Mercurial > repos > rliterman > csp2
comparison CSP2/CSP2_env/env-d9b9114564458d9d-741b3de822f2aaca6c6caa4325c4afce/include/kj/tuple.h @ 69:33d812a61356
planemo upload commit 2e9511a184a1ca667c7be0c6321a36dc4e3d116d
author | jpayne |
---|---|
date | Tue, 18 Mar 2025 17:55:14 -0400 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
67:0e9998148a16 | 69:33d812a61356 |
---|---|
1 // Copyright (c) 2013-2014 Sandstorm Development Group, Inc. and contributors | |
2 // Licensed under the MIT License: | |
3 // | |
4 // Permission is hereby granted, free of charge, to any person obtaining a copy | |
5 // of this software and associated documentation files (the "Software"), to deal | |
6 // in the Software without restriction, including without limitation the rights | |
7 // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
8 // copies of the Software, and to permit persons to whom the Software is | |
9 // furnished to do so, subject to the following conditions: | |
10 // | |
11 // The above copyright notice and this permission notice shall be included in | |
12 // all copies or substantial portions of the Software. | |
13 // | |
14 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
15 // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
16 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | |
17 // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
18 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
19 // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | |
20 // THE SOFTWARE. | |
21 | |
22 // This file defines a notion of tuples that is simpler than `std::tuple`. It works as follows: | |
23 // - `kj::Tuple<A, B, C> is the type of a tuple of an A, a B, and a C. | |
24 // - `kj::tuple(a, b, c)` returns a tuple containing a, b, and c. If any of these are themselves | |
25 // tuples, they are flattened, so `tuple(a, tuple(b, c), d)` is equivalent to `tuple(a, b, c, d)`. | |
26 // - `kj::get<n>(myTuple)` returns the element of `myTuple` at index n. | |
27 // - `kj::apply(func, ...)` calls func on the following arguments after first expanding any tuples | |
28 // in the argument list. So `kj::apply(foo, a, tuple(b, c), d)` would call `foo(a, b, c, d)`. | |
29 // | |
30 // Note that: | |
31 // - The type `Tuple<T>` is a synonym for T. This is why `get` and `apply` are not members of the | |
32 // type. | |
33 // - It is illegal for an element of `Tuple` to itself be a tuple, as tuples are meant to be | |
34 // flattened. | |
35 // - It is illegal for an element of `Tuple` to be a reference, due to problems this would cause | |
36 // with type inference and `tuple()`. | |
37 | |
38 #pragma once | |
39 | |
40 #include "common.h" | |
41 | |
42 KJ_BEGIN_HEADER | |
43 | |
44 namespace kj { | |
45 namespace _ { // private | |
46 | |
47 template <size_t index, typename... T> | |
48 struct TypeByIndex_; | |
49 template <typename First, typename... Rest> | |
50 struct TypeByIndex_<0, First, Rest...> { | |
51 typedef First Type; | |
52 }; | |
53 template <size_t index, typename First, typename... Rest> | |
54 struct TypeByIndex_<index, First, Rest...> | |
55 : public TypeByIndex_<index - 1, Rest...> {}; | |
56 template <size_t index> | |
57 struct TypeByIndex_<index> { | |
58 static_assert(index != index, "Index out-of-range."); | |
59 }; | |
60 template <size_t index, typename... T> | |
61 using TypeByIndex = typename TypeByIndex_<index, T...>::Type; | |
62 // Chose a particular type out of a list of types, by index. | |
63 | |
64 template <size_t... s> | |
65 struct Indexes {}; | |
66 // Dummy helper type that just encapsulates a sequential list of indexes, so that we can match | |
67 // templates against them and unpack them with '...'. | |
68 | |
69 template <size_t end, size_t... prefix> | |
70 struct MakeIndexes_: public MakeIndexes_<end - 1, end - 1, prefix...> {}; | |
71 template <size_t... prefix> | |
72 struct MakeIndexes_<0, prefix...> { | |
73 typedef Indexes<prefix...> Type; | |
74 }; | |
75 template <size_t end> | |
76 using MakeIndexes = typename MakeIndexes_<end>::Type; | |
77 // Equivalent to Indexes<0, 1, 2, ..., end>. | |
78 | |
79 template <typename... T> | |
80 class Tuple; | |
81 template <size_t index, typename... U> | |
82 inline TypeByIndex<index, U...>& getImpl(Tuple<U...>& tuple); | |
83 template <size_t index, typename... U> | |
84 inline TypeByIndex<index, U...>&& getImpl(Tuple<U...>&& tuple); | |
85 template <size_t index, typename... U> | |
86 inline const TypeByIndex<index, U...>& getImpl(const Tuple<U...>& tuple); | |
87 | |
88 template <uint index, typename T> | |
89 struct TupleElement { | |
90 // Encapsulates one element of a tuple. The actual tuple implementation multiply-inherits | |
91 // from a TupleElement for each element, which is more efficient than a recursive definition. | |
92 | |
93 T value; | |
94 TupleElement() = default; | |
95 constexpr inline TupleElement(const T& value): value(value) {} | |
96 constexpr inline TupleElement(T&& value): value(kj::mv(value)) {} | |
97 }; | |
98 | |
99 template <uint index, typename T> | |
100 struct TupleElement<index, T&> { | |
101 // A tuple containing references can be constructed using refTuple(). | |
102 | |
103 T& value; | |
104 constexpr inline TupleElement(T& value): value(value) {} | |
105 }; | |
106 | |
107 template <uint index, typename... T> | |
108 struct TupleElement<index, Tuple<T...>> { | |
109 static_assert(sizeof(Tuple<T...>*) == 0, | |
110 "Tuples cannot contain other tuples -- they should be flattened."); | |
111 }; | |
112 | |
113 template <typename Indexes, typename... Types> | |
114 struct TupleImpl; | |
115 | |
116 template <size_t... indexes, typename... Types> | |
117 struct TupleImpl<Indexes<indexes...>, Types...> | |
118 : public TupleElement<indexes, Types>... { | |
119 // Implementation of Tuple. The only reason we need this rather than rolling this into class | |
120 // Tuple (below) is so that we can get "indexes" as an unpackable list. | |
121 | |
122 static_assert(sizeof...(indexes) == sizeof...(Types), "Incorrect use of TupleImpl."); | |
123 | |
124 TupleImpl() = default; | |
125 | |
126 template <typename... Params> | |
127 inline TupleImpl(Params&&... params) | |
128 : TupleElement<indexes, Types>(kj::fwd<Params>(params))... { | |
129 // Work around Clang 3.2 bug 16303 where this is not detected. (Unfortunately, Clang sometimes | |
130 // segfaults instead.) | |
131 static_assert(sizeof...(params) == sizeof...(indexes), | |
132 "Wrong number of parameters to Tuple constructor."); | |
133 } | |
134 | |
135 template <typename... U> | |
136 constexpr inline TupleImpl(Tuple<U...>&& other) | |
137 : TupleElement<indexes, Types>(kj::fwd<U>(getImpl<indexes>(other)))... {} | |
138 template <typename... U> | |
139 constexpr inline TupleImpl(Tuple<U...>& other) | |
140 : TupleElement<indexes, Types>(getImpl<indexes>(other))... {} | |
141 template <typename... U> | |
142 constexpr inline TupleImpl(const Tuple<U...>& other) | |
143 : TupleElement<indexes, Types>(getImpl<indexes>(other))... {} | |
144 }; | |
145 | |
146 struct MakeTupleFunc; | |
147 struct MakeRefTupleFunc; | |
148 | |
149 template <typename... T> | |
150 class Tuple { | |
151 // The actual Tuple class (used for tuples of size other than 1). | |
152 | |
153 public: | |
154 Tuple() = default; | |
155 | |
156 template <typename... U> | |
157 constexpr inline Tuple(Tuple<U...>&& other): impl(kj::mv(other)) {} | |
158 template <typename... U> | |
159 constexpr inline Tuple(Tuple<U...>& other): impl(other) {} | |
160 template <typename... U> | |
161 constexpr inline Tuple(const Tuple<U...>& other): impl(other) {} | |
162 | |
163 private: | |
164 template <typename... Params> | |
165 constexpr Tuple(Params&&... params): impl(kj::fwd<Params>(params)...) {} | |
166 | |
167 TupleImpl<MakeIndexes<sizeof...(T)>, T...> impl; | |
168 | |
169 template <size_t index, typename... U> | |
170 friend inline TypeByIndex<index, U...>& getImpl(Tuple<U...>& tuple); | |
171 template <size_t index, typename... U> | |
172 friend inline TypeByIndex<index, U...>&& getImpl(Tuple<U...>&& tuple); | |
173 template <size_t index, typename... U> | |
174 friend inline const TypeByIndex<index, U...>& getImpl(const Tuple<U...>& tuple); | |
175 friend struct MakeTupleFunc; | |
176 friend struct MakeRefTupleFunc; | |
177 }; | |
178 | |
179 template <> | |
180 class Tuple<> { | |
181 // Simplified zero-member version of Tuple. In particular this is important to make sure that | |
182 // Tuple<>() is constexpr. | |
183 }; | |
184 | |
185 template <typename T> | |
186 class Tuple<T>; | |
187 // Single-element tuple should never be used. The public API should ensure this. | |
188 | |
189 template <size_t index, typename... T> | |
190 inline TypeByIndex<index, T...>& getImpl(Tuple<T...>& tuple) { | |
191 // Get member of a Tuple by index, e.g. `get<2>(myTuple)`. | |
192 static_assert(index < sizeof...(T), "Tuple element index out-of-bounds."); | |
193 return implicitCast<TupleElement<index, TypeByIndex<index, T...>>&>(tuple.impl).value; | |
194 } | |
195 template <size_t index, typename... T> | |
196 inline TypeByIndex<index, T...>&& getImpl(Tuple<T...>&& tuple) { | |
197 // Get member of a Tuple by index, e.g. `get<2>(myTuple)`. | |
198 static_assert(index < sizeof...(T), "Tuple element index out-of-bounds."); | |
199 return kj::mv(implicitCast<TupleElement<index, TypeByIndex<index, T...>>&>(tuple.impl).value); | |
200 } | |
201 template <size_t index, typename... T> | |
202 inline const TypeByIndex<index, T...>& getImpl(const Tuple<T...>& tuple) { | |
203 // Get member of a Tuple by index, e.g. `get<2>(myTuple)`. | |
204 static_assert(index < sizeof...(T), "Tuple element index out-of-bounds."); | |
205 return implicitCast<const TupleElement<index, TypeByIndex<index, T...>>&>(tuple.impl).value; | |
206 } | |
207 template <size_t index, typename T> | |
208 inline T&& getImpl(T&& value) { | |
209 // Get member of a Tuple by index, e.g. `getImpl<2>(myTuple)`. | |
210 | |
211 // Non-tuples are equivalent to one-element tuples. | |
212 static_assert(index == 0, "Tuple element index out-of-bounds."); | |
213 return kj::fwd<T>(value); | |
214 } | |
215 | |
216 | |
217 template <typename Func, typename SoFar, typename... T> | |
218 struct ExpandAndApplyResult_; | |
219 // Template which computes the return type of applying Func to T... after flattening tuples. | |
220 // SoFar starts as Tuple<> and accumulates the flattened parameter types -- so after this template | |
221 // is recursively expanded, T... is empty and SoFar is a Tuple containing all the parameters. | |
222 | |
223 template <typename Func, typename First, typename... Rest, typename... T> | |
224 struct ExpandAndApplyResult_<Func, Tuple<T...>, First, Rest...> | |
225 : public ExpandAndApplyResult_<Func, Tuple<T..., First>, Rest...> {}; | |
226 template <typename Func, typename... FirstTypes, typename... Rest, typename... T> | |
227 struct ExpandAndApplyResult_<Func, Tuple<T...>, Tuple<FirstTypes...>, Rest...> | |
228 : public ExpandAndApplyResult_<Func, Tuple<T...>, FirstTypes&&..., Rest...> {}; | |
229 template <typename Func, typename... FirstTypes, typename... Rest, typename... T> | |
230 struct ExpandAndApplyResult_<Func, Tuple<T...>, Tuple<FirstTypes...>&, Rest...> | |
231 : public ExpandAndApplyResult_<Func, Tuple<T...>, FirstTypes&..., Rest...> {}; | |
232 template <typename Func, typename... FirstTypes, typename... Rest, typename... T> | |
233 struct ExpandAndApplyResult_<Func, Tuple<T...>, const Tuple<FirstTypes...>&, Rest...> | |
234 : public ExpandAndApplyResult_<Func, Tuple<T...>, const FirstTypes&..., Rest...> {}; | |
235 template <typename Func, typename... T> | |
236 struct ExpandAndApplyResult_<Func, Tuple<T...>> { | |
237 typedef decltype(instance<Func>()(instance<T&&>()...)) Type; | |
238 }; | |
239 template <typename Func, typename... T> | |
240 using ExpandAndApplyResult = typename ExpandAndApplyResult_<Func, Tuple<>, T...>::Type; | |
241 // Computes the expected return type of `expandAndApply()`. | |
242 | |
243 template <typename Func> | |
244 inline auto expandAndApply(Func&& func) -> ExpandAndApplyResult<Func> { | |
245 return func(); | |
246 } | |
247 | |
248 template <typename Func, typename First, typename... Rest> | |
249 struct ExpandAndApplyFunc { | |
250 Func&& func; | |
251 First&& first; | |
252 ExpandAndApplyFunc(Func&& func, First&& first) | |
253 : func(kj::fwd<Func>(func)), first(kj::fwd<First>(first)) {} | |
254 template <typename... T> | |
255 auto operator()(T&&... params) | |
256 -> decltype(this->func(kj::fwd<First>(first), kj::fwd<T>(params)...)) { | |
257 return this->func(kj::fwd<First>(first), kj::fwd<T>(params)...); | |
258 } | |
259 }; | |
260 | |
261 template <typename Func, typename First, typename... Rest> | |
262 inline auto expandAndApply(Func&& func, First&& first, Rest&&... rest) | |
263 -> ExpandAndApplyResult<Func, First, Rest...> { | |
264 | |
265 return expandAndApply( | |
266 ExpandAndApplyFunc<Func, First, Rest...>(kj::fwd<Func>(func), kj::fwd<First>(first)), | |
267 kj::fwd<Rest>(rest)...); | |
268 } | |
269 | |
270 template <typename Func, typename... FirstTypes, typename... Rest> | |
271 inline auto expandAndApply(Func&& func, Tuple<FirstTypes...>&& first, Rest&&... rest) | |
272 -> ExpandAndApplyResult<Func, FirstTypes&&..., Rest...> { | |
273 return expandAndApplyWithIndexes(MakeIndexes<sizeof...(FirstTypes)>(), | |
274 kj::fwd<Func>(func), kj::mv(first), kj::fwd<Rest>(rest)...); | |
275 } | |
276 | |
277 template <typename Func, typename... FirstTypes, typename... Rest> | |
278 inline auto expandAndApply(Func&& func, Tuple<FirstTypes...>& first, Rest&&... rest) | |
279 -> ExpandAndApplyResult<Func, FirstTypes..., Rest...> { | |
280 return expandAndApplyWithIndexes(MakeIndexes<sizeof...(FirstTypes)>(), | |
281 kj::fwd<Func>(func), first, kj::fwd<Rest>(rest)...); | |
282 } | |
283 | |
284 template <typename Func, typename... FirstTypes, typename... Rest> | |
285 inline auto expandAndApply(Func&& func, const Tuple<FirstTypes...>& first, Rest&&... rest) | |
286 -> ExpandAndApplyResult<Func, FirstTypes..., Rest...> { | |
287 return expandAndApplyWithIndexes(MakeIndexes<sizeof...(FirstTypes)>(), | |
288 kj::fwd<Func>(func), first, kj::fwd<Rest>(rest)...); | |
289 } | |
290 | |
291 template <typename Func, typename... FirstTypes, typename... Rest, size_t... indexes> | |
292 inline auto expandAndApplyWithIndexes( | |
293 Indexes<indexes...>, Func&& func, Tuple<FirstTypes...>&& first, Rest&&... rest) | |
294 -> ExpandAndApplyResult<Func, FirstTypes&&..., Rest...> { | |
295 return expandAndApply(kj::fwd<Func>(func), kj::mv(getImpl<indexes>(first))..., | |
296 kj::fwd<Rest>(rest)...); | |
297 } | |
298 | |
299 template <typename Func, typename... FirstTypes, typename... Rest, size_t... indexes> | |
300 inline auto expandAndApplyWithIndexes( | |
301 Indexes<indexes...>, Func&& func, const Tuple<FirstTypes...>& first, Rest&&... rest) | |
302 -> ExpandAndApplyResult<Func, FirstTypes..., Rest...> { | |
303 return expandAndApply(kj::fwd<Func>(func), getImpl<indexes>(first)..., | |
304 kj::fwd<Rest>(rest)...); | |
305 } | |
306 | |
307 struct MakeTupleFunc { | |
308 template <typename... Params> | |
309 Tuple<Decay<Params>...> operator()(Params&&... params) { | |
310 return Tuple<Decay<Params>...>(kj::fwd<Params>(params)...); | |
311 } | |
312 template <typename Param> | |
313 Decay<Param> operator()(Param&& param) { | |
314 return kj::fwd<Param>(param); | |
315 } | |
316 }; | |
317 | |
318 struct MakeRefTupleFunc { | |
319 template <typename... Params> | |
320 Tuple<Params...> operator()(Params&&... params) { | |
321 return Tuple<Params...>(kj::fwd<Params>(params)...); | |
322 } | |
323 template <typename Param> | |
324 Param operator()(Param&& param) { | |
325 return kj::fwd<Param>(param); | |
326 } | |
327 }; | |
328 | |
329 } // namespace _ (private) | |
330 | |
331 template <typename... T> struct Tuple_ { typedef _::Tuple<T...> Type; }; | |
332 template <typename T> struct Tuple_<T> { typedef T Type; }; | |
333 | |
334 template <typename... T> using Tuple = typename Tuple_<T...>::Type; | |
335 // Tuple type. `Tuple<T>` (i.e. a single-element tuple) is a synonym for `T`. Tuples of size | |
336 // other than 1 expand to an internal type. Either way, you can construct a Tuple using | |
337 // `kj::tuple(...)`, get an element by index `i` using `kj::get<i>(myTuple)`, and expand the tuple | |
338 // as arguments to a function using `kj::apply(func, myTuple)`. | |
339 // | |
340 // Tuples are always flat -- that is, no element of a Tuple is ever itself a Tuple. If you | |
341 // construct a tuple from other tuples, the elements are flattened and concatenated. | |
342 | |
343 template <typename... Params> | |
344 inline auto tuple(Params&&... params) | |
345 -> decltype(_::expandAndApply(_::MakeTupleFunc(), kj::fwd<Params>(params)...)) { | |
346 // Construct a new tuple from the given values. Any tuples in the argument list will be | |
347 // flattened into the result. | |
348 return _::expandAndApply(_::MakeTupleFunc(), kj::fwd<Params>(params)...); | |
349 } | |
350 | |
351 template <typename... Params> | |
352 inline auto refTuple(Params&&... params) | |
353 -> decltype(_::expandAndApply(_::MakeRefTupleFunc(), kj::fwd<Params>(params)...)) { | |
354 // Like tuple(), but if the params include lvalue references, they will be captured as | |
355 // references. rvalue references will still be captured as whole values (moved). | |
356 return _::expandAndApply(_::MakeRefTupleFunc(), kj::fwd<Params>(params)...); | |
357 } | |
358 | |
359 template <size_t index, typename Tuple> | |
360 inline auto get(Tuple&& tuple) -> decltype(_::getImpl<index>(kj::fwd<Tuple>(tuple))) { | |
361 // Unpack and return the tuple element at the given index. The index is specified as a template | |
362 // parameter, e.g. `kj::get<3>(myTuple)`. | |
363 return _::getImpl<index>(kj::fwd<Tuple>(tuple)); | |
364 } | |
365 | |
366 template <typename Func, typename... Params> | |
367 inline auto apply(Func&& func, Params&&... params) | |
368 -> decltype(_::expandAndApply(kj::fwd<Func>(func), kj::fwd<Params>(params)...)) { | |
369 // Apply a function to some arguments, expanding tuples into separate arguments. | |
370 return _::expandAndApply(kj::fwd<Func>(func), kj::fwd<Params>(params)...); | |
371 } | |
372 | |
373 template <typename T> struct TupleSize_ { static constexpr size_t size = 1; }; | |
374 template <typename... T> struct TupleSize_<_::Tuple<T...>> { | |
375 static constexpr size_t size = sizeof...(T); | |
376 }; | |
377 | |
378 template <typename T> | |
379 constexpr size_t tupleSize() { return TupleSize_<T>::size; } | |
380 // Returns size of the tuple T. | |
381 | |
382 template <typename T, typename Tuple> | |
383 struct IndexOfType_; | |
384 template <typename T, typename Tuple> | |
385 struct HasType_ { | |
386 static constexpr bool value = false; | |
387 }; | |
388 | |
389 template <typename T> | |
390 struct IndexOfType_<T, T> { | |
391 static constexpr size_t value = 0; | |
392 }; | |
393 template <typename T> | |
394 struct HasType_<T, T> { | |
395 static constexpr bool value = true; | |
396 }; | |
397 | |
398 template <typename T, typename... U> | |
399 struct IndexOfType_<T, _::Tuple<T, U...>> { | |
400 static constexpr size_t value = 0; | |
401 static_assert(!HasType_<T, _::Tuple<U...>>::value, | |
402 "requested type appears multiple times in tuple"); | |
403 }; | |
404 template <typename T, typename... U> | |
405 struct HasType_<T, _::Tuple<T, U...>> { | |
406 static constexpr bool value = true; | |
407 }; | |
408 | |
409 template <typename T, typename U, typename... V> | |
410 struct IndexOfType_<T, _::Tuple<U, V...>> { | |
411 static constexpr size_t value = IndexOfType_<T, _::Tuple<V...>>::value + 1; | |
412 }; | |
413 template <typename T, typename U, typename... V> | |
414 struct HasType_<T, _::Tuple<U, V...>> { | |
415 static constexpr bool value = HasType_<T, _::Tuple<V...>>::value; | |
416 }; | |
417 | |
418 template <typename T, typename U> | |
419 inline constexpr size_t indexOfType() { | |
420 static_assert(HasType_<T, U>::value, "type not present"); | |
421 return IndexOfType_<T, U>::value; | |
422 } | |
423 | |
424 template <size_t i, typename T> | |
425 struct TypeOfIndex_; | |
426 template <typename T> | |
427 struct TypeOfIndex_<0, T> { | |
428 typedef T Type; | |
429 }; | |
430 template <size_t i, typename T, typename... U> | |
431 struct TypeOfIndex_<i, _::Tuple<T, U...>> | |
432 : public TypeOfIndex_<i - 1, _::Tuple<U...>> {}; | |
433 template <typename T, typename... U> | |
434 struct TypeOfIndex_<0, _::Tuple<T, U...>> { | |
435 typedef T Type; | |
436 }; | |
437 | |
438 template <size_t i, typename Tuple> | |
439 using TypeOfIndex = typename TypeOfIndex_<i, Tuple>::Type; | |
440 | |
441 } // namespace kj | |
442 | |
443 KJ_END_HEADER |