstance(charset, Charset):
|
jpayne@68
|
289 charset = Charset(charset)
|
jpayne@68
|
290 if not isinstance(s, str):
|
jpayne@68
|
291 input_charset = charset.input_codec or 'us-ascii'
|
jpayne@68
|
292 if input_charset == _charset.UNKNOWN8BIT:
|
jpayne@68
|
293 s = s.decode('us-ascii', 'surrogateescape')
|
jpayne@68
|
294 else:
|
jpayne@68
|
295 s = s.decode(input_charset, errors)
|
jpayne@68
|
296 # Ensure that the bytes we're storing can be decoded to the output
|
jpayne@68
|
297 # character set, otherwise an early error is raised.
|
jpayne@68
|
298 output_charset = charset.output_codec or 'us-ascii'
|
jpayne@68
|
299 if output_charset != _charset.UNKNOWN8BIT:
|
jpayne@68
|
300 try:
|
jpayne@68
|
301 s.encode(output_charset, errors)
|
jpayne@68
|
302 except UnicodeEncodeError:
|
jpayne@68
|
303 if output_charset!='us-ascii':
|
jpayne@68
|
304 raise
|
jpayne@68
|
305 charset = UTF8
|
jpayne@68
|
306 self._chunks.append((s, charset))
|
jpayne@68
|
307
|
jpayne@68
|
308 def _nonctext(self, s):
|
jpayne@68
|
309 """True if string s is not a ctext character of RFC822.
|
jpayne@68
|
310 """
|
jpayne@68
|
311 return s.isspace() or s in ('(', ')', '\\')
|
jpayne@68
|
312
|
jpayne@68
|
313 def encode(self, splitchars=';, \t', maxlinelen=None, linesep='\n'):
|
jpayne@68
|
314 r"""Encode a message header into an RFC-compliant format.
|
jpayne@68
|
315
|
jpayne@68
|
316 There are many issues involved in converting a given string for use in
|
jpayne@68
|
317 an email header. Only certain character sets are readable in most
|
jpayne@68
|
318 email clients, and as header strings can only contain a subset of
|
jpayne@68
|
319 7-bit ASCII, care must be taken to properly convert and encode (with
|
jpayne@68
|
320 Base64 or quoted-printable) header strings. In addition, there is a
|
jpayne@68
|
321 75-character length limit on any given encoded header field, so
|
jpayne@68
|
322 line-wrapping must be performed, even with double-byte character sets.
|
jpayne@68
|
323
|
jpayne@68
|
324 Optional maxlinelen specifies the maximum length of each generated
|
jpayne@68
|
325 line, exclusive of the linesep string. Individual lines may be longer
|
jpayne@68
|
326 than maxlinelen if a folding point cannot be found. The first line
|
jpayne@68
|
327 will be shorter by the length of the header name plus ": " if a header
|
jpayne@68
|
328 name was specified at Header construction time. The default value for
|
jpayne@68
|
329 maxlinelen is determined at header construction time.
|
jpayne@68
|
330
|
jpayne@68
|
331 Optional splitchars is a string containing characters which should be
|
jpayne@68
|
332 given extra weight by the splitting algorithm during normal header
|
jpayne@68
|
333 wrapping. This is in very rough support of RFC 2822's `higher level
|
jpayne@68
|
334 syntactic breaks': split points preceded by a splitchar are preferred
|
jpayne@68
|
335 during line splitting, with the characters preferred in the order in
|
jpayne@68
|
336 which they appear in the string. Space and tab may be included in the
|
jpayne@68
|
337 string to indicate whether preference should be given to one over the
|
jpayne@68
|
338 other as a split point when other split chars do not appear in the line
|
jpayne@68
|
339 being split. Splitchars does not affect RFC 2047 encoded lines.
|
jpayne@68
|
340
|
jpayne@68
|
341 Optional linesep is a string to be used to separate the lines of
|
jpayne@68
|
342 the value. The default value is the most useful for typical
|
jpayne@68
|
343 Python applications, but it can be set to \r\n to produce RFC-compliant
|
jpayne@68
|
344 line separators when needed.
|
jpayne@68
|
345 """
|
jpayne@68
|
346 self._normalize()
|
jpayne@68
|
347 if maxlinelen is None:
|
jpayne@68
|
348 maxlinelen = self._maxlinelen
|
jpayne@68
|
349 # A maxlinelen of 0 means don't wrap. For all practical purposes,
|
jpayne@68
|
350 # choosing a huge number here accomplishes that and makes the
|
jpayne@68
|
351 # _ValueFormatter algorithm much simpler.
|
jpayne@68
|
352 if maxlinelen == 0:
|
jpayne@68
|
353 maxlinelen = 1000000
|
jpayne@68
|
354 formatter = _ValueFormatter(self._headerlen, maxlinelen,
|
jpayne@68
|
355 self._continuation_ws, splitchars)
|
jpayne@68
|
356 lastcs = None
|
jpayne@68
|
357 hasspace = lastspace = None
|
jpayne@68
|
358 for string, charset in self._chunks:
|
jpayne@68
|
359 if hasspace is not None:
|
jpayne@68
|
360 hasspace = string and self._nonctext(string[0])
|
jpayne@68
|
361 if lastcs not in (None, 'us-ascii'):
|
jpayne@68
|
362 if not hasspace or charset not in (None, 'us-ascii'):
|
jpayne@68
|
363 formatter.add_transition()
|
jpayne@68
|
364 elif charset not in (None, 'us-ascii') and not lastspace:
|
jpayne@68
|
365 formatter.add_transition()
|
jpayne@68
|
366 lastspace = string and self._nonctext(string[-1])
|
jpayne@68
|
367 lastcs = charset
|
jpayne@68
|
368 hasspace = False
|
jpayne@68
|
369 lines = string.splitlines()
|
jpayne@68
|
370 if lines:
|
jpayne@68
|
371 formatter.feed('', lines[0], charset)
|
jpayne@68
|
372 else:
|
jpayne@68
|
373 formatter.feed('', '', charset)
|
jpayne@68
|
374 for line in lines[1:]:
|
jpayne@68
|
375 formatter.newline()
|
jpayne@68
|
376 if charset.header_encoding is not None:
|
jpayne@68
|
377 formatter.feed(self._continuation_ws, ' ' + line.lstrip(),
|
jpayne@68
|
378 charset)
|
jpayne@68
|
379 else:
|
jpayne@68
|
380 sline = line.lstrip()
|
jpayne@68
|
381 fws = line[:len(line)-len(sline)]
|
jpayne@68
|
382 formatter.feed(fws, sline, charset)
|
jpayne@68
|
383 if len(lines) > 1:
|
jpayne@68
|
384 formatter.newline()
|
jpayne@68
|
385 if self._chunks:
|
jpayne@68
|
386 formatter.add_transition()
|
jpayne@68
|
387 value = formatter._str(linesep)
|
jpayne@68
|
388 if _embedded_header.search(value):
|
jpayne@68
|
389 raise HeaderParseError("header value appears to contain "
|
jpayne@68
|
390 "an embedded header: {!r}".format(value))
|
jpayne@68
|
391 return value
|
jpayne@68
|
392
|
jpayne@68
|
393 def _normalize(self):
|
jpayne@68
|
394 # Step 1: Normalize the chunks so that all runs of identical charsets
|
jpayne@68
|
395 # get collapsed into a single unicode string.
|
jpayne@68
|
396 chunks = []
|
jpayne@68
|
397 last_charset = None
|
jpayne@68
|
398 last_chunk = []
|
jpayne@68
|
399 for string, charset in self._chunks:
|
jpayne@68
|
400 if charset == last_charset:
|
jpayne@68
|
401 last_chunk.append(string)
|
jpayne@68
|
402 else:
|
jpayne@68
|
403 if last_charset is not None:
|
jpayne@68
|
404 chunks.append((SPACE.join(last_chunk), last_charset))
|
jpayne@68
|
405 last_chunk = [string]
|
jpayne@68
|
406 last_charset = charset
|
jpayne@68
|
407 if last_chunk:
|
jpayne@68
|
408 chunks.append((SPACE.join(last_chunk), last_charset))
|
jpayne@68
|
409 self._chunks = chunks
|
jpayne@68
|
410
|
jpayne@68
|
411
|
jpayne@68
|
412
|
jpayne@68
|
413 class _ValueFormatter:
|
jpayne@68
|
414 def __init__(self, headerlen, maxlen, continuation_ws, splitchars):
|
jpayne@68
|
415 self._maxlen = maxlen
|
jpayne@68
|
416 self._continuation_ws = continuation_ws
|
jpayne@68
|
417 self._continuation_ws_len = len(continuation_ws)
|
jpayne@68
|
418 self._splitchars = splitchars
|
jpayne@68
|
419 self._lines = []
|
jpayne@68
|
420 self._current_line = _Accumulator(headerlen)
|
jpayne@68
|
421
|
jpayne@68
|
422 def _str(self, linesep):
|
jpayne@68
|
423 self.newline()
|
jpayne@68
|
424 return linesep.join(self._lines)
|
jpayne@68
|
425
|
jpayne@68
|
426 def __str__(self):
|
jpayne@68
|
427 return self._str(NL)
|
jpayne@68
|
428
|
jpayne@68
|
429 def newline(self):
|
jpayne@68
|
430 end_of_line = self._current_line.pop()
|
jpayne@68
|
431 if end_of_line != (' ', ''):
|
jpayne@68
|
432 self._current_line.push(*end_of_line)
|
jpayne@68
|
433 if len(self._current_line) > 0:
|
jpayne@68
|
434 if self._current_line.is_onlyws() and self._lines:
|
jpayne@68
|
435 self._lines[-1] += str(self._current_line)
|
jpayne@68
|
436 else:
|
jpayne@68
|
437 self._lines.append(str(self._current_line))
|
jpayne@68
|
438 self._current_line.reset()
|
jpayne@68
|
439
|
jpayne@68
|
440 def add_transition(self):
|
jpayne@68
|
441 self._current_line.push(' ', '')
|
jpayne@68
|
442
|
jpayne@68
|
443 def feed(self, fws, string, charset):
|
jpayne@68
|
444 # If the charset has no header encoding (i.e. it is an ASCII encoding)
|
jpayne@68
|
445 # then we must split the header at the "highest level syntactic break"
|
jpayne@68
|
446 # possible. Note that we don't have a lot of smarts about field
|
jpayne@68
|
447 # syntax; we just try to break on semi-colons, then commas, then
|
jpayne@68
|
448 # whitespace. Eventually, this should be pluggable.
|
jpayne@68
|
449 if charset.header_encoding is None:
|
jpayne@68
|
450 self._ascii_split(fws, string, self._splitchars)
|
jpayne@68
|
451 return
|
jpayne@68
|
452 # Otherwise, we're doing either a Base64 or a quoted-printable
|
jpayne@68
|
453 # encoding which means we don't need to split the line on syntactic
|
jpayne@68
|
454 # breaks. We can basically just find enough characters to fit on the
|
jpayne@68
|
455 # current line, minus the RFC 2047 chrome. What makes this trickier
|
jpayne@68
|
456 # though is that we have to split at octet boundaries, not character
|
jpayne@68
|
457 # boundaries but it's only safe to split at character boundaries so at
|
jpayne@68
|
458 # best we can only get close.
|
jpayne@68
|
459 encoded_lines = charset.header_encode_lines(string, self._maxlengths())
|
jpayne@68
|
460 # The first element extends the current line, but if it's None then
|
jpayne@68
|
461 # nothing more fit on the current line so start a new line.
|
jpayne@68
|
462 try:
|
jpayne@68
|
463 first_line = encoded_lines.pop(0)
|
jpayne@68
|
464 except IndexError:
|
jpayne@68
|
465 # There are no encoded lines, so we're done.
|
jpayne@68
|
466 return
|
jpayne@68
|
467 if first_line is not None:
|
jpayne@68
|
468 self._append_chunk(fws, first_line)
|
jpayne@68
|
469 try:
|
jpayne@68
|
470 last_line = encoded_lines.pop()
|
jpayne@68
|
471 except IndexError:
|
jpayne@68
|
472 # There was only one line.
|
jpayne@68
|
473 return
|
jpayne@68
|
474 self.newline()
|
jpayne@68
|
475 self._current_line.push(self._continuation_ws, last_line)
|
jpayne@68
|
476 # Everything else are full lines in themselves.
|
jpayne@68
|
477 for line in encoded_lines:
|
jpayne@68
|
478 self._lines.append(self._continuation_ws + line)
|
jpayne@68
|
479
|
jpayne@68
|
480 def _maxlengths(self):
|
jpayne@68
|
481 # The first line's length.
|
jpayne@68
|
482 yield self._maxlen - len(self._current_line)
|
jpayne@68
|
483 while True:
|
jpayne@68
|
484 yield self._maxlen - self._continuation_ws_len
|
jpayne@68
|
485
|
jpayne@68
|
486 def _ascii_split(self, fws, string, splitchars):
|
jpayne@68
|
487 # The RFC 2822 header folding algorithm is simple in principle but
|
jpayne@68
|
488 # complex in practice. Lines may be folded any place where "folding
|
jpayne@68
|
489 # white space" appears by inserting a linesep character in front of the
|
jpayne@68
|
490 # FWS. The complication is that not all spaces or tabs qualify as FWS,
|
jpayne@68
|
491 # and we are also supposed to prefer to break at "higher level
|
jpayne@68
|
492 # syntactic breaks". We can't do either of these without intimate
|
jpayne@68
|
493 # knowledge of the structure of structured headers, which we don't have
|
jpayne@68
|
494 # here. So the best we can do here is prefer to break at the specified
|
jpayne@68
|
495 # splitchars, and hope that we don't choose any spaces or tabs that
|
jpayne@68
|
496 # aren't legal FWS. (This is at least better than the old algorithm,
|
jpayne@68
|
497 # where we would sometimes *introduce* FWS after a splitchar, or the
|
jpayne@68
|
498 # algorithm before that, where we would turn all white space runs into
|
jpayne@68
|
499 # single spaces or tabs.)
|
jpayne@68
|
500 parts = re.split("(["+FWS+"]+)", fws+string)
|
jpayne@68
|
501 if parts[0]:
|
jpayne@68
|
502 parts[:0] = ['']
|
jpayne@68
|
503 else:
|
jpayne@68
|
504 parts.pop(0)
|
jpayne@68
|
505 for fws, part in zip(*[iter(parts)]*2):
|
jpayne@68
|
506 self._append_chunk(fws, part)
|
jpayne@68
|
507
|
jpayne@68
|
508 def _append_chunk(self, fws, string):
|
jpayne@68
|
509 self._current_line.push(fws, string)
|
jpayne@68
|
510 if len(self._current_line) > self._maxlen:
|
jpayne@68
|
511 # Find the best split point, working backward from the end.
|
jpayne@68
|
512 # There might be none, on a long first line.
|
jpayne@68
|
513 for ch in self._splitchars:
|
jpayne@68
|
514 for i in range(self._current_line.part_count()-1, 0, -1):
|
jpayne@68
|
515 if ch.isspace():
|
jpayne@68
|
516 fws = self._current_line[i][0]
|
jpayne@68
|
517 if fws and fws[0]==ch:
|
jpayne@68
|
518 break
|
jpayne@68
|
519 prevpart = self._current_line[i-1][1]
|
jpayne@68
|
520 if prevpart and prevpart[-1]==ch:
|
jpayne@68
|
521 break
|
jpayne@68
|
522 else:
|
jpayne@68
|
523 continue
|
jpayne@68
|
524 break
|
jpayne@68
|
525 else:
|
jpayne@68
|
526 fws, part = self._current_line.pop()
|
jpayne@68
|
527 if self._current_line._initial_size > 0:
|
jpayne@68
|
528 # There will be a header, so leave it on a line by itself.
|
jpayne@68
|
529 self.newline()
|
jpayne@68
|
530 if not fws:
|
jpayne@68
|
531 # We don't use continuation_ws here because the whitespace
|
jpayne@68
|
532 # after a header should always be a space.
|
jpayne@68
|
533 fws = ' '
|
jpayne@68
|
534 self._current_line.push(fws, part)
|
jpayne@68
|
535 return
|
jpayne@68
|
536 remainder = self._current_line.pop_from(i)
|
jpayne@68
|
537 self._lines.append(str(self._current_line))
|
jpayne@68
|
538 self._current_line.reset(remainder)
|
jpayne@68
|
539
|
jpayne@68
|
540
|
jpayne@68
|
541 class _Accumulator(list):
|
jpayne@68
|
542
|
jpayne@68
|
543 def __init__(self, initial_size=0):
|
jpayne@68
|
544 self._initial_size = initial_size
|
jpayne@68
|
545 super().__init__()
|
jpayne@68
|
546
|
jpayne@68
|
547 def push(self, fws, string):
|
jpayne@68
|
548 self.append((fws, string))
|
jpayne@68
|
549
|
jpayne@68
|
550 def pop_from(self, i=0):
|
jpayne@68
|
551 popped = self[i:]
|
jpayne@68
|
552 self[i:] = []
|
jpayne@68
|
553 return popped
|
jpayne@68
|
554
|
jpayne@68
|
555 def pop(self):
|
jpayne@68
|
556 if self.part_count()==0:
|
jpayne@68
|
557 return ('', '')
|
jpayne@68
|
558 return super().pop()
|
jpayne@68
|
559
|
jpayne@68
|
560 def __len__(self):
|
jpayne@68
|
561 return sum((len(fws)+len(part) for fws, part in self),
|
jpayne@68
|
562 self._initial_size)
|
jpayne@68
|
563
|
jpayne@68
|
564 def __str__(self):
|
jpayne@68
|
565 return EMPTYSTRING.join((EMPTYSTRING.join((fws, part))
|
jpayne@68
|
566 for fws, part in self))
|
jpayne@68
|
567
|
jpayne@68
|
568 def reset(self, startval=None):
|
jpayne@68
|
569 if startval is None:
|
jpayne@68
|
570 startval = []
|
jpayne@68
|
571 self[:] = startval
|
jpayne@68
|
572 self._initial_size = 0
|
jpayne@68
|
573
|
jpayne@68
|
574 def is_onlyws(self):
|
jpayne@68
|
575 return self._initial_size==0 and (not self or str(self).isspace())
|
jpayne@68
|
576
|
jpayne@68
|
577 def part_count(self):
|
jpayne@68
|
578 return super().__len__()
|