comparison CSP2/CSP2_env/env-d9b9114564458d9d-741b3de822f2aaca6c6caa4325c4afce/include/kj/tuple.h @ 69:33d812a61356

planemo upload commit 2e9511a184a1ca667c7be0c6321a36dc4e3d116d
author jpayne
date Tue, 18 Mar 2025 17:55:14 -0400
parents
children
comparison
equal deleted inserted replaced
67:0e9998148a16 69:33d812a61356
1 // Copyright (c) 2013-2014 Sandstorm Development Group, Inc. and contributors
2 // Licensed under the MIT License:
3 //
4 // Permission is hereby granted, free of charge, to any person obtaining a copy
5 // of this software and associated documentation files (the "Software"), to deal
6 // in the Software without restriction, including without limitation the rights
7 // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
8 // copies of the Software, and to permit persons to whom the Software is
9 // furnished to do so, subject to the following conditions:
10 //
11 // The above copyright notice and this permission notice shall be included in
12 // all copies or substantial portions of the Software.
13 //
14 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
17 // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
19 // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
20 // THE SOFTWARE.
21
22 // This file defines a notion of tuples that is simpler than `std::tuple`. It works as follows:
23 // - `kj::Tuple<A, B, C> is the type of a tuple of an A, a B, and a C.
24 // - `kj::tuple(a, b, c)` returns a tuple containing a, b, and c. If any of these are themselves
25 // tuples, they are flattened, so `tuple(a, tuple(b, c), d)` is equivalent to `tuple(a, b, c, d)`.
26 // - `kj::get<n>(myTuple)` returns the element of `myTuple` at index n.
27 // - `kj::apply(func, ...)` calls func on the following arguments after first expanding any tuples
28 // in the argument list. So `kj::apply(foo, a, tuple(b, c), d)` would call `foo(a, b, c, d)`.
29 //
30 // Note that:
31 // - The type `Tuple<T>` is a synonym for T. This is why `get` and `apply` are not members of the
32 // type.
33 // - It is illegal for an element of `Tuple` to itself be a tuple, as tuples are meant to be
34 // flattened.
35 // - It is illegal for an element of `Tuple` to be a reference, due to problems this would cause
36 // with type inference and `tuple()`.
37
38 #pragma once
39
40 #include "common.h"
41
42 KJ_BEGIN_HEADER
43
44 namespace kj {
45 namespace _ { // private
46
47 template <size_t index, typename... T>
48 struct TypeByIndex_;
49 template <typename First, typename... Rest>
50 struct TypeByIndex_<0, First, Rest...> {
51 typedef First Type;
52 };
53 template <size_t index, typename First, typename... Rest>
54 struct TypeByIndex_<index, First, Rest...>
55 : public TypeByIndex_<index - 1, Rest...> {};
56 template <size_t index>
57 struct TypeByIndex_<index> {
58 static_assert(index != index, "Index out-of-range.");
59 };
60 template <size_t index, typename... T>
61 using TypeByIndex = typename TypeByIndex_<index, T...>::Type;
62 // Chose a particular type out of a list of types, by index.
63
64 template <size_t... s>
65 struct Indexes {};
66 // Dummy helper type that just encapsulates a sequential list of indexes, so that we can match
67 // templates against them and unpack them with '...'.
68
69 template <size_t end, size_t... prefix>
70 struct MakeIndexes_: public MakeIndexes_<end - 1, end - 1, prefix...> {};
71 template <size_t... prefix>
72 struct MakeIndexes_<0, prefix...> {
73 typedef Indexes<prefix...> Type;
74 };
75 template <size_t end>
76 using MakeIndexes = typename MakeIndexes_<end>::Type;
77 // Equivalent to Indexes<0, 1, 2, ..., end>.
78
79 template <typename... T>
80 class Tuple;
81 template <size_t index, typename... U>
82 inline TypeByIndex<index, U...>& getImpl(Tuple<U...>& tuple);
83 template <size_t index, typename... U>
84 inline TypeByIndex<index, U...>&& getImpl(Tuple<U...>&& tuple);
85 template <size_t index, typename... U>
86 inline const TypeByIndex<index, U...>& getImpl(const Tuple<U...>& tuple);
87
88 template <uint index, typename T>
89 struct TupleElement {
90 // Encapsulates one element of a tuple. The actual tuple implementation multiply-inherits
91 // from a TupleElement for each element, which is more efficient than a recursive definition.
92
93 T value;
94 TupleElement() = default;
95 constexpr inline TupleElement(const T& value): value(value) {}
96 constexpr inline TupleElement(T&& value): value(kj::mv(value)) {}
97 };
98
99 template <uint index, typename T>
100 struct TupleElement<index, T&> {
101 // A tuple containing references can be constructed using refTuple().
102
103 T& value;
104 constexpr inline TupleElement(T& value): value(value) {}
105 };
106
107 template <uint index, typename... T>
108 struct TupleElement<index, Tuple<T...>> {
109 static_assert(sizeof(Tuple<T...>*) == 0,
110 "Tuples cannot contain other tuples -- they should be flattened.");
111 };
112
113 template <typename Indexes, typename... Types>
114 struct TupleImpl;
115
116 template <size_t... indexes, typename... Types>
117 struct TupleImpl<Indexes<indexes...>, Types...>
118 : public TupleElement<indexes, Types>... {
119 // Implementation of Tuple. The only reason we need this rather than rolling this into class
120 // Tuple (below) is so that we can get "indexes" as an unpackable list.
121
122 static_assert(sizeof...(indexes) == sizeof...(Types), "Incorrect use of TupleImpl.");
123
124 TupleImpl() = default;
125
126 template <typename... Params>
127 inline TupleImpl(Params&&... params)
128 : TupleElement<indexes, Types>(kj::fwd<Params>(params))... {
129 // Work around Clang 3.2 bug 16303 where this is not detected. (Unfortunately, Clang sometimes
130 // segfaults instead.)
131 static_assert(sizeof...(params) == sizeof...(indexes),
132 "Wrong number of parameters to Tuple constructor.");
133 }
134
135 template <typename... U>
136 constexpr inline TupleImpl(Tuple<U...>&& other)
137 : TupleElement<indexes, Types>(kj::fwd<U>(getImpl<indexes>(other)))... {}
138 template <typename... U>
139 constexpr inline TupleImpl(Tuple<U...>& other)
140 : TupleElement<indexes, Types>(getImpl<indexes>(other))... {}
141 template <typename... U>
142 constexpr inline TupleImpl(const Tuple<U...>& other)
143 : TupleElement<indexes, Types>(getImpl<indexes>(other))... {}
144 };
145
146 struct MakeTupleFunc;
147 struct MakeRefTupleFunc;
148
149 template <typename... T>
150 class Tuple {
151 // The actual Tuple class (used for tuples of size other than 1).
152
153 public:
154 Tuple() = default;
155
156 template <typename... U>
157 constexpr inline Tuple(Tuple<U...>&& other): impl(kj::mv(other)) {}
158 template <typename... U>
159 constexpr inline Tuple(Tuple<U...>& other): impl(other) {}
160 template <typename... U>
161 constexpr inline Tuple(const Tuple<U...>& other): impl(other) {}
162
163 private:
164 template <typename... Params>
165 constexpr Tuple(Params&&... params): impl(kj::fwd<Params>(params)...) {}
166
167 TupleImpl<MakeIndexes<sizeof...(T)>, T...> impl;
168
169 template <size_t index, typename... U>
170 friend inline TypeByIndex<index, U...>& getImpl(Tuple<U...>& tuple);
171 template <size_t index, typename... U>
172 friend inline TypeByIndex<index, U...>&& getImpl(Tuple<U...>&& tuple);
173 template <size_t index, typename... U>
174 friend inline const TypeByIndex<index, U...>& getImpl(const Tuple<U...>& tuple);
175 friend struct MakeTupleFunc;
176 friend struct MakeRefTupleFunc;
177 };
178
179 template <>
180 class Tuple<> {
181 // Simplified zero-member version of Tuple. In particular this is important to make sure that
182 // Tuple<>() is constexpr.
183 };
184
185 template <typename T>
186 class Tuple<T>;
187 // Single-element tuple should never be used. The public API should ensure this.
188
189 template <size_t index, typename... T>
190 inline TypeByIndex<index, T...>& getImpl(Tuple<T...>& tuple) {
191 // Get member of a Tuple by index, e.g. `get<2>(myTuple)`.
192 static_assert(index < sizeof...(T), "Tuple element index out-of-bounds.");
193 return implicitCast<TupleElement<index, TypeByIndex<index, T...>>&>(tuple.impl).value;
194 }
195 template <size_t index, typename... T>
196 inline TypeByIndex<index, T...>&& getImpl(Tuple<T...>&& tuple) {
197 // Get member of a Tuple by index, e.g. `get<2>(myTuple)`.
198 static_assert(index < sizeof...(T), "Tuple element index out-of-bounds.");
199 return kj::mv(implicitCast<TupleElement<index, TypeByIndex<index, T...>>&>(tuple.impl).value);
200 }
201 template <size_t index, typename... T>
202 inline const TypeByIndex<index, T...>& getImpl(const Tuple<T...>& tuple) {
203 // Get member of a Tuple by index, e.g. `get<2>(myTuple)`.
204 static_assert(index < sizeof...(T), "Tuple element index out-of-bounds.");
205 return implicitCast<const TupleElement<index, TypeByIndex<index, T...>>&>(tuple.impl).value;
206 }
207 template <size_t index, typename T>
208 inline T&& getImpl(T&& value) {
209 // Get member of a Tuple by index, e.g. `getImpl<2>(myTuple)`.
210
211 // Non-tuples are equivalent to one-element tuples.
212 static_assert(index == 0, "Tuple element index out-of-bounds.");
213 return kj::fwd<T>(value);
214 }
215
216
217 template <typename Func, typename SoFar, typename... T>
218 struct ExpandAndApplyResult_;
219 // Template which computes the return type of applying Func to T... after flattening tuples.
220 // SoFar starts as Tuple<> and accumulates the flattened parameter types -- so after this template
221 // is recursively expanded, T... is empty and SoFar is a Tuple containing all the parameters.
222
223 template <typename Func, typename First, typename... Rest, typename... T>
224 struct ExpandAndApplyResult_<Func, Tuple<T...>, First, Rest...>
225 : public ExpandAndApplyResult_<Func, Tuple<T..., First>, Rest...> {};
226 template <typename Func, typename... FirstTypes, typename... Rest, typename... T>
227 struct ExpandAndApplyResult_<Func, Tuple<T...>, Tuple<FirstTypes...>, Rest...>
228 : public ExpandAndApplyResult_<Func, Tuple<T...>, FirstTypes&&..., Rest...> {};
229 template <typename Func, typename... FirstTypes, typename... Rest, typename... T>
230 struct ExpandAndApplyResult_<Func, Tuple<T...>, Tuple<FirstTypes...>&, Rest...>
231 : public ExpandAndApplyResult_<Func, Tuple<T...>, FirstTypes&..., Rest...> {};
232 template <typename Func, typename... FirstTypes, typename... Rest, typename... T>
233 struct ExpandAndApplyResult_<Func, Tuple<T...>, const Tuple<FirstTypes...>&, Rest...>
234 : public ExpandAndApplyResult_<Func, Tuple<T...>, const FirstTypes&..., Rest...> {};
235 template <typename Func, typename... T>
236 struct ExpandAndApplyResult_<Func, Tuple<T...>> {
237 typedef decltype(instance<Func>()(instance<T&&>()...)) Type;
238 };
239 template <typename Func, typename... T>
240 using ExpandAndApplyResult = typename ExpandAndApplyResult_<Func, Tuple<>, T...>::Type;
241 // Computes the expected return type of `expandAndApply()`.
242
243 template <typename Func>
244 inline auto expandAndApply(Func&& func) -> ExpandAndApplyResult<Func> {
245 return func();
246 }
247
248 template <typename Func, typename First, typename... Rest>
249 struct ExpandAndApplyFunc {
250 Func&& func;
251 First&& first;
252 ExpandAndApplyFunc(Func&& func, First&& first)
253 : func(kj::fwd<Func>(func)), first(kj::fwd<First>(first)) {}
254 template <typename... T>
255 auto operator()(T&&... params)
256 -> decltype(this->func(kj::fwd<First>(first), kj::fwd<T>(params)...)) {
257 return this->func(kj::fwd<First>(first), kj::fwd<T>(params)...);
258 }
259 };
260
261 template <typename Func, typename First, typename... Rest>
262 inline auto expandAndApply(Func&& func, First&& first, Rest&&... rest)
263 -> ExpandAndApplyResult<Func, First, Rest...> {
264
265 return expandAndApply(
266 ExpandAndApplyFunc<Func, First, Rest...>(kj::fwd<Func>(func), kj::fwd<First>(first)),
267 kj::fwd<Rest>(rest)...);
268 }
269
270 template <typename Func, typename... FirstTypes, typename... Rest>
271 inline auto expandAndApply(Func&& func, Tuple<FirstTypes...>&& first, Rest&&... rest)
272 -> ExpandAndApplyResult<Func, FirstTypes&&..., Rest...> {
273 return expandAndApplyWithIndexes(MakeIndexes<sizeof...(FirstTypes)>(),
274 kj::fwd<Func>(func), kj::mv(first), kj::fwd<Rest>(rest)...);
275 }
276
277 template <typename Func, typename... FirstTypes, typename... Rest>
278 inline auto expandAndApply(Func&& func, Tuple<FirstTypes...>& first, Rest&&... rest)
279 -> ExpandAndApplyResult<Func, FirstTypes..., Rest...> {
280 return expandAndApplyWithIndexes(MakeIndexes<sizeof...(FirstTypes)>(),
281 kj::fwd<Func>(func), first, kj::fwd<Rest>(rest)...);
282 }
283
284 template <typename Func, typename... FirstTypes, typename... Rest>
285 inline auto expandAndApply(Func&& func, const Tuple<FirstTypes...>& first, Rest&&... rest)
286 -> ExpandAndApplyResult<Func, FirstTypes..., Rest...> {
287 return expandAndApplyWithIndexes(MakeIndexes<sizeof...(FirstTypes)>(),
288 kj::fwd<Func>(func), first, kj::fwd<Rest>(rest)...);
289 }
290
291 template <typename Func, typename... FirstTypes, typename... Rest, size_t... indexes>
292 inline auto expandAndApplyWithIndexes(
293 Indexes<indexes...>, Func&& func, Tuple<FirstTypes...>&& first, Rest&&... rest)
294 -> ExpandAndApplyResult<Func, FirstTypes&&..., Rest...> {
295 return expandAndApply(kj::fwd<Func>(func), kj::mv(getImpl<indexes>(first))...,
296 kj::fwd<Rest>(rest)...);
297 }
298
299 template <typename Func, typename... FirstTypes, typename... Rest, size_t... indexes>
300 inline auto expandAndApplyWithIndexes(
301 Indexes<indexes...>, Func&& func, const Tuple<FirstTypes...>& first, Rest&&... rest)
302 -> ExpandAndApplyResult<Func, FirstTypes..., Rest...> {
303 return expandAndApply(kj::fwd<Func>(func), getImpl<indexes>(first)...,
304 kj::fwd<Rest>(rest)...);
305 }
306
307 struct MakeTupleFunc {
308 template <typename... Params>
309 Tuple<Decay<Params>...> operator()(Params&&... params) {
310 return Tuple<Decay<Params>...>(kj::fwd<Params>(params)...);
311 }
312 template <typename Param>
313 Decay<Param> operator()(Param&& param) {
314 return kj::fwd<Param>(param);
315 }
316 };
317
318 struct MakeRefTupleFunc {
319 template <typename... Params>
320 Tuple<Params...> operator()(Params&&... params) {
321 return Tuple<Params...>(kj::fwd<Params>(params)...);
322 }
323 template <typename Param>
324 Param operator()(Param&& param) {
325 return kj::fwd<Param>(param);
326 }
327 };
328
329 } // namespace _ (private)
330
331 template <typename... T> struct Tuple_ { typedef _::Tuple<T...> Type; };
332 template <typename T> struct Tuple_<T> { typedef T Type; };
333
334 template <typename... T> using Tuple = typename Tuple_<T...>::Type;
335 // Tuple type. `Tuple<T>` (i.e. a single-element tuple) is a synonym for `T`. Tuples of size
336 // other than 1 expand to an internal type. Either way, you can construct a Tuple using
337 // `kj::tuple(...)`, get an element by index `i` using `kj::get<i>(myTuple)`, and expand the tuple
338 // as arguments to a function using `kj::apply(func, myTuple)`.
339 //
340 // Tuples are always flat -- that is, no element of a Tuple is ever itself a Tuple. If you
341 // construct a tuple from other tuples, the elements are flattened and concatenated.
342
343 template <typename... Params>
344 inline auto tuple(Params&&... params)
345 -> decltype(_::expandAndApply(_::MakeTupleFunc(), kj::fwd<Params>(params)...)) {
346 // Construct a new tuple from the given values. Any tuples in the argument list will be
347 // flattened into the result.
348 return _::expandAndApply(_::MakeTupleFunc(), kj::fwd<Params>(params)...);
349 }
350
351 template <typename... Params>
352 inline auto refTuple(Params&&... params)
353 -> decltype(_::expandAndApply(_::MakeRefTupleFunc(), kj::fwd<Params>(params)...)) {
354 // Like tuple(), but if the params include lvalue references, they will be captured as
355 // references. rvalue references will still be captured as whole values (moved).
356 return _::expandAndApply(_::MakeRefTupleFunc(), kj::fwd<Params>(params)...);
357 }
358
359 template <size_t index, typename Tuple>
360 inline auto get(Tuple&& tuple) -> decltype(_::getImpl<index>(kj::fwd<Tuple>(tuple))) {
361 // Unpack and return the tuple element at the given index. The index is specified as a template
362 // parameter, e.g. `kj::get<3>(myTuple)`.
363 return _::getImpl<index>(kj::fwd<Tuple>(tuple));
364 }
365
366 template <typename Func, typename... Params>
367 inline auto apply(Func&& func, Params&&... params)
368 -> decltype(_::expandAndApply(kj::fwd<Func>(func), kj::fwd<Params>(params)...)) {
369 // Apply a function to some arguments, expanding tuples into separate arguments.
370 return _::expandAndApply(kj::fwd<Func>(func), kj::fwd<Params>(params)...);
371 }
372
373 template <typename T> struct TupleSize_ { static constexpr size_t size = 1; };
374 template <typename... T> struct TupleSize_<_::Tuple<T...>> {
375 static constexpr size_t size = sizeof...(T);
376 };
377
378 template <typename T>
379 constexpr size_t tupleSize() { return TupleSize_<T>::size; }
380 // Returns size of the tuple T.
381
382 template <typename T, typename Tuple>
383 struct IndexOfType_;
384 template <typename T, typename Tuple>
385 struct HasType_ {
386 static constexpr bool value = false;
387 };
388
389 template <typename T>
390 struct IndexOfType_<T, T> {
391 static constexpr size_t value = 0;
392 };
393 template <typename T>
394 struct HasType_<T, T> {
395 static constexpr bool value = true;
396 };
397
398 template <typename T, typename... U>
399 struct IndexOfType_<T, _::Tuple<T, U...>> {
400 static constexpr size_t value = 0;
401 static_assert(!HasType_<T, _::Tuple<U...>>::value,
402 "requested type appears multiple times in tuple");
403 };
404 template <typename T, typename... U>
405 struct HasType_<T, _::Tuple<T, U...>> {
406 static constexpr bool value = true;
407 };
408
409 template <typename T, typename U, typename... V>
410 struct IndexOfType_<T, _::Tuple<U, V...>> {
411 static constexpr size_t value = IndexOfType_<T, _::Tuple<V...>>::value + 1;
412 };
413 template <typename T, typename U, typename... V>
414 struct HasType_<T, _::Tuple<U, V...>> {
415 static constexpr bool value = HasType_<T, _::Tuple<V...>>::value;
416 };
417
418 template <typename T, typename U>
419 inline constexpr size_t indexOfType() {
420 static_assert(HasType_<T, U>::value, "type not present");
421 return IndexOfType_<T, U>::value;
422 }
423
424 template <size_t i, typename T>
425 struct TypeOfIndex_;
426 template <typename T>
427 struct TypeOfIndex_<0, T> {
428 typedef T Type;
429 };
430 template <size_t i, typename T, typename... U>
431 struct TypeOfIndex_<i, _::Tuple<T, U...>>
432 : public TypeOfIndex_<i - 1, _::Tuple<U...>> {};
433 template <typename T, typename... U>
434 struct TypeOfIndex_<0, _::Tuple<T, U...>> {
435 typedef T Type;
436 };
437
438 template <size_t i, typename Tuple>
439 using TypeOfIndex = typename TypeOfIndex_<i, Tuple>::Type;
440
441 } // namespace kj
442
443 KJ_END_HEADER