rliterman@0
|
1 #!/usr/bin/env python3
|
rliterman@0
|
2
|
rliterman@0
|
3 import sys
|
rliterman@0
|
4 import os
|
rliterman@0
|
5 import pandas as pd
|
rliterman@0
|
6 import datetime
|
rliterman@0
|
7 from pybedtools import BedTool,helpers
|
rliterman@0
|
8 import concurrent.futures
|
rliterman@0
|
9 import time
|
rliterman@0
|
10 from Bio.Seq import Seq
|
rliterman@0
|
11 from Bio.SeqRecord import SeqRecord
|
rliterman@0
|
12 from Bio.Align import MultipleSeqAlignment
|
rliterman@0
|
13 from Bio import AlignIO
|
rliterman@0
|
14 from itertools import combinations
|
rliterman@0
|
15 import numpy as np
|
rliterman@0
|
16 import uuid
|
rliterman@0
|
17 import traceback
|
rliterman@0
|
18 import shutil
|
rliterman@0
|
19 import argparse
|
rliterman@0
|
20
|
rliterman@0
|
21 def fetchHeaders(snpdiffs_file):
|
rliterman@0
|
22
|
rliterman@0
|
23 with open(snpdiffs_file, 'r') as file:
|
rliterman@0
|
24 top_line = file.readline().strip().split('\t')[1:]
|
rliterman@0
|
25
|
rliterman@0
|
26 header_cols = [item.split(':')[0] for item in top_line]
|
rliterman@0
|
27 header_vals = [item.split(':')[1] for item in top_line]
|
rliterman@0
|
28
|
rliterman@0
|
29 header_data = pd.DataFrame(columns = header_cols)
|
rliterman@0
|
30 header_data.loc[0] = header_vals
|
rliterman@0
|
31 header_data.loc[:, 'File_Path'] = snpdiffs_file
|
rliterman@0
|
32
|
rliterman@0
|
33 return header_data
|
rliterman@0
|
34
|
rliterman@0
|
35 def processBED(bed_rows,snpdiffs_orientation):
|
rliterman@0
|
36
|
rliterman@0
|
37 bed_columns = ['Ref_Contig','Ref_Start','Ref_End','Ref_Length','Ref_Aligned',
|
rliterman@0
|
38 'Query_Contig','Query_Start','Query_End','Query_Length','Query_Aligned',
|
rliterman@0
|
39 'Perc_Iden']
|
rliterman@0
|
40
|
rliterman@0
|
41 reverse_columns = ['Query_Contig','Query_Start','Query_End','Query_Length','Query_Aligned',
|
rliterman@0
|
42 'Ref_Contig','Ref_Start','Ref_End','Ref_Length','Ref_Aligned',
|
rliterman@0
|
43 'Perc_Iden']
|
rliterman@0
|
44
|
rliterman@0
|
45 int_columns = ['Ref_Start', 'Ref_End', 'Ref_Length', 'Ref_Aligned',
|
rliterman@0
|
46 'Query_Start', 'Query_End', 'Query_Length', 'Query_Aligned']
|
rliterman@0
|
47
|
rliterman@0
|
48 float_columns = ['Perc_Iden']
|
rliterman@0
|
49
|
rliterman@0
|
50 if len(bed_rows) > 0:
|
rliterman@0
|
51
|
rliterman@0
|
52 bed_df = pd.DataFrame(bed_rows, columns=bed_columns)
|
rliterman@0
|
53
|
rliterman@0
|
54 # Swap columns if reversed
|
rliterman@0
|
55 if snpdiffs_orientation == -1:
|
rliterman@0
|
56 bed_df = bed_df[reverse_columns].copy()
|
rliterman@0
|
57 bed_df.columns = bed_columns
|
rliterman@0
|
58
|
rliterman@0
|
59 # Gather covered loci
|
rliterman@0
|
60 covered_bed_df = bed_df[(bed_df['Ref_Start'] != ".") & (bed_df['Query_Start'] != ".")].copy()
|
rliterman@0
|
61 if covered_bed_df.shape[0] > 0:
|
rliterman@0
|
62 for col in int_columns:
|
rliterman@0
|
63 covered_bed_df.loc[:, col] = covered_bed_df.loc[:, col].astype(float).astype(int)
|
rliterman@0
|
64 for col in float_columns:
|
rliterman@0
|
65 covered_bed_df.loc[:, col] = covered_bed_df.loc[:, col].astype(float)
|
rliterman@0
|
66
|
rliterman@0
|
67 return covered_bed_df
|
rliterman@0
|
68 else:
|
rliterman@0
|
69 return pd.DataFrame(columns=bed_columns)
|
rliterman@0
|
70
|
rliterman@0
|
71 def processSNPs(snp_rows,snpdiffs_orientation):
|
rliterman@0
|
72
|
rliterman@0
|
73 snp_columns = ['Ref_Contig','Start_Ref','Ref_Pos',
|
rliterman@0
|
74 'Query_Contig','Start_Query','Query_Pos',
|
rliterman@0
|
75 'Ref_Loc','Query_Loc',
|
rliterman@0
|
76 'Ref_Start','Ref_End',
|
rliterman@0
|
77 'Query_Start','Query_End',
|
rliterman@0
|
78 'Ref_Base','Query_Base',
|
rliterman@0
|
79 'Dist_to_Ref_End','Dist_to_Query_End',
|
rliterman@0
|
80 'Ref_Aligned','Query_Aligned',
|
rliterman@0
|
81 'Query_Direction','Perc_Iden','Cat']
|
rliterman@0
|
82
|
rliterman@0
|
83 return_columns = ['Ref_Contig','Start_Ref','Ref_Pos',
|
rliterman@0
|
84 'Query_Contig','Start_Query','Query_Pos',
|
rliterman@0
|
85 'Ref_Loc','Query_Loc',
|
rliterman@0
|
86 'Ref_Start','Ref_End',
|
rliterman@0
|
87 'Query_Start','Query_End',
|
rliterman@0
|
88 'Ref_Base','Query_Base',
|
rliterman@0
|
89 'Dist_to_Ref_End','Dist_to_Query_End',
|
rliterman@0
|
90 'Ref_Aligned','Query_Aligned',
|
rliterman@0
|
91 'Perc_Iden','Cat']
|
rliterman@0
|
92
|
rliterman@0
|
93 reverse_columns = ['Query_Contig','Start_Query','Query_Pos',
|
rliterman@0
|
94 'Ref_Contig','Start_Ref','Ref_Pos',
|
rliterman@0
|
95 'Query_Loc','Ref_Loc',
|
rliterman@0
|
96 'Query_Start','Query_End',
|
rliterman@0
|
97 'Ref_Start','Ref_End',
|
rliterman@0
|
98 'Query_Base','Ref_Base',
|
rliterman@0
|
99 'Dist_to_Query_End','Dist_to_Ref_End',
|
rliterman@0
|
100 'Query_Aligned','Ref_Aligned',
|
rliterman@0
|
101 'Query_Direction','Perc_Iden','Cat']
|
rliterman@0
|
102
|
rliterman@0
|
103 reverse_complement = {'A':'T','T':'A','G':'C','C':'G',
|
rliterman@0
|
104 'a':'T','t':'A','c':'G','g':'C'}
|
rliterman@0
|
105
|
rliterman@0
|
106 # Columns to convert to integer
|
rliterman@0
|
107 int_columns = ['Start_Ref', 'Ref_Pos', 'Start_Query', 'Query_Pos',
|
rliterman@0
|
108 'Dist_to_Ref_End', 'Dist_to_Query_End', 'Ref_Aligned', 'Query_Aligned']
|
rliterman@0
|
109
|
rliterman@0
|
110 # Columns to convert to float
|
rliterman@0
|
111 float_columns = ['Perc_Iden']
|
rliterman@0
|
112
|
rliterman@0
|
113 if len(snp_rows) > 0:
|
rliterman@0
|
114 snp_df = pd.DataFrame(snp_rows, columns= snp_columns).copy()
|
rliterman@0
|
115
|
rliterman@0
|
116 if snpdiffs_orientation == -1:
|
rliterman@0
|
117 snp_df = snp_df[reverse_columns].copy()
|
rliterman@0
|
118 snp_df.columns = snp_columns
|
rliterman@0
|
119
|
rliterman@0
|
120 # Replace Query_Base and Reference_Base with reverse complement if Query_Direction is -1 and base is in ['A','T','G','C','a','c','t','g']
|
rliterman@0
|
121 snp_df.loc[snp_df['Query_Direction'] == '-1','Query_Base'] = snp_df.loc[snp_df['Query_Direction'] == '-1','Query_Base'].apply(lambda x: reverse_complement[x] if x in reverse_complement else x)
|
rliterman@0
|
122 snp_df.loc[snp_df['Query_Direction'] == '-1','Ref_Base'] = snp_df.loc[snp_df['Query_Direction'] == '-1','Ref_Base'].apply(lambda x: reverse_complement[x] if x in reverse_complement else x)
|
rliterman@0
|
123
|
rliterman@0
|
124 for col in int_columns:
|
rliterman@0
|
125 snp_df.loc[:, col] = snp_df.loc[:, col].astype(float).astype(int)
|
rliterman@0
|
126 for col in float_columns:
|
rliterman@0
|
127 snp_df.loc[:, col] = snp_df.loc[:, col].astype(float)
|
rliterman@0
|
128
|
rliterman@0
|
129 else:
|
rliterman@0
|
130 snp_df = pd.DataFrame(columns = return_columns)
|
rliterman@0
|
131
|
rliterman@0
|
132 return snp_df[return_columns]
|
rliterman@0
|
133
|
rliterman@0
|
134 def swapHeader(header_data):
|
rliterman@0
|
135
|
rliterman@0
|
136 raw_header_cols = [x for x in header_data.columns]
|
rliterman@0
|
137 reverse_header_cols = [item.replace('Reference', 'temp').replace('Query', 'Reference').replace('temp', 'Query') for item in raw_header_cols]
|
rliterman@0
|
138 reversed_header_data = header_data[reverse_header_cols].copy()
|
rliterman@0
|
139 reversed_header_data.columns = raw_header_cols
|
rliterman@0
|
140
|
rliterman@0
|
141 return reversed_header_data
|
rliterman@0
|
142
|
rliterman@0
|
143 def parseSNPDiffs(snpdiffs_file,snpdiffs_orientation):
|
rliterman@0
|
144
|
rliterman@0
|
145 bed_rows = []
|
rliterman@0
|
146 snp_rows = []
|
rliterman@0
|
147
|
rliterman@0
|
148 with open(snpdiffs_file, 'r') as file:
|
rliterman@0
|
149 lines = file.readlines()
|
rliterman@0
|
150
|
rliterman@0
|
151 for line in lines:
|
rliterman@0
|
152 if line[0:2] == "#\t":
|
rliterman@0
|
153 pass
|
rliterman@0
|
154 elif line[0:3] == "##\t":
|
rliterman@0
|
155 bed_rows.append(line.strip().split("\t")[1:])
|
rliterman@0
|
156 else:
|
rliterman@0
|
157 snp_rows.append(line.strip().split("\t"))
|
rliterman@0
|
158
|
rliterman@0
|
159 bed_df = processBED(bed_rows,snpdiffs_orientation)
|
rliterman@0
|
160 snp_df = processSNPs(snp_rows,snpdiffs_orientation)
|
rliterman@0
|
161 return (bed_df,snp_df)
|
rliterman@0
|
162
|
rliterman@0
|
163 def calculate_total_length(bedtool):
|
rliterman@0
|
164 return sum(len(interval) for interval in bedtool)
|
rliterman@0
|
165
|
rliterman@0
|
166 def filterSNPs(raw_snp_df,bed_df,log_file, min_len, min_iden, ref_edge, query_edge, density_windows, max_snps):
|
rliterman@0
|
167
|
rliterman@0
|
168 if temp_dir != "":
|
rliterman@0
|
169 helpers.set_tempdir(temp_dir)
|
rliterman@0
|
170
|
rliterman@0
|
171 # Grab raw data
|
rliterman@0
|
172 total_snp_count = raw_snp_df.shape[0]
|
rliterman@0
|
173
|
rliterman@0
|
174 # Get unique SNPs relative to the reference genome
|
rliterman@0
|
175 unique_ref_snps = raw_snp_df['Ref_Loc'].unique()
|
rliterman@0
|
176 unique_snp_count = len(unique_ref_snps)
|
rliterman@0
|
177
|
rliterman@0
|
178 snp_tally_df = pd.DataFrame()
|
rliterman@0
|
179
|
rliterman@0
|
180 with open(log_file,"a+") as log:
|
rliterman@0
|
181 log.write(f"\n\t- Raw SNP + indel count: {total_snp_count}\n")
|
rliterman@0
|
182 log.write(f"\n\t- Unique SNP positions in reference genome: {unique_snp_count}\n")
|
rliterman@0
|
183
|
rliterman@0
|
184 # Set all sites to SNP
|
rliterman@0
|
185 raw_snp_df['Filter_Cat'] = "SNP"
|
rliterman@0
|
186
|
rliterman@0
|
187 # Filter out SNPs based on --min_len and --min_iden
|
rliterman@0
|
188 reject_length = raw_snp_df.loc[(raw_snp_df['Ref_Aligned'] < min_len) & (raw_snp_df['Perc_Iden'] >= min_iden)].copy()
|
rliterman@0
|
189 if reject_length.shape[0] > 0:
|
rliterman@0
|
190 with open(log_file,"a+") as log:
|
rliterman@0
|
191 log.write(f"\t\t- Purged (Alignment Length): {reject_length.shape[0]}\n")
|
rliterman@0
|
192 reject_length['Filter_Cat'] = "Purged_Length"
|
rliterman@0
|
193 snp_tally_df = pd.concat([snp_tally_df,reject_length]).reset_index(drop=True)
|
rliterman@0
|
194
|
rliterman@0
|
195 reject_iden = raw_snp_df.loc[(raw_snp_df['Ref_Aligned'] >= min_len) & (raw_snp_df['Perc_Iden'] < min_iden)].copy()
|
rliterman@0
|
196 if reject_iden.shape[0] > 0:
|
rliterman@0
|
197 with open(log_file,"a+") as log:
|
rliterman@0
|
198 log.write(f"\t\t- Purged (Alignment Identity): {reject_iden.shape[0]}\n")
|
rliterman@0
|
199 reject_iden['Filter_Cat'] = "Purged_Identity"
|
rliterman@0
|
200 snp_tally_df = pd.concat([snp_tally_df,reject_iden]).reset_index(drop=True)
|
rliterman@0
|
201
|
rliterman@0
|
202 reject_lenIden = raw_snp_df.loc[(raw_snp_df['Ref_Aligned'] < min_len) & (raw_snp_df['Perc_Iden'] < min_iden)].copy()
|
rliterman@0
|
203 if reject_lenIden.shape[0] > 0:
|
rliterman@0
|
204 with open(log_file,"a+") as log:
|
rliterman@0
|
205 log.write(f"\t\t- Purged (Alignment Length + Identity): {reject_lenIden.shape[0]}\n")
|
rliterman@0
|
206 reject_lenIden['Filter_Cat'] = "Purged_LengthIdentity"
|
rliterman@0
|
207 snp_tally_df = pd.concat([snp_tally_df,reject_lenIden]).reset_index(drop=True)
|
rliterman@0
|
208
|
rliterman@0
|
209 pass_filter = raw_snp_df.loc[(raw_snp_df['Ref_Aligned'] >= min_len) & (raw_snp_df['Perc_Iden'] >= min_iden)].copy().reset_index(drop=True)
|
rliterman@0
|
210
|
rliterman@0
|
211 # Invalid processing
|
rliterman@0
|
212 reject_invalid = pass_filter[pass_filter['Cat'] == "Invalid"].copy()
|
rliterman@0
|
213 if reject_invalid.shape[0] > 0:
|
rliterman@0
|
214 with open(log_file,"a+") as log:
|
rliterman@0
|
215 log.write(f"\t\t- Purged (Invalid Base): {reject_invalid.shape[0]}\n")
|
rliterman@0
|
216 reject_invalid['Filter_Cat'] = "Purged_Invalid"
|
rliterman@0
|
217 snp_tally_df = pd.concat([snp_tally_df,reject_invalid]).reset_index(drop=True)
|
rliterman@0
|
218 pass_filter = pass_filter.loc[pass_filter['Cat'] != "Invalid"].copy()
|
rliterman@0
|
219
|
rliterman@0
|
220 # Indel processing
|
rliterman@0
|
221 reject_indel = pass_filter[pass_filter['Cat'] == "Indel"].copy()
|
rliterman@0
|
222 if reject_indel.shape[0] > 0:
|
rliterman@0
|
223 with open(log_file,"a+") as log:
|
rliterman@0
|
224 log.write(f"\t\t- Purged (Indel): {reject_indel.shape[0]}\n")
|
rliterman@0
|
225 reject_indel['Filter_Cat'] = "Purged_Indel"
|
rliterman@0
|
226 snp_tally_df = pd.concat([snp_tally_df,reject_indel]).reset_index(drop=True)
|
rliterman@0
|
227 pass_filter = pass_filter.loc[pass_filter['Cat'] != "Indel"].copy()
|
rliterman@0
|
228
|
rliterman@0
|
229 # Check for heterozygous SNPs
|
rliterman@0
|
230 check_heterozygous = pass_filter.groupby('Ref_Loc').filter(lambda x: x['Query_Base'].nunique() > 1)
|
rliterman@0
|
231 if check_heterozygous.shape[0] > 0:
|
rliterman@0
|
232 reject_heterozygous = pass_filter.loc[pass_filter['Ref_Loc'].isin(check_heterozygous['Ref_Loc'])].copy()
|
rliterman@0
|
233 reject_heterozygous['Filter_Cat'] = "Purged_Heterozygous"
|
rliterman@0
|
234 with open(log_file,"a+") as log:
|
rliterman@0
|
235 log.write(f"\t\t- Purged (Heterozygotes): {reject_heterozygous.shape[0]}\n")
|
rliterman@0
|
236 snp_tally_df = pd.concat([snp_tally_df,reject_heterozygous]).reset_index(drop=True)
|
rliterman@0
|
237 pass_filter = pass_filter.loc[~pass_filter['Ref_Loc'].isin(check_heterozygous['Ref_Loc'])].copy()
|
rliterman@0
|
238
|
rliterman@0
|
239 # Check for duplicate SNPs and take the longest, best hit
|
rliterman@0
|
240 check_duplicates = pass_filter.groupby('Ref_Loc').filter(lambda x: x.shape[0] > 1)
|
rliterman@0
|
241 if check_duplicates.shape[0] > 0:
|
rliterman@0
|
242 reject_duplicate = pass_filter.loc[pass_filter['Ref_Loc'].isin(check_duplicates['Ref_Loc'])].copy()
|
rliterman@0
|
243 pass_filter = pass_filter.loc[~pass_filter['Ref_Loc'].isin(check_duplicates['Ref_Loc'])].copy()
|
rliterman@0
|
244
|
rliterman@0
|
245 best_snp = reject_duplicate.groupby('Ref_Loc').apply(lambda x: x.sort_values(by=['Ref_Aligned', 'Perc_Iden'], ascending=[False, False]).head(1))
|
rliterman@0
|
246 pass_filter = pd.concat([pass_filter,best_snp]).reset_index(drop=True)
|
rliterman@0
|
247
|
rliterman@0
|
248 dup_snps = reject_duplicate[~reject_duplicate.apply(lambda x: x in best_snp, axis=1)]
|
rliterman@0
|
249 dup_snps['Filter_Cat'] = "Purged_Duplicate"
|
rliterman@0
|
250
|
rliterman@0
|
251 snp_tally_df = pd.concat([snp_tally_df,dup_snps]).reset_index(drop=True)
|
rliterman@0
|
252
|
rliterman@0
|
253 with open(log_file,"a+") as log:
|
rliterman@0
|
254 log.write(f"\t\t- Purged (Duplicates): {dup_snps.shape[0]}\n")
|
rliterman@0
|
255
|
rliterman@0
|
256 # Assert that Ref_Loc and Query_Loc are unique in pass_filter
|
rliterman@0
|
257 helpers.cleanup(verbose=False,remove_all = False)
|
rliterman@0
|
258 assert pass_filter['Ref_Loc'].nunique() == pass_filter.shape[0]
|
rliterman@0
|
259 assert pass_filter['Query_Loc'].nunique() == pass_filter.shape[0]
|
rliterman@0
|
260
|
rliterman@0
|
261 # Density filtering
|
rliterman@0
|
262 density_locs = []
|
rliterman@0
|
263 ref_locs = pass_filter['Ref_Loc'].tolist()
|
rliterman@0
|
264
|
rliterman@0
|
265 if len(density_windows) == 0:
|
rliterman@0
|
266 with open(log_file,"a+") as log:
|
rliterman@0
|
267 log.write("\n\t- Density filtering disabled...\n")
|
rliterman@0
|
268 elif len(ref_locs) > 0:
|
rliterman@0
|
269 density_df = pd.DataFrame([item.split('/') for item in ref_locs], columns=['Ref_Contig','Ref_End'])
|
rliterman@0
|
270 density_df['Ref_Start'] = density_df['Ref_End'].astype(float).astype(int) - 1
|
rliterman@0
|
271 density_bed = BedTool.from_dataframe(density_df[['Ref_Contig','Ref_Start','Ref_End']])
|
rliterman@0
|
272
|
rliterman@0
|
273 # For each density window, remove all SNPs that fall in a window with > max_snps
|
rliterman@0
|
274 for i in range(0,len(density_windows)):
|
rliterman@0
|
275 window_df = density_bed.window(density_bed,c=True, w=density_windows[i]).to_dataframe()
|
rliterman@0
|
276 problematic_windows = window_df[window_df['name'] > max_snps[i]].copy()
|
rliterman@0
|
277 if not problematic_windows.empty:
|
rliterman@0
|
278 temp_locs = []
|
rliterman@0
|
279 for _, row in problematic_windows.iterrows():
|
rliterman@0
|
280 purge_window_df = window_df[window_df['chrom'] == row['chrom']].copy()
|
rliterman@0
|
281 purge_window_df['Dist'] = abs(purge_window_df['end'] - row['end'])
|
rliterman@0
|
282 window_snps = purge_window_df.sort_values(by=['Dist'],ascending=True).head(row['name'])
|
rliterman@0
|
283 temp_locs = temp_locs + ["/".join([str(x[0]),str(x[1])]) for x in list(zip(window_snps.chrom, window_snps.end))]
|
rliterman@0
|
284 density_locs.extend(list(set(temp_locs)))
|
rliterman@0
|
285
|
rliterman@0
|
286 density_locs = list(set(density_locs))
|
rliterman@0
|
287 reject_density = pass_filter[pass_filter['Ref_Loc'].isin(density_locs)].copy()
|
rliterman@0
|
288
|
rliterman@0
|
289 if reject_density.shape[0] > 0:
|
rliterman@0
|
290 with open(log_file,"a+") as log:
|
rliterman@0
|
291 log.write(f"\t\t- Purged (Density): {reject_density.shape[0]}\n")
|
rliterman@0
|
292 reject_density['Filter_Cat'] = "Purged_Density"
|
rliterman@0
|
293 snp_tally_df = pd.concat([snp_tally_df,reject_density]).reset_index(drop=True)
|
rliterman@0
|
294 pass_filter = pass_filter[~pass_filter['Ref_Loc'].isin(density_locs)].copy()
|
rliterman@0
|
295
|
rliterman@0
|
296 reject_query_edge = pass_filter[(pass_filter['Dist_to_Query_End'] < query_edge) & (pass_filter['Dist_to_Ref_End'] >= ref_edge)].copy()
|
rliterman@0
|
297 reject_ref_edge = pass_filter[(pass_filter['Dist_to_Ref_End'] < ref_edge) & (pass_filter['Dist_to_Query_End'] >= query_edge)].copy()
|
rliterman@0
|
298 reject_both_edge = pass_filter[(pass_filter['Dist_to_Query_End'] < query_edge) & (pass_filter['Dist_to_Ref_End'] < ref_edge)].copy()
|
rliterman@0
|
299
|
rliterman@0
|
300 if reject_query_edge.shape[0] > 0:
|
rliterman@0
|
301 with open(log_file,"a+") as log:
|
rliterman@0
|
302 log.write(f"\t\t- Purged (Query Edge): {reject_query_edge.shape[0]}\n")
|
rliterman@0
|
303 reject_query_edge['Filter_Cat'] = "Filtered_Query_Edge"
|
rliterman@0
|
304 snp_tally_df = pd.concat([snp_tally_df,reject_query_edge]).reset_index(drop=True)
|
rliterman@0
|
305
|
rliterman@0
|
306 if reject_ref_edge.shape[0] > 0:
|
rliterman@0
|
307 with open(log_file,"a+") as log:
|
rliterman@0
|
308 log.write(f"\t\t- Purged (Ref Edge): {reject_ref_edge.shape[0]}\n")
|
rliterman@0
|
309 reject_ref_edge['Filter_Cat'] = "Filtered_Ref_Edge"
|
rliterman@0
|
310 snp_tally_df = pd.concat([snp_tally_df,reject_ref_edge]).reset_index(drop=True)
|
rliterman@0
|
311
|
rliterman@0
|
312 if reject_both_edge.shape[0] > 0:
|
rliterman@0
|
313 with open(log_file,"a+") as log:
|
rliterman@0
|
314 log.write(f"\t\t- Purged (Both Edge): {reject_both_edge.shape[0]}\n")
|
rliterman@0
|
315 reject_both_edge['Filter_Cat'] = "Filtered_Both_Edge"
|
rliterman@0
|
316 snp_tally_df = pd.concat([snp_tally_df,reject_both_edge]).reset_index(drop=True)
|
rliterman@0
|
317
|
rliterman@0
|
318 pass_filter = pass_filter[(pass_filter['Dist_to_Query_End'] >= query_edge) & (pass_filter['Dist_to_Ref_End'] >= ref_edge)].copy()
|
rliterman@0
|
319
|
rliterman@0
|
320 helpers.cleanup(verbose=False,remove_all = False)
|
rliterman@0
|
321
|
rliterman@0
|
322 assert snp_tally_df.shape[0] + pass_filter.shape[0] == total_snp_count
|
rliterman@0
|
323 return_df = pd.concat([pass_filter,snp_tally_df]).reset_index(drop=True).sort_values(by=['Ref_Loc'])
|
rliterman@0
|
324
|
rliterman@0
|
325 return return_df.drop(columns=['Cat']).rename({'Filter_Cat':'Cat'}, axis=1)
|
rliterman@0
|
326
|
rliterman@0
|
327 def screenSNPDiffs(snpdiffs_file,trim_name, min_cov, min_len, min_iden, ref_edge, query_edge, density_windows, max_snps,reference_id,log_directory):
|
rliterman@0
|
328
|
rliterman@0
|
329 screen_start_time = time.time()
|
rliterman@0
|
330
|
rliterman@0
|
331 if temp_dir != "":
|
rliterman@0
|
332 helpers.set_tempdir(temp_dir)
|
rliterman@0
|
333
|
rliterman@0
|
334 # Set CSP2 variables to NA
|
rliterman@0
|
335 csp2_screen_snps = purged_length = purged_identity = purged_invalid = purged_indel = purged_lengthIdentity = purged_duplicate = purged_het = purged_density = filtered_ref_edge = filtered_query_edge = filtered_both_edge = "NA"
|
rliterman@0
|
336 filtered_snp_df = pd.DataFrame()
|
rliterman@0
|
337 good_reference_bed_df = pd.DataFrame()
|
rliterman@0
|
338
|
rliterman@0
|
339 # Ensure snpdiffs file exists
|
rliterman@0
|
340 if not os.path.exists(snpdiffs_file) or not snpdiffs_file.endswith('.snpdiffs'):
|
rliterman@0
|
341 run_failed = True
|
rliterman@0
|
342 sys.exit(f"Invalid snpdiffs file provided: {snpdiffs_file}")
|
rliterman@0
|
343
|
rliterman@0
|
344 # Ensure header can be read in
|
rliterman@0
|
345 try:
|
rliterman@0
|
346 header_data = fetchHeaders(snpdiffs_file)
|
rliterman@0
|
347 header_query = header_data['Query_ID'][0].replace(trim_name,'')
|
rliterman@0
|
348 header_ref = header_data['Reference_ID'][0].replace(trim_name,'')
|
rliterman@0
|
349 except:
|
rliterman@0
|
350 run_failed = True
|
rliterman@0
|
351 sys.exit(f"Error reading headers from snpdiffs file: {snpdiffs_file}")
|
rliterman@0
|
352
|
rliterman@0
|
353 # Check snpdiffs orientation
|
rliterman@0
|
354 if (header_ref == reference_id):
|
rliterman@0
|
355 snpdiffs_orientation = 1
|
rliterman@0
|
356 query_id = header_query
|
rliterman@0
|
357 elif (header_query == reference_id):
|
rliterman@0
|
358 snpdiffs_orientation = -1
|
rliterman@0
|
359 query_id = header_ref
|
rliterman@0
|
360 header_data = swapHeader(header_data)
|
rliterman@0
|
361 else:
|
rliterman@0
|
362 run_failed = True
|
rliterman@0
|
363 sys.exit(f"Error: Reference ID not found in header of {snpdiffs_file}...")
|
rliterman@0
|
364
|
rliterman@0
|
365 # Establish log file
|
rliterman@0
|
366 log_file = f"{log_directory}/{query_id}__vs__{reference_id}.log"
|
rliterman@0
|
367 with open(log_file,"w+") as log:
|
rliterman@0
|
368 log.write("Reference Screening for SNP Pipeline Analysis\n")
|
rliterman@0
|
369 log.write(f"Query Isolate: {query_id}\n")
|
rliterman@0
|
370 log.write(f"Reference Isolate: {reference_id}\n")
|
rliterman@0
|
371 log.write(str(datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S"))+"\n")
|
rliterman@0
|
372 log.write("-------------------------------------------------------\n\n")
|
rliterman@0
|
373 if snpdiffs_orientation == 1:
|
rliterman@0
|
374 log.write("\t- SNPDiffs file is in the forward orientation\n")
|
rliterman@0
|
375 log.write("-------------------------------------------------------\n\n")
|
rliterman@0
|
376 else:
|
rliterman@0
|
377 log.write("\t- SNPDiffs file is in the reverse orientation\n")
|
rliterman@0
|
378 log.write("-------------------------------------------------------\n\n")
|
rliterman@0
|
379
|
rliterman@0
|
380
|
rliterman@0
|
381 # Set variables from header data
|
rliterman@0
|
382 raw_snps = int(header_data['SNPs'][0])
|
rliterman@0
|
383 raw_indels = int(header_data['Indels'][0])
|
rliterman@0
|
384 raw_invalid = int(header_data['Invalid'][0])
|
rliterman@0
|
385
|
rliterman@0
|
386 kmer_similarity = float(header_data['Kmer_Similarity'][0])
|
rliterman@0
|
387 shared_kmers = int(header_data['Shared_Kmers'][0])
|
rliterman@0
|
388 query_unique_kmers = int(header_data['Query_Unique_Kmers'][0])
|
rliterman@0
|
389 reference_unique_kmers = int(header_data['Reference_Unique_Kmers'][0])
|
rliterman@0
|
390 mummer_gsnps = int(header_data['gSNPs'][0])
|
rliterman@0
|
391 mummer_gindels = int(header_data['gIndels'][0])
|
rliterman@0
|
392
|
rliterman@0
|
393 query_bases = int(header_data['Query_Assembly_Bases'][0])
|
rliterman@0
|
394 reference_bases = int(header_data['Reference_Assembly_Bases'][0])
|
rliterman@0
|
395
|
rliterman@0
|
396 query_contigs = int(header_data['Query_Contig_Count'][0])
|
rliterman@0
|
397 reference_contigs = int(header_data['Reference_Contig_Count'][0])
|
rliterman@0
|
398
|
rliterman@0
|
399 raw_query_percent_aligned = float(header_data['Query_Percent_Aligned'][0])
|
rliterman@0
|
400 raw_ref_percent_aligned = float(header_data['Reference_Percent_Aligned'][0])
|
rliterman@0
|
401
|
rliterman@0
|
402 # If the reference is not covered by at least min_cov, STOP
|
rliterman@0
|
403 if raw_ref_percent_aligned < min_cov:
|
rliterman@0
|
404 query_percent_aligned = raw_query_percent_aligned
|
rliterman@0
|
405 reference_percent_aligned = raw_ref_percent_aligned
|
rliterman@0
|
406 screen_category = "Low_Coverage"
|
rliterman@0
|
407 with open(log_file,"a+") as log:
|
rliterman@0
|
408 log.write(f"\t- Reference genome coverage: {raw_ref_percent_aligned}% \n")
|
rliterman@0
|
409 log.write(f"\t- Query covers less than --min_cov ({min_cov}%)...Screen halted...\n")
|
rliterman@0
|
410 log.write("-------------------------------------------------------\n\n")
|
rliterman@0
|
411
|
rliterman@0
|
412 elif raw_snps + raw_indels + raw_invalid > 10000:
|
rliterman@0
|
413 query_percent_aligned = raw_query_percent_aligned
|
rliterman@0
|
414 reference_percent_aligned = raw_ref_percent_aligned
|
rliterman@0
|
415 screen_category = "SNP_Cutoff"
|
rliterman@0
|
416 with open(log_file,"a+") as log:
|
rliterman@0
|
417 log.write(f"\t- {raw_snps} detected...\n")
|
rliterman@0
|
418 log.write("\t- > 10,000 SNPs, indels, or invalid sites detected by MUMmer...Screen halted...\n")
|
rliterman@0
|
419 log.write("-------------------------------------------------------\n\n")
|
rliterman@0
|
420
|
rliterman@0
|
421 else:
|
rliterman@0
|
422
|
rliterman@0
|
423 ##### 02: Read in BED/SNP data #####
|
rliterman@0
|
424 with open(log_file,"a+") as log:
|
rliterman@0
|
425 log.write("Step 1: Reading in snpdiffs BED/SNP data...")
|
rliterman@0
|
426 try:
|
rliterman@0
|
427 bed_df,snp_df = parseSNPDiffs(snpdiffs_file,snpdiffs_orientation)
|
rliterman@0
|
428
|
rliterman@0
|
429 with open(log_file,"a+") as log:
|
rliterman@0
|
430 log.write("Done!\n")
|
rliterman@0
|
431 log.write("-------------------------------------------------------\n\n")
|
rliterman@0
|
432
|
rliterman@0
|
433 except Exception as e:
|
rliterman@0
|
434 run_failed = True
|
rliterman@0
|
435 with open(log_file,"a+") as log:
|
rliterman@0
|
436 log.write(f"\nError reading BED/SNP data from file: {snpdiffs_file}\n{str(e)}")
|
rliterman@0
|
437 sys.exit(f"Error reading BED/SNP data from file: {snpdiffs_file}\n{str(e)}")
|
rliterman@0
|
438
|
rliterman@0
|
439 ##### 03: Filter genome overlaps #####
|
rliterman@0
|
440 with open(log_file,"a+") as log:
|
rliterman@0
|
441 log.write("Step 2: Filtering for short overlaps and low percent identity...")
|
rliterman@0
|
442
|
rliterman@0
|
443 good_bed_df = bed_df[(bed_df['Ref_Aligned'] >= min_len) & (bed_df['Perc_Iden'] >= min_iden)].copy()
|
rliterman@0
|
444
|
rliterman@0
|
445 if good_bed_df.shape[0] == 0:
|
rliterman@0
|
446 screen_category = "Low_Quality_Coverage"
|
rliterman@0
|
447 with open(log_file,"a+") as log:
|
rliterman@0
|
448 log.write(f"\n\t- After filtering based on --min_len ({min_len}) and --min_iden ({min_iden}) , no valid alignments remain...Screen halted...\n")
|
rliterman@0
|
449 log.write("-------------------------------------------------------\n\n")
|
rliterman@0
|
450
|
rliterman@0
|
451
|
rliterman@0
|
452 else:
|
rliterman@0
|
453 # Create a BED file for alignments that pass basic QC
|
rliterman@0
|
454 good_query_bed_df = good_bed_df[['Query_Contig','Query_Start','Query_End']].copy()
|
rliterman@0
|
455 good_reference_bed_df = good_bed_df[['Ref_Contig','Ref_Start','Ref_End']].copy()
|
rliterman@0
|
456 good_reference_bed_df.loc[:, 'Query_ID'] = query_id
|
rliterman@0
|
457
|
rliterman@0
|
458 good_query_aligned = calculate_total_length(BedTool.from_dataframe(good_query_bed_df).sort().merge())
|
rliterman@0
|
459 good_reference_aligned = calculate_total_length(BedTool.from_dataframe(good_reference_bed_df[['Ref_Contig','Ref_Start','Ref_End']]).sort().merge())
|
rliterman@0
|
460
|
rliterman@0
|
461 query_percent_aligned = (good_query_aligned / query_bases) * 100
|
rliterman@0
|
462 reference_percent_aligned = (good_reference_aligned / reference_bases) * 100
|
rliterman@0
|
463
|
rliterman@0
|
464 if reference_percent_aligned < min_cov:
|
rliterman@0
|
465 screen_category = "Low_Quality_Coverage"
|
rliterman@0
|
466 with open(log_file,"a+") as log:
|
rliterman@0
|
467 log.write(f"\n\t- Raw reference genome coverage was {raw_ref_percent_aligned}% \n")
|
rliterman@0
|
468 log.write(f"\t- After filtering based on --min_len ({min_len}) and --min_iden ({min_iden}), reference genome coverage was {reference_percent_aligned:.2f}% \n")
|
rliterman@0
|
469 log.write(f"\t- Query covers less than --min_cov ({min_cov}%) of reference after filtering...Screen halted...\n")
|
rliterman@0
|
470 log.write("-------------------------------------------------------\n\n")
|
rliterman@0
|
471
|
rliterman@0
|
472 else:
|
rliterman@0
|
473 screen_category = "Pass"
|
rliterman@0
|
474 with open(log_file,"a+") as log:
|
rliterman@0
|
475 log.write("Done!\n")
|
rliterman@0
|
476 log.write(f"\t- Raw reference genome coverage was {raw_ref_percent_aligned}% \n")
|
rliterman@0
|
477 log.write(f"\t- After filtering based on --min_len ({min_len}) and --min_iden ({min_iden}), reference genome coverage was {reference_percent_aligned:.2f}% \n")
|
rliterman@0
|
478 log.write("-------------------------------------------------------\n\n")
|
rliterman@0
|
479
|
rliterman@0
|
480
|
rliterman@0
|
481 # Filter SNPs
|
rliterman@0
|
482 with open(log_file,"a+") as log:
|
rliterman@0
|
483 log.write("Step 3: Filtering SNPs to get final SNP distances...")
|
rliterman@0
|
484
|
rliterman@0
|
485 if raw_snps == 0:
|
rliterman@0
|
486 csp2_screen_snps = purged_length = purged_identity = purged_lengthIdentity = purged_indel = purged_invalid = purged_duplicate = purged_het = purged_density = filtered_ref_edge = filtered_query_edge = filtered_both_edge = 0
|
rliterman@0
|
487 with open(log_file,"a+") as log:
|
rliterman@0
|
488 log.write("Done!\n")
|
rliterman@0
|
489 log.write("\t- No SNPs detected in MUMmer output, no filtering required\n")
|
rliterman@0
|
490 log.write("-------------------------------------------------------\n\n")
|
rliterman@0
|
491
|
rliterman@0
|
492 else:
|
rliterman@0
|
493 filtered_snp_df = filterSNPs(snp_df,bed_df,log_file, min_len, min_iden, ref_edge, query_edge, density_windows, max_snps)
|
rliterman@0
|
494
|
rliterman@0
|
495 csp2_screen_snps = filtered_snp_df[filtered_snp_df.Cat == "SNP"].shape[0]
|
rliterman@0
|
496 purged_length = filtered_snp_df[filtered_snp_df.Cat == "Purged_Length"].shape[0]
|
rliterman@0
|
497 purged_identity = filtered_snp_df[filtered_snp_df.Cat == "Purged_Identity"].shape[0]
|
rliterman@0
|
498 purged_lengthIdentity = filtered_snp_df[filtered_snp_df.Cat == "Purged_LengthIdentity"].shape[0]
|
rliterman@0
|
499 purged_invalid = filtered_snp_df[filtered_snp_df.Cat == "Purged_Invalid"].shape[0]
|
rliterman@0
|
500 purged_indel = filtered_snp_df[filtered_snp_df.Cat == "Purged_Indel"].shape[0]
|
rliterman@0
|
501 purged_het = filtered_snp_df[filtered_snp_df.Cat == "Purged_Heterozygous"].shape[0]
|
rliterman@0
|
502 purged_duplicate = filtered_snp_df[filtered_snp_df.Cat == "Purged_Duplicate"].shape[0]
|
rliterman@0
|
503 purged_density = filtered_snp_df[filtered_snp_df.Cat == "Purged_Density"].shape[0]
|
rliterman@0
|
504 filtered_query_edge = filtered_snp_df[filtered_snp_df.Cat == "Filtered_Query_Edge"].shape[0]
|
rliterman@0
|
505 filtered_ref_edge = filtered_snp_df[filtered_snp_df.Cat == "Filtered_Ref_Edge"].shape[0]
|
rliterman@0
|
506 filtered_both_edge = filtered_snp_df[filtered_snp_df.Cat == "Filtered_Both_Edge"].shape[0]
|
rliterman@0
|
507
|
rliterman@0
|
508 # Write filtered SNP data to file
|
rliterman@0
|
509 snp_file = log_file.replace(".log","_SNPs.tsv")
|
rliterman@0
|
510 filtered_snp_df.to_csv(snp_file, sep="\t", index=False)
|
rliterman@0
|
511
|
rliterman@0
|
512 filtered_snp_df.loc[:, 'Query_ID'] = query_id
|
rliterman@0
|
513
|
rliterman@0
|
514 with open(log_file,"a+") as log:
|
rliterman@0
|
515 log.write("Done!\n")
|
rliterman@0
|
516 log.write(f"\t- {csp2_screen_snps} SNPs detected between {query_id} and {reference_id} after filtering\n")
|
rliterman@0
|
517 log.write(f"\t- Full SNP data saved to {snp_file}\n")
|
rliterman@0
|
518 log.write("-------------------------------------------------------\n\n")
|
rliterman@0
|
519
|
rliterman@0
|
520 screen_end_time = time.time()
|
rliterman@0
|
521 with open(log_file,"a+") as log:
|
rliterman@0
|
522 log.write(f"Screening Time: {screen_end_time - screen_start_time:.2f} seconds\n")
|
rliterman@0
|
523
|
rliterman@0
|
524 # Clean up pybedtools temp
|
rliterman@0
|
525 helpers.cleanup(verbose=False, remove_all=False)
|
rliterman@0
|
526
|
rliterman@0
|
527 return ([str(item) for item in [query_id,reference_id,screen_category,csp2_screen_snps,
|
rliterman@0
|
528 f"{query_percent_aligned:.2f}",f"{reference_percent_aligned:.2f}",
|
rliterman@0
|
529 query_contigs,query_bases,reference_contigs,reference_bases,
|
rliterman@0
|
530 raw_snps,purged_length,purged_identity,purged_lengthIdentity,purged_invalid,purged_indel,purged_duplicate,purged_het,purged_density,
|
rliterman@0
|
531 filtered_query_edge,filtered_ref_edge,filtered_both_edge,
|
rliterman@0
|
532 kmer_similarity,shared_kmers,query_unique_kmers,reference_unique_kmers,
|
rliterman@0
|
533 mummer_gsnps,mummer_gindels]],good_reference_bed_df,filtered_snp_df)
|
rliterman@0
|
534
|
rliterman@0
|
535 def assessCoverage(query_id,site_list):
|
rliterman@0
|
536
|
rliterman@0
|
537 if temp_dir != "":
|
rliterman@0
|
538 helpers.set_tempdir(temp_dir)
|
rliterman@0
|
539
|
rliterman@0
|
540 if len(site_list) == 0:
|
rliterman@0
|
541 return pd.DataFrame(columns=['Ref_Loc','Query_ID','Cat'])
|
rliterman@0
|
542 else:
|
rliterman@0
|
543 coverage_df = pass_filter_coverage_df[pass_filter_coverage_df['Query_ID'] == query_id].copy()
|
rliterman@0
|
544
|
rliterman@0
|
545 if coverage_df.shape[0] == 0:
|
rliterman@0
|
546 uncovered_loc_df = pd.DataFrame({
|
rliterman@0
|
547 'Ref_Loc': site_list,
|
rliterman@0
|
548 'Query_ID': [query_id] * len(site_list),
|
rliterman@0
|
549 'Cat': ["Uncovered"] * len(site_list)
|
rliterman@0
|
550 })
|
rliterman@0
|
551 return uncovered_loc_df
|
rliterman@0
|
552 else:
|
rliterman@0
|
553 coverage_bed = BedTool.from_dataframe(coverage_df[['Ref_Contig','Ref_Start','Ref_End']]).sort()
|
rliterman@0
|
554 snp_bed_df = pd.DataFrame([item.split('/') for item in site_list], columns=['Ref_Contig','Ref_End'])
|
rliterman@0
|
555 snp_bed_df['Ref_Start'] = snp_bed_df['Ref_End'].astype(float).astype(int) - 1
|
rliterman@0
|
556 snp_bed_df['Ref_Loc'] = site_list
|
rliterman@0
|
557 snp_bed = BedTool.from_dataframe(snp_bed_df[['Ref_Contig','Ref_Start','Ref_End','Ref_Loc']]).sort()
|
rliterman@0
|
558
|
rliterman@0
|
559 # Ref_Locs from snp_bed that intersect with coverage_bed go into covered_locs, the rest go into uncovered_locs
|
rliterman@0
|
560 covered_locs = snp_bed.intersect(coverage_bed, wa=True)
|
rliterman@0
|
561 uncovered_locs = snp_bed.intersect(coverage_bed, v=True, wa=True)
|
rliterman@0
|
562
|
rliterman@0
|
563 covered_loc_df = pd.DataFrame({
|
rliterman@0
|
564 'Ref_Loc': [snp.fields[3] for snp in covered_locs],
|
rliterman@0
|
565 'Query_ID': [query_id] * covered_locs.count(),
|
rliterman@0
|
566 'Cat': ["Ref_Base"] * covered_locs.count()
|
rliterman@0
|
567 }) if covered_locs.count() > 0 else pd.DataFrame(columns=['Ref_Loc','Query_ID','Cat'])
|
rliterman@0
|
568
|
rliterman@0
|
569 uncovered_loc_df = pd.DataFrame({
|
rliterman@0
|
570 'Ref_Loc': [snp.fields[3] for snp in uncovered_locs],
|
rliterman@0
|
571 'Query_ID': [query_id] * uncovered_locs.count(),
|
rliterman@0
|
572 'Cat': ["Uncovered"] * uncovered_locs.count()
|
rliterman@0
|
573 }) if uncovered_locs.count() > 0 else pd.DataFrame(columns=['Ref_Loc','Query_ID','Cat'])
|
rliterman@0
|
574
|
rliterman@0
|
575 # Clean up pybedtools temp
|
rliterman@0
|
576 helpers.cleanup(verbose=False, remove_all=False)
|
rliterman@0
|
577
|
rliterman@0
|
578 return pd.concat([covered_loc_df.drop_duplicates(['Ref_Loc']),uncovered_loc_df])
|
rliterman@0
|
579
|
rliterman@0
|
580 def getPairwise(chunk, sequences, ids):
|
rliterman@0
|
581 results = []
|
rliterman@0
|
582
|
rliterman@0
|
583 for i, j in chunk:
|
rliterman@0
|
584 seq1, seq2 = sequences[i], sequences[j]
|
rliterman@0
|
585 actg_mask1 = np.isin(seq1, list('ACTGactg'))
|
rliterman@0
|
586 actg_mask2 = np.isin(seq2, list('ACTGactg'))
|
rliterman@0
|
587 cocalled_mask = actg_mask1 & actg_mask2
|
rliterman@0
|
588
|
rliterman@0
|
589 snps_cocalled = np.sum(cocalled_mask)
|
rliterman@0
|
590 snp_distance = np.sum((seq1 != seq2) & cocalled_mask)
|
rliterman@0
|
591
|
rliterman@0
|
592 results.append([ids[i], ids[j], snp_distance, snps_cocalled])
|
rliterman@0
|
593
|
rliterman@0
|
594 return results
|
rliterman@0
|
595
|
rliterman@0
|
596 def parallelAlignment(alignment, chunk_size=5000):
|
rliterman@0
|
597 sequences = [np.array(list(record.seq)) for record in alignment]
|
rliterman@0
|
598 ids = [record.id for record in alignment]
|
rliterman@0
|
599 pairwise_combinations = list(combinations(range(len(sequences)), 2))
|
rliterman@0
|
600
|
rliterman@0
|
601 # Create chunks of pairwise combinations
|
rliterman@0
|
602 chunks = [pairwise_combinations[i:i + chunk_size] for i in range(0, len(pairwise_combinations), chunk_size)]
|
rliterman@0
|
603
|
rliterman@0
|
604 results = []
|
rliterman@0
|
605 with concurrent.futures.ProcessPoolExecutor() as executor:
|
rliterman@0
|
606 future_to_chunk = {executor.submit(getPairwise, chunk, sequences, ids): chunk for chunk in chunks}
|
rliterman@0
|
607 for future in concurrent.futures.as_completed(future_to_chunk):
|
rliterman@0
|
608 chunk_results = future.result()
|
rliterman@0
|
609 results.extend(chunk_results)
|
rliterman@0
|
610 return results
|
rliterman@0
|
611
|
rliterman@0
|
612 def getFinalPurge(df):
|
rliterman@0
|
613 # Returns the 'farthest along' category for a given Ref_Loc
|
rliterman@0
|
614 if "Purged_Density" in df['Cat'].values:
|
rliterman@0
|
615 return "Purged_Density"
|
rliterman@0
|
616 elif "Purged_Heterozygous" in df['Cat'].values:
|
rliterman@0
|
617 return "Purged_Heterozygous"
|
rliterman@0
|
618 elif "Purged_Indel" in df['Cat'].values:
|
rliterman@0
|
619 return "Purged_Indel"
|
rliterman@0
|
620 elif "Purged_Invalid" in df['Cat'].values:
|
rliterman@0
|
621 return "Purged_Invalid"
|
rliterman@0
|
622 elif "Purged_Length" in df['Cat'].values:
|
rliterman@0
|
623 return "Purged_Length"
|
rliterman@0
|
624 else:
|
rliterman@0
|
625 return "Purged_Identity"
|
rliterman@0
|
626
|
rliterman@0
|
627
|
rliterman@0
|
628 # Read in arguments
|
rliterman@0
|
629 global run_failed
|
rliterman@0
|
630 run_failed = False
|
rliterman@0
|
631
|
rliterman@0
|
632 start_time = time.time()
|
rliterman@0
|
633
|
rliterman@0
|
634 parser = argparse.ArgumentParser(description='CSP2 SNP Pipeline Analysis')
|
rliterman@0
|
635 parser.add_argument('--reference_id', type=str, help='Reference Isolate')
|
rliterman@0
|
636 parser.add_argument('--output_directory', type=str, help='Output Directory')
|
rliterman@0
|
637 parser.add_argument('--log_directory', type=str, help='Log Directory')
|
rliterman@0
|
638 parser.add_argument('--snpdiffs_file', type=str, help='Path to SNPdiffs file')
|
rliterman@27
|
639 parser.add_argument('--min_cov', default=85,type=float, help='Minimum coverage')
|
rliterman@27
|
640 parser.add_argument('--min_len', default=500,type=int, help='Minimum length')
|
rliterman@27
|
641 parser.add_argument('--min_iden', default=99,type=float, help='Minimum identity')
|
rliterman@27
|
642 parser.add_argument('--ref_edge', default=150,type=int, help='Reference edge')
|
rliterman@27
|
643 parser.add_argument('--query_edge', default=150,type=int, help='Query edge')
|
rliterman@27
|
644 parser.add_argument('--density_windows', default="1000,125,15",type=str, help='Density windows')
|
rliterman@27
|
645 parser.add_argument('--max_snps', default="3,2,1", type=str, help='Maximum SNPs')
|
rliterman@28
|
646 parser.add_argument('--trim_name', nargs='?', const="", default="", type=str, help='Trim name')
|
rliterman@27
|
647 parser.add_argument('--max_missing',default=50, type=float, help='Maximum missing')
|
rliterman@27
|
648 parser.add_argument('--tmp_dir',default="", type=str, help='Temporary directory')
|
rliterman@27
|
649 parser.add_argument('--rescue', default="norescue",type=str, help='Rescue edge SNPs (rescue/norescue)')
|
rliterman@0
|
650 args = parser.parse_args()
|
rliterman@0
|
651
|
rliterman@0
|
652 reference_id = args.reference_id
|
rliterman@0
|
653 output_directory = os.path.abspath(args.output_directory)
|
rliterman@0
|
654 log_directory = os.path.abspath(args.log_directory)
|
rliterman@0
|
655 log_file = f"{output_directory}/CSP2_SNP_Pipeline.log"
|
rliterman@0
|
656 snpdiffs_file = args.snpdiffs_file
|
rliterman@0
|
657 min_cov = args.min_cov
|
rliterman@0
|
658 min_len = args.min_len
|
rliterman@0
|
659 min_iden = args.min_iden
|
rliterman@0
|
660 ref_edge = args.ref_edge
|
rliterman@0
|
661 query_edge = args.query_edge
|
rliterman@0
|
662 density_windows = [int(x) for x in args.density_windows.split(",")]
|
rliterman@0
|
663 max_snps = [int(x) for x in args.max_snps.split(",")]
|
rliterman@0
|
664 trim_name = args.trim_name
|
rliterman@0
|
665 max_missing = args.max_missing
|
rliterman@0
|
666
|
rliterman@0
|
667 # Establish log file
|
rliterman@0
|
668 with open(log_file,"w+") as log:
|
rliterman@0
|
669 log.write("CSP2 SNP Pipeline Analysis\n")
|
rliterman@0
|
670 log.write(f"Reference Isolate: {reference_id}\n")
|
rliterman@0
|
671 log.write(str(datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S"))+"\n")
|
rliterman@0
|
672 log.write("-------------------------------------------------------\n\n")
|
rliterman@0
|
673 log.write("Reading in SNPDiffs files...")
|
rliterman@0
|
674
|
rliterman@0
|
675
|
rliterman@0
|
676 # Read in all lines and ensure each file exists
|
rliterman@0
|
677 snpdiffs_list = [line.strip() for line in open(snpdiffs_file, 'r')]
|
rliterman@0
|
678 snpdiffs_list = [line for line in snpdiffs_list if line]
|
rliterman@0
|
679 for snpdiffs_file in snpdiffs_list:
|
rliterman@0
|
680 if not os.path.exists(snpdiffs_file):
|
rliterman@0
|
681 run_failed = True
|
rliterman@0
|
682 sys.exit("Error: File does not exist: " + snpdiffs_file)
|
rliterman@0
|
683
|
rliterman@0
|
684 snpdiffs_list = list(set(snpdiffs_list))
|
rliterman@0
|
685
|
rliterman@0
|
686 if len(snpdiffs_list) == 0:
|
rliterman@0
|
687 run_failed = True
|
rliterman@0
|
688 sys.exit("No SNPdiffs files provided...")
|
rliterman@0
|
689
|
rliterman@0
|
690 with open(log_file, "a+") as log:
|
rliterman@0
|
691 log.write("Done!\n")
|
rliterman@0
|
692 log.write(f"\t- Read in {len(snpdiffs_list)} SNPdiffs files\n")
|
rliterman@0
|
693 log.write("-------------------------------------------------------\n\n")
|
rliterman@0
|
694
|
rliterman@0
|
695 global temp_dir
|
rliterman@0
|
696 if args.tmp_dir != "":
|
rliterman@0
|
697 random_temp_id = str(uuid.uuid4())
|
rliterman@0
|
698 temp_dir = f"{os.path.normpath(os.path.abspath(args.tmp_dir))}/{random_temp_id}"
|
rliterman@0
|
699 try:
|
rliterman@0
|
700 os.mkdir(temp_dir)
|
rliterman@0
|
701 helpers.set_tempdir(temp_dir)
|
rliterman@0
|
702 except OSError as e:
|
rliterman@0
|
703 run_failed = True
|
rliterman@0
|
704 print(f"Error: Failed to create directory '{temp_dir}': {e}")
|
rliterman@0
|
705 else:
|
rliterman@0
|
706 temp_dir = ""
|
rliterman@0
|
707
|
rliterman@0
|
708 rescue_edge = str(args.rescue)
|
rliterman@0
|
709 if rescue_edge not in ["rescue","norescue"]:
|
rliterman@0
|
710 with open(log_file,"a+") as log:
|
rliterman@0
|
711 log.write(f"\t- Unexpected rescue_edge variable ('{rescue_edge}'). Not performing SNP edge rescuing (any SNPs found within {query_edge}bp of a query contig edge will be purged)...\n")
|
rliterman@0
|
712 log.write("-------------------------------------------------------\n\n")
|
rliterman@0
|
713 rescue_edge = "norescue"
|
rliterman@0
|
714 elif rescue_edge == "rescue":
|
rliterman@0
|
715 with open(log_file,"a+") as log:
|
rliterman@0
|
716 log.write(f"\t- Rescuing edge SNPs within {query_edge}bp of query contig edges if found more centrally in another query...\n")
|
rliterman@0
|
717 log.write("-------------------------------------------------------\n\n")
|
rliterman@0
|
718 else:
|
rliterman@0
|
719 with open(log_file,"a+") as log:
|
rliterman@0
|
720 log.write(f"\t- Not performing SNP edge rescuing (any SNPs found within {query_edge}bp of a query contig edge will be purged)...\n")
|
rliterman@0
|
721 log.write("-------------------------------------------------------\n\n")
|
rliterman@0
|
722
|
rliterman@0
|
723 try:
|
rliterman@0
|
724 # Establish output files
|
rliterman@0
|
725 reference_screening_file = f"{output_directory}/Reference_Screening.tsv"
|
rliterman@0
|
726 locus_category_file = f"{output_directory}/Locus_Categories.tsv"
|
rliterman@0
|
727 query_coverage_file = f"{output_directory}/Query_Coverage.tsv"
|
rliterman@0
|
728 raw_loclist = f"{output_directory}/snplist.txt"
|
rliterman@0
|
729 raw_alignment = f"{output_directory}/snpma.fasta"
|
rliterman@0
|
730 preserved_loclist = f"{output_directory}/snplist_preserved.txt"
|
rliterman@0
|
731 preserved_alignment_file = f"{output_directory}/snpma_preserved.fasta"
|
rliterman@0
|
732 raw_pairwise = f"{output_directory}/snp_distance_pairwise.tsv"
|
rliterman@0
|
733 raw_matrix = f"{output_directory}/snp_distance_matrix.tsv"
|
rliterman@0
|
734 preserved_pairwise = f"{output_directory}/snp_distance_pairwise_preserved.tsv"
|
rliterman@0
|
735 preserved_matrix = f"{output_directory}/snp_distance_matrix_preserved.tsv"
|
rliterman@0
|
736
|
rliterman@0
|
737 with open(log_file,"a+") as log:
|
rliterman@0
|
738 log.write("Screening all queries against reference...")
|
rliterman@0
|
739 with concurrent.futures.ProcessPoolExecutor() as executor:
|
rliterman@0
|
740 results = [executor.submit(screenSNPDiffs,snp_diff_file,trim_name, min_cov, min_len, min_iden, ref_edge, query_edge, density_windows, max_snps,reference_id,log_directory) for snp_diff_file in snpdiffs_list]
|
rliterman@0
|
741
|
rliterman@0
|
742 # Combine results into a dataframe
|
rliterman@0
|
743 output_columns = ['Query_ID','Reference_ID','Screen_Category','CSP2_Screen_SNPs',
|
rliterman@0
|
744 'Query_Percent_Aligned','Reference_Percent_Aligned',
|
rliterman@0
|
745 'Query_Contigs','Query_Bases','Reference_Contigs','Reference_Bases',
|
rliterman@0
|
746 'Raw_SNPs','Purged_Length','Purged_Identity','Purged_LengthIdentity','Purged_Invalid','Purged_Indel','Purged_Duplicate','Purged_Het','Purged_Density',
|
rliterman@0
|
747 'Filtered_Query_Edge','Filtered_Ref_Edge','Filtered_Both_Edge',
|
rliterman@0
|
748 'Kmer_Similarity','Shared_Kmers','Query_Unique_Kmers','Reference_Unique_Kmers',
|
rliterman@0
|
749 'MUMmer_gSNPs','MUMmer_gIndels']
|
rliterman@0
|
750
|
rliterman@0
|
751 # Save reference screening
|
rliterman@0
|
752 results_df = pd.DataFrame([item.result()[0] for item in results], columns = output_columns)
|
rliterman@0
|
753 results_df.to_csv(reference_screening_file, sep="\t", index=False)
|
rliterman@0
|
754
|
rliterman@0
|
755 # Get reference bed dfs
|
rliterman@0
|
756 covered_df = pd.concat([item.result()[1] for item in results])
|
rliterman@0
|
757
|
rliterman@0
|
758 # Get snp dfs
|
rliterman@0
|
759 filtered_snp_df = pd.concat([item.result()[2] for item in results])
|
rliterman@0
|
760
|
rliterman@0
|
761 # Separate isolates that pass QC
|
rliterman@0
|
762 pass_qc_isolates = list(set(results_df[results_df['Screen_Category'] == "Pass"]['Query_ID']))
|
rliterman@0
|
763 fail_qc_isolates = list(set(results_df[results_df['Screen_Category'] != "Pass"]['Query_ID']))
|
rliterman@0
|
764
|
rliterman@0
|
765 if len(pass_qc_isolates) == 0:
|
rliterman@0
|
766 with open(log_file,"a+") as log:
|
rliterman@0
|
767 log.write("Done!\n")
|
rliterman@0
|
768 log.write(f"\t- Reference screening data saved to {reference_screening_file}\n")
|
rliterman@0
|
769 log.write(f"\t- Of {len(snpdiffs_list)} comparisons, no isolates passed QC. Pipeline cannot continue.\n")
|
rliterman@0
|
770 log.write(f"\t- {len(fail_qc_isolates)} comparisons failed QC\n")
|
rliterman@0
|
771 for isolate in fail_qc_isolates:
|
rliterman@0
|
772 isolate_category = results_df[results_df['Query_ID'] == isolate]['Screen_Category'].values[0]
|
rliterman@0
|
773 log.write(f"\t\t- {isolate}: {isolate_category}\n")
|
rliterman@0
|
774 log.write("-------------------------------------------------------\n\n")
|
rliterman@0
|
775 sys.exit(0)
|
rliterman@0
|
776 else:
|
rliterman@0
|
777 with open(log_file,"a+") as log:
|
rliterman@0
|
778 log.write("Done!\n")
|
rliterman@0
|
779 log.write(f"\t- Reference screening data saved to {reference_screening_file}\n")
|
rliterman@0
|
780 log.write(f"\t- Of {len(snpdiffs_list)} comparisons, {len(pass_qc_isolates)} covered at least {min_cov}% of the reference genome after removing poor alignments\n")
|
rliterman@0
|
781 if len(fail_qc_isolates) > 0:
|
rliterman@0
|
782 log.write(f"\t- {len(fail_qc_isolates)} comparisons failed QC\n")
|
rliterman@0
|
783 for isolate in fail_qc_isolates:
|
rliterman@0
|
784 isolate_category = results_df[results_df['Query_ID'] == isolate]['Screen_Category'].values[0]
|
rliterman@0
|
785 log.write(f"\t\t- {isolate}: {isolate_category}\n")
|
rliterman@0
|
786 log.write("-------------------------------------------------------\n\n")
|
rliterman@0
|
787
|
rliterman@0
|
788 with open(log_file,"a+") as log:
|
rliterman@0
|
789 log.write(f"Compiling SNPs across {len(pass_qc_isolates)} samples...\n")
|
rliterman@0
|
790
|
rliterman@0
|
791 if filtered_snp_df.shape[0] == 0:
|
rliterman@0
|
792 snp_count = 0
|
rliterman@0
|
793 with open(log_file,"a+") as log:
|
rliterman@0
|
794 log.write("\t- No SNPs detected across samples...Skipping to output...\n")
|
rliterman@0
|
795 else:
|
rliterman@0
|
796
|
rliterman@0
|
797 # Remove samples that failed QC
|
rliterman@0
|
798 pass_filter_snps = filtered_snp_df[filtered_snp_df['Query_ID'].isin(pass_qc_isolates)].copy()
|
rliterman@0
|
799 pass_filter_snp_list = list(set(pass_filter_snps['Ref_Loc']))
|
rliterman@0
|
800 pass_filter_snp_count = len(pass_filter_snp_list)
|
rliterman@0
|
801
|
rliterman@0
|
802 global pass_filter_coverage_df
|
rliterman@0
|
803 pass_filter_coverage_df = covered_df[covered_df['Query_ID'].isin(pass_qc_isolates)].copy()
|
rliterman@0
|
804
|
rliterman@0
|
805 # Get SNP counts
|
rliterman@0
|
806 snp_df = pass_filter_snps[pass_filter_snps['Cat'] == "SNP"].copy()
|
rliterman@0
|
807
|
rliterman@0
|
808 if snp_df.shape[0] == 0:
|
rliterman@0
|
809 snp_count = 0
|
rliterman@0
|
810 with open(log_file,"a+") as log:
|
rliterman@0
|
811 log.write(f"\t- {pass_filter_snp_count} total SNPs detected across all samples...\n")
|
rliterman@0
|
812 log.write("\t- No SNPs passed QC filtering in any sample...Skipping to output...\n")
|
rliterman@0
|
813
|
rliterman@0
|
814 else:
|
rliterman@0
|
815 snp_list = list(set(snp_df['Ref_Loc']))
|
rliterman@0
|
816 snp_count = len(snp_list)
|
rliterman@0
|
817
|
rliterman@0
|
818 with open(log_file,"a+") as log:
|
rliterman@0
|
819 log.write(f"\t- {pass_filter_snp_count} total SNPs detected across all samples...\n")
|
rliterman@0
|
820 log.write(f"\t- {snp_count} unique SNPs passed QC filtering in at least one sample...\n")
|
rliterman@0
|
821
|
rliterman@0
|
822 # Note SNPs lost irrevocably to reference edge trimming
|
rliterman@0
|
823 ref_edge_df = pass_filter_snps[pass_filter_snps['Cat'].isin(["Filtered_Ref_Edge",'Filtered_Both_Edge'])].copy()
|
rliterman@0
|
824 if ref_edge_df.shape[0] > 0:
|
rliterman@0
|
825 with open(log_file,"a+") as log:
|
rliterman@0
|
826 log.write(f"\t- {ref_edge_df['Ref_Loc'].nunique()} unique SNPs were within {ref_edge}bp of a reference contig end and were not considered in any query...\n")
|
rliterman@0
|
827
|
rliterman@0
|
828 # Create Ref_Base df
|
rliterman@0
|
829 ref_base_df = snp_df[['Ref_Loc', 'Ref_Base']].copy().drop_duplicates().rename(columns = {'Ref_Base':'Query_Base'})
|
rliterman@0
|
830 ref_base_df.loc[:,'Query_ID'] = reference_id
|
rliterman@0
|
831 ref_base_df.loc[:,'Cat'] = "Reference_Isolate"
|
rliterman@0
|
832 ref_base_df = ref_base_df.loc[:,['Ref_Loc','Query_ID','Query_Base','Cat']]
|
rliterman@0
|
833
|
rliterman@0
|
834 # Rescue SNPs that are near the edge if they are valid SNPs in other samples
|
rliterman@0
|
835 rescued_edge_df = pass_filter_snps[(pass_filter_snps['Cat'] == "Filtered_Query_Edge") & (pass_filter_snps['Ref_Loc'].isin(snp_list))].copy()
|
rliterman@0
|
836
|
rliterman@0
|
837 if rescue_edge == "norescue":
|
rliterman@0
|
838 with open(log_file,"a+") as log:
|
rliterman@0
|
839 log.write("\t- Skipping edge resucing...\n")
|
rliterman@0
|
840
|
rliterman@0
|
841 elif rescued_edge_df.shape[0] > 0:
|
rliterman@0
|
842
|
rliterman@0
|
843 # Remove rescued sites from pass_filter_snps
|
rliterman@0
|
844 rescue_merge = pass_filter_snps.merge(rescued_edge_df, indicator=True, how='outer')
|
rliterman@0
|
845 pass_filter_snps = rescue_merge[rescue_merge['_merge'] == 'left_only'].drop(columns=['_merge']).copy()
|
rliterman@0
|
846
|
rliterman@0
|
847 # Add rescued SNPs to snp_df
|
rliterman@0
|
848 rescued_edge_df.loc[:,'Cat'] = "Rescued_SNP"
|
rliterman@0
|
849 snp_df = pd.concat([snp_df,rescued_edge_df]).reset_index(drop=True)
|
rliterman@0
|
850 with open(log_file,"a+") as log:
|
rliterman@0
|
851 log.write(f"\t- Rescued {rescued_edge_df.shape[0]} query SNPs that fell within {query_edge}bp of the query contig edge...\n")
|
rliterman@0
|
852
|
rliterman@0
|
853 else:
|
rliterman@0
|
854 with open(log_file,"a+") as log:
|
rliterman@0
|
855 log.write(f"\t- No query SNPs that fell within {query_edge}bp of the query contig edge were rescued...\n")
|
rliterman@0
|
856
|
rliterman@0
|
857 # Gather base data for all valid SNPs
|
rliterman@0
|
858 snp_base_df = snp_df[['Ref_Loc','Query_ID','Query_Base','Cat']].copy()
|
rliterman@0
|
859
|
rliterman@0
|
860 # Process purged sites
|
rliterman@0
|
861 purged_snp_df = pd.DataFrame(columns=['Ref_Loc','Query_ID','Query_Base','Cat'])
|
rliterman@0
|
862 purged_df = pass_filter_snps[pass_filter_snps['Cat'] != "SNP"].copy()
|
rliterman@0
|
863
|
rliterman@0
|
864 if purged_df.shape[0] > 0:
|
rliterman@0
|
865
|
rliterman@0
|
866 # Remove rows from purged_df if the Ref_Loc/Query_ID pair is already in snp_base_df
|
rliterman@0
|
867 purged_df = purged_df[~purged_df[['Ref_Loc','Query_ID']].apply(tuple,1).isin(snp_base_df[['Ref_Loc','Query_ID']].apply(tuple,1))].copy()
|
rliterman@0
|
868
|
rliterman@0
|
869 if purged_df.shape[0] > 0:
|
rliterman@0
|
870
|
rliterman@0
|
871 # Get purged SNPs where no query has a valid SNP
|
rliterman@0
|
872 non_snp_df = purged_df[~purged_df['Ref_Loc'].isin(snp_list)].copy()
|
rliterman@0
|
873 if non_snp_df.shape[0] > 0:
|
rliterman@0
|
874 non_snp_merge = purged_df.merge(non_snp_df, indicator=True, how='outer')
|
rliterman@0
|
875 purged_df = non_snp_merge[non_snp_merge['_merge'] == 'left_only'].drop(columns=['_merge']).copy()
|
rliterman@0
|
876
|
rliterman@0
|
877 with open(log_file,"a+") as log:
|
rliterman@0
|
878 log.write(f"\t- {len(list(set(non_snp_df['Ref_Loc'])))} unique SNPs were purged in all queries they were found in, and were not considered in the final dataset...\n")
|
rliterman@0
|
879
|
rliterman@0
|
880 if purged_df.shape[0] > 0:
|
rliterman@0
|
881
|
rliterman@0
|
882 purged_snp_df = purged_df[['Ref_Loc','Query_ID']].copy().drop_duplicates()
|
rliterman@0
|
883 purged_snp_df.loc[:, 'Query_Base'] = "N"
|
rliterman@0
|
884 final_purge_df = purged_df.groupby(['Ref_Loc','Query_ID']).apply(getFinalPurge).reset_index().rename(columns={0:'Cat'})
|
rliterman@0
|
885 purged_snp_df = purged_snp_df.merge(final_purge_df, on=['Ref_Loc','Query_ID'], how='inner')
|
rliterman@0
|
886
|
rliterman@0
|
887 # Genomic positions that do not occur- in the SNP data are either uncovered or match the reference base
|
rliterman@0
|
888 missing_df = pd.DataFrame(columns=['Ref_Loc','Query_ID','Query_Base','Cat'])
|
rliterman@0
|
889
|
rliterman@0
|
890 covered_snps = pd.concat([snp_base_df,purged_snp_df]).copy()
|
rliterman@0
|
891 ref_loc_sets = covered_snps.groupby('Query_ID')['Ref_Loc'].agg(set).to_dict()
|
rliterman@0
|
892 isolates_with_missing = [isolate for isolate in pass_qc_isolates if len(set(snp_list) - ref_loc_sets.get(isolate, set())) > 0]
|
rliterman@0
|
893
|
rliterman@0
|
894 uncovered_df = pd.DataFrame()
|
rliterman@0
|
895
|
rliterman@0
|
896 if isolates_with_missing:
|
rliterman@0
|
897 isolate_data = [(isolate, list(set(snp_list) - ref_loc_sets.get(isolate, set()))) for isolate in isolates_with_missing]
|
rliterman@0
|
898
|
rliterman@0
|
899 with concurrent.futures.ProcessPoolExecutor() as executor:
|
rliterman@0
|
900 results = [executor.submit(assessCoverage, query, sites) for query, sites in isolate_data]
|
rliterman@0
|
901 coverage_dfs = [result.result() for result in concurrent.futures.as_completed(results)]
|
rliterman@0
|
902
|
rliterman@0
|
903 coverage_df = pd.concat(coverage_dfs)
|
rliterman@0
|
904 covered_df = coverage_df[coverage_df['Cat'] == 'Ref_Base']
|
rliterman@0
|
905 uncovered_df = coverage_df[coverage_df['Cat'] == 'Uncovered']
|
rliterman@0
|
906
|
rliterman@0
|
907 if not uncovered_df.empty:
|
rliterman@0
|
908 uncovered_df.loc[:, 'Query_Base'] = "?"
|
rliterman@0
|
909 missing_df = pd.concat([missing_df, uncovered_df[['Ref_Loc', 'Query_ID', 'Query_Base', 'Cat']]])
|
rliterman@0
|
910
|
rliterman@0
|
911 if not covered_df.empty:
|
rliterman@0
|
912 ref_base_snp_df = covered_df.merge(ref_base_df[['Ref_Loc', 'Query_Base']], on='Ref_Loc', how='left')
|
rliterman@0
|
913 missing_df = pd.concat([missing_df, ref_base_snp_df[['Ref_Loc', 'Query_ID', 'Query_Base', 'Cat']]])
|
rliterman@0
|
914
|
rliterman@0
|
915 with open(log_file,"a+") as log:
|
rliterman@0
|
916 log.write("\t- Processed coverage information...\n")
|
rliterman@0
|
917
|
rliterman@0
|
918 final_snp_df = pd.concat([snp_base_df,purged_snp_df,missing_df,ref_base_df]).sort_values(by=['Ref_Loc','Query_ID']).reset_index(drop=True)
|
rliterman@0
|
919 snp_counts = final_snp_df.groupby('Query_ID')['Ref_Loc'].count().reset_index().rename(columns={'Ref_Loc':'SNP_Count'})
|
rliterman@0
|
920
|
rliterman@0
|
921 # Assert that all snp_counts == snp_count
|
rliterman@0
|
922 assert snp_counts['SNP_Count'].nunique() == 1
|
rliterman@0
|
923 assert snp_counts['SNP_Count'].values[0] == snp_count
|
rliterman@0
|
924
|
rliterman@0
|
925 # Get locus coverage stats
|
rliterman@0
|
926 snp_coverage_df = final_snp_df[final_snp_df['Cat'].isin(['SNP','Rescued_SNP'])].groupby('Ref_Loc')['Query_ID'].count().reset_index().rename(columns={'Query_ID':'SNP_Count'})
|
rliterman@0
|
927 ref_base_coverage_df = final_snp_df[final_snp_df['Cat'].isin(["Ref_Base","Reference_Isolate"])].groupby('Ref_Loc')['Query_ID'].count().reset_index().rename(columns={'Query_ID':'Ref_Base_Count'})
|
rliterman@0
|
928
|
rliterman@0
|
929 if uncovered_df.shape[0] > 0:
|
rliterman@0
|
930 uncovered_count_df = final_snp_df[final_snp_df['Cat'] == "Uncovered"].groupby('Ref_Loc')['Query_ID'].count().reset_index().rename(columns={'Query_ID':'Uncovered_Count'}).copy()
|
rliterman@0
|
931 else:
|
rliterman@0
|
932 uncovered_count_df = pd.DataFrame(columns=['Ref_Loc','Uncovered_Count'])
|
rliterman@0
|
933
|
rliterman@0
|
934 possible_purged_cols = ['Purged_Length','Purged_Identity','Purged_Invalid','Purged_Indel','Purged_Heterozygous','Purged_Density']
|
rliterman@0
|
935 if purged_snp_df.shape[0] > 0:
|
rliterman@0
|
936 purged_count_df = final_snp_df[final_snp_df['Cat'].isin(possible_purged_cols)].groupby('Ref_Loc')['Query_ID'].count().reset_index().rename(columns={'Query_ID':'Purged_Count'}).copy()
|
rliterman@0
|
937 else:
|
rliterman@0
|
938 purged_count_df = pd.DataFrame(columns=['Ref_Loc','Purged_Count'])
|
rliterman@0
|
939
|
rliterman@0
|
940 locus_coverage_df = snp_coverage_df.merge(ref_base_coverage_df, how='outer', on='Ref_Loc').merge(uncovered_count_df, how='outer', on='Ref_Loc').merge(purged_count_df, how='outer', on='Ref_Loc').fillna(0)
|
rliterman@0
|
941 locus_coverage_df.loc[:, ['SNP_Count','Ref_Base_Count','Uncovered_Count','Purged_Count']] = locus_coverage_df.loc[:, ['SNP_Count','Ref_Base_Count','Uncovered_Count','Purged_Count']].astype(int)
|
rliterman@0
|
942 locus_coverage_df['Missing_Ratio'] = ((locus_coverage_df['Uncovered_Count'] + locus_coverage_df['Purged_Count']) / (1+len(pass_qc_isolates))) * 100
|
rliterman@0
|
943 locus_coverage_df.to_csv(locus_category_file, sep="\t", index=False)
|
rliterman@0
|
944
|
rliterman@0
|
945 # Get isolate coverage stats
|
rliterman@0
|
946 min_isolate_cols = ['Query_ID','SNP','Ref_Base','Percent_Missing','Purged','Uncovered','Rescued_SNP','Purged_Ref_Edge']
|
rliterman@0
|
947 isolate_coverage_df = final_snp_df.groupby('Query_ID')['Cat'].value_counts().unstack().fillna(0).astype(float).astype(int).reset_index().drop(columns=['Reference_Isolate'])
|
rliterman@0
|
948 isolate_coverage_df.loc[isolate_coverage_df['Query_ID'] == reference_id, 'Ref_Base'] = snp_count
|
rliterman@0
|
949
|
rliterman@0
|
950 if "Rescued_SNP" not in isolate_coverage_df.columns.tolist():
|
rliterman@0
|
951 isolate_coverage_df.loc[:,'Rescued_SNP'] = 0
|
rliterman@0
|
952 isolate_coverage_df['SNP'] = isolate_coverage_df['SNP'] + isolate_coverage_df['Rescued_SNP']
|
rliterman@0
|
953
|
rliterman@0
|
954 for col in ['Uncovered'] + possible_purged_cols:
|
rliterman@0
|
955 if col not in isolate_coverage_df.columns.tolist():
|
rliterman@0
|
956 isolate_coverage_df.loc[:,col] = 0
|
rliterman@0
|
957
|
rliterman@0
|
958 isolate_coverage_df['Purged'] = isolate_coverage_df[possible_purged_cols].sum(axis=1)
|
rliterman@0
|
959
|
rliterman@0
|
960 isolate_coverage_df['Percent_Missing'] = (isolate_coverage_df['Uncovered'] + isolate_coverage_df['Purged'])/(isolate_coverage_df['Uncovered'] + isolate_coverage_df['Purged'] + isolate_coverage_df['Ref_Base'] + isolate_coverage_df['SNP']) * 100
|
rliterman@0
|
961
|
rliterman@0
|
962 isolate_coverage_df.loc[:,'Purged_Ref_Edge'] = 0
|
rliterman@0
|
963 if ref_edge_df.shape[0] > 0:
|
rliterman@0
|
964 isolate_coverage_df.loc[isolate_coverage_df['Query_ID'] == reference_id, 'Purged_Ref_Edge'] = ref_edge_df['Ref_Loc'].nunique()
|
rliterman@0
|
965
|
rliterman@0
|
966 isolate_coverage_df = isolate_coverage_df[min_isolate_cols + possible_purged_cols].sort_values(by = 'Percent_Missing',ascending = False).reset_index(drop=True)
|
rliterman@0
|
967 isolate_coverage_df.to_csv(query_coverage_file, sep="\t", index=False)
|
rliterman@0
|
968
|
rliterman@0
|
969 with open(log_file,"a+") as log:
|
rliterman@0
|
970 log.write(f"\t- SNP coverage information: {locus_category_file}\n")
|
rliterman@0
|
971 log.write(f"\t- Query coverage information: {query_coverage_file}\n")
|
rliterman@0
|
972 log.write("-------------------------------------------------------\n\n")
|
rliterman@0
|
973
|
rliterman@0
|
974 with open(log_file,"a+") as log:
|
rliterman@0
|
975 log.write("Processing alignment data...")
|
rliterman@0
|
976
|
rliterman@0
|
977 alignment_df = final_snp_df[['Query_ID','Ref_Loc','Query_Base']].copy().rename(columns={'Query_Base':'Base'}).pivot(index='Query_ID', columns='Ref_Loc', values='Base')
|
rliterman@0
|
978 csp2_ordered = alignment_df.columns
|
rliterman@0
|
979
|
rliterman@0
|
980 with open(raw_loclist,"w+") as loclist:
|
rliterman@0
|
981 loclist.write("\n".join(csp2_ordered)+"\n")
|
rliterman@0
|
982
|
rliterman@0
|
983 seq_records = [SeqRecord(Seq(''.join(row)), id=query,description='') for query,row in alignment_df.iterrows()]
|
rliterman@0
|
984
|
rliterman@0
|
985 alignment = MultipleSeqAlignment(seq_records)
|
rliterman@0
|
986 AlignIO.write(alignment,raw_alignment,"fasta")
|
rliterman@0
|
987
|
rliterman@0
|
988 with open(log_file,"a+") as log:
|
rliterman@0
|
989 log.write("Done!\n")
|
rliterman@0
|
990 log.write(f"\t- Saved alignment of {snp_count} SNPs to {raw_alignment}\n")
|
rliterman@0
|
991 log.write(f"\t- Saved ordered loc list to {raw_loclist}\n")
|
rliterman@0
|
992
|
rliterman@0
|
993 if max_missing == float(100):
|
rliterman@0
|
994 locs_pass_missing = csp2_ordered
|
rliterman@0
|
995 preserved_alignment = alignment
|
rliterman@0
|
996
|
rliterman@0
|
997 AlignIO.write(preserved_alignment,preserved_alignment_file,"fasta")
|
rliterman@0
|
998 with open(preserved_loclist,"w+") as loclist:
|
rliterman@0
|
999 loclist.write("\n".join(csp2_ordered)+"\n")
|
rliterman@0
|
1000
|
rliterman@0
|
1001 with open(log_file,"a+") as log:
|
rliterman@0
|
1002 log.write("Skipping SNP preservation step...\n")
|
rliterman@0
|
1003 log.write(f"\t- Saved duplicate alignment to {preserved_alignment_file}\n")
|
rliterman@0
|
1004 log.write(f"\t- Saved duplicate ordered loc list to {preserved_loclist}\n")
|
rliterman@0
|
1005 else:
|
rliterman@0
|
1006 with open(log_file,"a+") as log:
|
rliterman@0
|
1007 log.write(f"\t- Preserving SNPs with at most {max_missing}% missing data...\n")
|
rliterman@0
|
1008
|
rliterman@0
|
1009 # Parse missing data
|
rliterman@0
|
1010 locs_pass_missing = list(set(locus_coverage_df[locus_coverage_df['Missing_Ratio'] <= max_missing]['Ref_Loc']))
|
rliterman@0
|
1011
|
rliterman@0
|
1012 if len(locs_pass_missing) == 0:
|
rliterman@0
|
1013 with open(log_file,"a+") as log:
|
rliterman@0
|
1014 log.write(f"\t- Of {snp_count} SNPs, no SNPs pass the {max_missing}% missing data threshold...\n")
|
rliterman@0
|
1015 log.write("-------------------------------------------------------\n\n")
|
rliterman@0
|
1016 else:
|
rliterman@0
|
1017 preserved_alignment_df = alignment_df[locs_pass_missing].copy()
|
rliterman@0
|
1018
|
rliterman@0
|
1019 preserved_ordered = preserved_alignment_df.columns
|
rliterman@0
|
1020 with open(preserved_loclist,"w+") as loclist:
|
rliterman@0
|
1021 loclist.write("\n".join(preserved_ordered)+"\n")
|
rliterman@0
|
1022
|
rliterman@0
|
1023 seq_records = [SeqRecord(Seq(''.join(row)), id=query,description='') for query,row in preserved_alignment_df.iterrows()]
|
rliterman@0
|
1024 preserved_alignment = MultipleSeqAlignment(seq_records)
|
rliterman@0
|
1025 AlignIO.write(preserved_alignment,preserved_alignment_file,"fasta")
|
rliterman@0
|
1026 with open(log_file,"a+") as log:
|
rliterman@0
|
1027 log.write(f"\t- Of {snp_count} SNPs, {len(locs_pass_missing)} SNPs pass the {max_missing}% missing data threshold...\n")
|
rliterman@0
|
1028 log.write(f"\t- Saved preserved alignment to {preserved_alignment_file}\n")
|
rliterman@0
|
1029 log.write(f"\t- Saved preserved ordered loc list to {preserved_loclist}\n")
|
rliterman@0
|
1030 log.write("-------------------------------------------------------\n\n")
|
rliterman@0
|
1031
|
rliterman@0
|
1032 with open(log_file,"a+") as log:
|
rliterman@0
|
1033 log.write("Processing pairwise comparisons files...")
|
rliterman@0
|
1034
|
rliterman@0
|
1035 # Get pairwise comparisons between all pass_qc_isolates and reference_id
|
rliterman@0
|
1036 pairwise_combinations = [sorted(x) for x in list(combinations([reference_id] + pass_qc_isolates, 2))]
|
rliterman@0
|
1037
|
rliterman@0
|
1038 if snp_count == 0:
|
rliterman@0
|
1039 pairwise_df = pd.DataFrame([(pairwise[0], pairwise[1], 0,np.nan) for pairwise in pairwise_combinations],columns = ['Query_1','Query_2','SNP_Distance','SNPs_Cocalled'])
|
rliterman@0
|
1040 preserved_pairwise_df = pairwise_df.copy()
|
rliterman@0
|
1041
|
rliterman@0
|
1042 pairwise_df.to_csv(raw_pairwise, sep="\t", index=False)
|
rliterman@0
|
1043 preserved_pairwise_df.to_csv(preserved_pairwise, sep="\t", index=False)
|
rliterman@0
|
1044
|
rliterman@0
|
1045 # Create matrix
|
rliterman@0
|
1046 idx = sorted(set(pairwise_df['Query_1']).union(pairwise_df['Query_2']))
|
rliterman@0
|
1047 mirrored_distance_df = pairwise_df.pivot(index='Query_1', columns='Query_2', values='SNP_Distance').reindex(index=idx, columns=idx).fillna(0, downcast='infer').pipe(lambda x: x+x.values.T).applymap(lambda x: format(x, '.0f'))
|
rliterman@0
|
1048 mirrored_distance_df.index.name = ''
|
rliterman@0
|
1049 mirrored_distance_df.to_csv(raw_matrix,sep="\t")
|
rliterman@0
|
1050 mirrored_distance_df.to_csv(preserved_matrix,sep="\t")
|
rliterman@0
|
1051
|
rliterman@0
|
1052 else:
|
rliterman@0
|
1053 raw_distance_results = parallelAlignment(alignment)
|
rliterman@0
|
1054 raw_pairwise_df = pd.DataFrame(raw_distance_results, columns=['Query_1', 'Query_2', 'SNP_Distance', 'SNPs_Cocalled'])
|
rliterman@0
|
1055 raw_pairwise_df.to_csv(raw_pairwise, sep="\t", index=False)
|
rliterman@0
|
1056
|
rliterman@0
|
1057 if len(locs_pass_missing) == snp_count:
|
rliterman@0
|
1058 preserved_pairwise_df = raw_pairwise_df.copy()
|
rliterman@0
|
1059 preserved_pairwise_df.to_csv(preserved_pairwise, sep="\t", index=False)
|
rliterman@0
|
1060 elif len(locs_pass_missing) == 0:
|
rliterman@0
|
1061 preserved_pairwise_df = pd.DataFrame([(pairwise[0], pairwise[1], 0,np.nan) for pairwise in pairwise_combinations],columns = ['Query_1','Query_2','SNP_Distance','SNPs_Cocalled'])
|
rliterman@0
|
1062 preserved_pairwise_df.to_csv(preserved_pairwise, sep="\t", index=False)
|
rliterman@0
|
1063 else:
|
rliterman@0
|
1064 preserved_distance_results = parallelAlignment(preserved_alignment)
|
rliterman@0
|
1065 preserved_pairwise_df = pd.DataFrame(preserved_distance_results, columns=['Query_1', 'Query_2', 'SNP_Distance', 'SNPs_Cocalled'])
|
rliterman@0
|
1066 preserved_pairwise_df.to_csv(preserved_pairwise, sep="\t", index=False)
|
rliterman@0
|
1067
|
rliterman@0
|
1068 # Create matrix
|
rliterman@0
|
1069 idx = sorted(set(raw_pairwise_df['Query_1']).union(raw_pairwise_df['Query_2']))
|
rliterman@0
|
1070 mirrored_distance_df = raw_pairwise_df.pivot(index='Query_1', columns='Query_2', values='SNP_Distance').reindex(index=idx, columns=idx).fillna(0, downcast='infer').pipe(lambda x: x+x.values.T).applymap(lambda x: format(x, '.0f'))
|
rliterman@0
|
1071 mirrored_distance_df.index.name = ''
|
rliterman@0
|
1072 mirrored_distance_df.to_csv(raw_matrix,sep="\t")
|
rliterman@0
|
1073
|
rliterman@0
|
1074 idx = sorted(set(preserved_pairwise_df['Query_1']).union(preserved_pairwise_df['Query_2']))
|
rliterman@0
|
1075 mirrored_distance_df = preserved_pairwise_df.pivot(index='Query_1', columns='Query_2', values='SNP_Distance').reindex(index=idx, columns=idx).fillna(0, downcast='infer').pipe(lambda x: x+x.values.T).applymap(lambda x: format(x, '.0f'))
|
rliterman@0
|
1076 mirrored_distance_df.index.name = ''
|
rliterman@0
|
1077 mirrored_distance_df.to_csv(preserved_matrix,sep="\t")
|
rliterman@0
|
1078
|
rliterman@0
|
1079 # Clean up pybedtools temp
|
rliterman@0
|
1080 helpers.cleanup(verbose=False,remove_all = False)
|
rliterman@0
|
1081
|
rliterman@0
|
1082 end_time = time.time()
|
rliterman@0
|
1083 with open(log_file,"a+") as log:
|
rliterman@0
|
1084 log.write("Done!\n")
|
rliterman@0
|
1085 if snp_count == 0:
|
rliterman@0
|
1086 log.write(f"\t- No SNPs detected, zeroed pairwise distance files saved to {raw_pairwise}/{preserved_pairwise}/{raw_matrix}/{preserved_matrix}\n")
|
rliterman@0
|
1087 else:
|
rliterman@0
|
1088 log.write(f"\t- Saved raw pairwise distances to {raw_pairwise}\n")
|
rliterman@0
|
1089 log.write(f"\t- Saved raw pairwise matrix to {raw_matrix}\n")
|
rliterman@0
|
1090
|
rliterman@0
|
1091 if max_missing == float(100):
|
rliterman@0
|
1092 log.write("Skipped SNP preservation step...\n")
|
rliterman@0
|
1093 log.write(f"\t- Saved duplicated preserved pairwise distances to {preserved_pairwise}\n")
|
rliterman@0
|
1094 log.write(f"\t- Saved duplicated preserved pairwise matrix to {preserved_matrix}\n")
|
rliterman@0
|
1095 elif len(locs_pass_missing) == 0:
|
rliterman@0
|
1096 log.write(f"\t- No SNPs passed the {max_missing}% missing data threshold, zeroed pairwise distance files saved to {preserved_pairwise}/{preserved_matrix}\n")
|
rliterman@0
|
1097 else:
|
rliterman@0
|
1098 log.write(f"\t- Saved preserved pairwise distances to {preserved_pairwise}\n")
|
rliterman@0
|
1099 log.write(f"\t- Saved preserved pairwise matrix to {preserved_matrix}\n")
|
rliterman@0
|
1100 log.write(f"Total Time: {end_time - start_time:.2f} seconds\n")
|
rliterman@0
|
1101 log.write("-------------------------------------------------------\n\n")
|
rliterman@0
|
1102
|
rliterman@0
|
1103 except:
|
rliterman@0
|
1104 run_failed = True
|
rliterman@0
|
1105 print("Exception occurred:\n", traceback.format_exc())
|
rliterman@0
|
1106 finally:
|
rliterman@0
|
1107 helpers.cleanup(verbose=False, remove_all=False)
|
rliterman@0
|
1108 if temp_dir != "":
|
rliterman@0
|
1109 shutil.rmtree(temp_dir)
|
rliterman@0
|
1110 if run_failed:
|
rliterman@0
|
1111 sys.exit(1) |