comparison CSP2/CSP2_env/env-d9b9114564458d9d-741b3de822f2aaca6c6caa4325c4afce/include/kj/units.h @ 69:33d812a61356

planemo upload commit 2e9511a184a1ca667c7be0c6321a36dc4e3d116d
author jpayne
date Tue, 18 Mar 2025 17:55:14 -0400
parents
children
comparison
equal deleted inserted replaced
67:0e9998148a16 69:33d812a61356
1 // Copyright (c) 2013-2014 Sandstorm Development Group, Inc. and contributors
2 // Licensed under the MIT License:
3 //
4 // Permission is hereby granted, free of charge, to any person obtaining a copy
5 // of this software and associated documentation files (the "Software"), to deal
6 // in the Software without restriction, including without limitation the rights
7 // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
8 // copies of the Software, and to permit persons to whom the Software is
9 // furnished to do so, subject to the following conditions:
10 //
11 // The above copyright notice and this permission notice shall be included in
12 // all copies or substantial portions of the Software.
13 //
14 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
17 // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
19 // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
20 // THE SOFTWARE.
21
22 // This file contains types which are intended to help detect incorrect usage at compile
23 // time, but should then be optimized down to basic primitives (usually, integers) by the
24 // compiler.
25
26 #pragma once
27
28 #include "common.h"
29 #include <inttypes.h>
30
31 KJ_BEGIN_HEADER
32
33 namespace kj {
34
35 // =======================================================================================
36 // IDs
37
38 template <typename UnderlyingType, typename Label>
39 struct Id {
40 // A type-safe numeric ID. `UnderlyingType` is the underlying integer representation. `Label`
41 // distinguishes this Id from other Id types. Sample usage:
42 //
43 // class Foo;
44 // typedef Id<uint, Foo> FooId;
45 //
46 // class Bar;
47 // typedef Id<uint, Bar> BarId;
48 //
49 // You can now use the FooId and BarId types without any possibility of accidentally using a
50 // FooId when you really wanted a BarId or vice-versa.
51
52 UnderlyingType value;
53
54 inline constexpr Id(): value(0) {}
55 inline constexpr explicit Id(int value): value(value) {}
56
57 inline constexpr bool operator==(const Id& other) const { return value == other.value; }
58 inline constexpr bool operator!=(const Id& other) const { return value != other.value; }
59 inline constexpr bool operator<=(const Id& other) const { return value <= other.value; }
60 inline constexpr bool operator>=(const Id& other) const { return value >= other.value; }
61 inline constexpr bool operator< (const Id& other) const { return value < other.value; }
62 inline constexpr bool operator> (const Id& other) const { return value > other.value; }
63 };
64
65 // =======================================================================================
66 // Quantity and UnitRatio -- implement unit analysis via the type system
67
68 struct Unsafe_ {};
69 constexpr Unsafe_ unsafe = Unsafe_();
70 // Use as a parameter to constructors that are unsafe to indicate that you really do mean it.
71
72 template <uint64_t maxN, typename T>
73 class Bounded;
74 template <uint value>
75 class BoundedConst;
76
77 template <typename T>
78 struct IsIntegralOrBounded_ { static constexpr bool value = isIntegral<T>(); };
79 template <uint64_t m, typename T>
80 struct IsIntegralOrBounded_<Bounded<m, T>> { static constexpr bool value = true; };
81 template <uint v>
82 struct IsIntegralOrBounded_<BoundedConst<v>> { static constexpr bool value = true; };
83
84 template <typename T>
85 inline constexpr bool isIntegralOrBounded() { return IsIntegralOrBounded_<T>::value; }
86
87 template <typename Number, typename Unit1, typename Unit2>
88 class UnitRatio {
89 // A multiplier used to convert Quantities of one unit to Quantities of another unit. See
90 // Quantity, below.
91 //
92 // Construct this type by dividing one Quantity by another of a different unit. Use this type
93 // by multiplying it by a Quantity, or dividing a Quantity by it.
94
95 static_assert(isIntegralOrBounded<Number>(),
96 "Underlying type for UnitRatio must be integer.");
97
98 public:
99 inline UnitRatio() {}
100
101 constexpr UnitRatio(Number unit1PerUnit2, decltype(unsafe)): unit1PerUnit2(unit1PerUnit2) {}
102 // This constructor was intended to be private, but GCC complains about it being private in a
103 // bunch of places that don't appear to even call it, so I made it public. Oh well.
104
105 template <typename OtherNumber>
106 inline constexpr UnitRatio(const UnitRatio<OtherNumber, Unit1, Unit2>& other)
107 : unit1PerUnit2(other.unit1PerUnit2) {}
108
109 template <typename OtherNumber>
110 inline constexpr UnitRatio<decltype(Number()+OtherNumber()), Unit1, Unit2>
111 operator+(UnitRatio<OtherNumber, Unit1, Unit2> other) const {
112 return UnitRatio<decltype(Number()+OtherNumber()), Unit1, Unit2>(
113 unit1PerUnit2 + other.unit1PerUnit2, unsafe);
114 }
115 template <typename OtherNumber>
116 inline constexpr UnitRatio<decltype(Number()-OtherNumber()), Unit1, Unit2>
117 operator-(UnitRatio<OtherNumber, Unit1, Unit2> other) const {
118 return UnitRatio<decltype(Number()-OtherNumber()), Unit1, Unit2>(
119 unit1PerUnit2 - other.unit1PerUnit2, unsafe);
120 }
121
122 template <typename OtherNumber, typename Unit3>
123 inline constexpr UnitRatio<decltype(Number()*OtherNumber()), Unit3, Unit2>
124 operator*(UnitRatio<OtherNumber, Unit3, Unit1> other) const {
125 // U1 / U2 * U3 / U1 = U3 / U2
126 return UnitRatio<decltype(Number()*OtherNumber()), Unit3, Unit2>(
127 unit1PerUnit2 * other.unit1PerUnit2, unsafe);
128 }
129 template <typename OtherNumber, typename Unit3>
130 inline constexpr UnitRatio<decltype(Number()*OtherNumber()), Unit1, Unit3>
131 operator*(UnitRatio<OtherNumber, Unit2, Unit3> other) const {
132 // U1 / U2 * U2 / U3 = U1 / U3
133 return UnitRatio<decltype(Number()*OtherNumber()), Unit1, Unit3>(
134 unit1PerUnit2 * other.unit1PerUnit2, unsafe);
135 }
136
137 template <typename OtherNumber, typename Unit3>
138 inline constexpr UnitRatio<decltype(Number()*OtherNumber()), Unit3, Unit2>
139 operator/(UnitRatio<OtherNumber, Unit1, Unit3> other) const {
140 // (U1 / U2) / (U1 / U3) = U3 / U2
141 return UnitRatio<decltype(Number()*OtherNumber()), Unit3, Unit2>(
142 unit1PerUnit2 / other.unit1PerUnit2, unsafe);
143 }
144 template <typename OtherNumber, typename Unit3>
145 inline constexpr UnitRatio<decltype(Number()*OtherNumber()), Unit1, Unit3>
146 operator/(UnitRatio<OtherNumber, Unit3, Unit2> other) const {
147 // (U1 / U2) / (U3 / U2) = U1 / U3
148 return UnitRatio<decltype(Number()*OtherNumber()), Unit1, Unit3>(
149 unit1PerUnit2 / other.unit1PerUnit2, unsafe);
150 }
151
152 template <typename OtherNumber>
153 inline decltype(Number() / OtherNumber())
154 operator/(UnitRatio<OtherNumber, Unit1, Unit2> other) const {
155 return unit1PerUnit2 / other.unit1PerUnit2;
156 }
157
158 template <typename OtherNumber>
159 inline constexpr bool operator==(const UnitRatio<OtherNumber, Unit1, Unit2>& other) const {
160 return unit1PerUnit2 == other.unit1PerUnit2;
161 }
162 template <typename OtherNumber>
163 inline constexpr bool operator!=(const UnitRatio<OtherNumber, Unit1, Unit2>& other) const {
164 return unit1PerUnit2 != other.unit1PerUnit2;
165 }
166
167 private:
168 Number unit1PerUnit2;
169
170 template <typename OtherNumber, typename OtherUnit>
171 friend class Quantity;
172 template <typename OtherNumber, typename OtherUnit1, typename OtherUnit2>
173 friend class UnitRatio;
174
175 template <typename N1, typename N2, typename U1, typename U2, typename>
176 friend inline constexpr UnitRatio<decltype(N1() * N2()), U1, U2>
177 operator*(N1, UnitRatio<N2, U1, U2>);
178 };
179
180 template <typename N1, typename N2, typename U1, typename U2,
181 typename = EnableIf<isIntegralOrBounded<N1>() && isIntegralOrBounded<N2>()>>
182 inline constexpr UnitRatio<decltype(N1() * N2()), U1, U2>
183 operator*(N1 n, UnitRatio<N2, U1, U2> r) {
184 return UnitRatio<decltype(N1() * N2()), U1, U2>(n * r.unit1PerUnit2, unsafe);
185 }
186
187 template <typename Number, typename Unit>
188 class Quantity {
189 // A type-safe numeric quantity, specified in terms of some unit. Two Quantities cannot be used
190 // in arithmetic unless they use the same unit. The `Unit` type parameter is only used to prevent
191 // accidental mixing of units; this type is never instantiated and can very well be incomplete.
192 // `Number` is the underlying primitive numeric type.
193 //
194 // Quantities support most basic arithmetic operators, intelligently handling units, and
195 // automatically casting the underlying type in the same way that the compiler would.
196 //
197 // To convert a primitive number to a Quantity, multiply it by unit<Quantity<N, U>>().
198 // To convert a Quantity to a primitive number, divide it by unit<Quantity<N, U>>().
199 // To convert a Quantity of one unit to another unit, multiply or divide by a UnitRatio.
200 //
201 // The Quantity class is not well-suited to hardcore physics as it does not allow multiplying
202 // one quantity by another. For example, multiplying meters by meters won't get you square
203 // meters; it will get you a compiler error. It would be interesting to see if template
204 // metaprogramming could properly deal with such things but this isn't needed for the present
205 // use case.
206 //
207 // Sample usage:
208 //
209 // class SecondsLabel;
210 // typedef Quantity<double, SecondsLabel> Seconds;
211 // constexpr Seconds SECONDS = unit<Seconds>();
212 //
213 // class MinutesLabel;
214 // typedef Quantity<double, MinutesLabel> Minutes;
215 // constexpr Minutes MINUTES = unit<Minutes>();
216 //
217 // constexpr UnitRatio<double, SecondsLabel, MinutesLabel> SECONDS_PER_MINUTE =
218 // 60 * SECONDS / MINUTES;
219 //
220 // void waitFor(Seconds seconds) {
221 // sleep(seconds / SECONDS);
222 // }
223 // void waitFor(Minutes minutes) {
224 // waitFor(minutes * SECONDS_PER_MINUTE);
225 // }
226 //
227 // void waitThreeMinutes() {
228 // waitFor(3 * MINUTES);
229 // }
230
231 static_assert(isIntegralOrBounded<Number>(),
232 "Underlying type for Quantity must be integer.");
233
234 public:
235 inline constexpr Quantity() = default;
236
237 inline constexpr Quantity(MaxValue_): value(maxValue) {}
238 inline constexpr Quantity(MinValue_): value(minValue) {}
239 // Allow initialization from maxValue and minValue.
240 // TODO(msvc): decltype(maxValue) and decltype(minValue) deduce unknown-type for these function
241 // parameters, causing the compiler to complain of a duplicate constructor definition, so we
242 // specify MaxValue_ and MinValue_ types explicitly.
243
244 inline constexpr Quantity(Number value, decltype(unsafe)): value(value) {}
245 // This constructor was intended to be private, but GCC complains about it being private in a
246 // bunch of places that don't appear to even call it, so I made it public. Oh well.
247
248 template <typename OtherNumber>
249 inline constexpr Quantity(const Quantity<OtherNumber, Unit>& other)
250 : value(other.value) {}
251
252 template <typename OtherNumber>
253 inline Quantity& operator=(const Quantity<OtherNumber, Unit>& other) {
254 value = other.value;
255 return *this;
256 }
257
258 template <typename OtherNumber>
259 inline constexpr Quantity<decltype(Number() + OtherNumber()), Unit>
260 operator+(const Quantity<OtherNumber, Unit>& other) const {
261 return Quantity<decltype(Number() + OtherNumber()), Unit>(value + other.value, unsafe);
262 }
263 template <typename OtherNumber>
264 inline constexpr Quantity<decltype(Number() - OtherNumber()), Unit>
265 operator-(const Quantity<OtherNumber, Unit>& other) const {
266 return Quantity<decltype(Number() - OtherNumber()), Unit>(value - other.value, unsafe);
267 }
268 template <typename OtherNumber, typename = EnableIf<isIntegralOrBounded<OtherNumber>()>>
269 inline constexpr Quantity<decltype(Number() * OtherNumber()), Unit>
270 operator*(OtherNumber other) const {
271 return Quantity<decltype(Number() * other), Unit>(value * other, unsafe);
272 }
273 template <typename OtherNumber, typename = EnableIf<isIntegralOrBounded<OtherNumber>()>>
274 inline constexpr Quantity<decltype(Number() / OtherNumber()), Unit>
275 operator/(OtherNumber other) const {
276 return Quantity<decltype(Number() / other), Unit>(value / other, unsafe);
277 }
278 template <typename OtherNumber>
279 inline constexpr decltype(Number() / OtherNumber())
280 operator/(const Quantity<OtherNumber, Unit>& other) const {
281 return value / other.value;
282 }
283 template <typename OtherNumber>
284 inline constexpr Quantity<decltype(Number() % OtherNumber()), Unit>
285 operator%(const Quantity<OtherNumber, Unit>& other) const {
286 return Quantity<decltype(Number() % OtherNumber()), Unit>(value % other.value, unsafe);
287 }
288
289 template <typename OtherNumber, typename OtherUnit>
290 inline constexpr Quantity<decltype(Number() * OtherNumber()), OtherUnit>
291 operator*(UnitRatio<OtherNumber, OtherUnit, Unit> ratio) const {
292 return Quantity<decltype(Number() * OtherNumber()), OtherUnit>(
293 value * ratio.unit1PerUnit2, unsafe);
294 }
295 template <typename OtherNumber, typename OtherUnit>
296 inline constexpr Quantity<decltype(Number() / OtherNumber()), OtherUnit>
297 operator/(UnitRatio<OtherNumber, Unit, OtherUnit> ratio) const {
298 return Quantity<decltype(Number() / OtherNumber()), OtherUnit>(
299 value / ratio.unit1PerUnit2, unsafe);
300 }
301 template <typename OtherNumber, typename OtherUnit>
302 inline constexpr Quantity<decltype(Number() % OtherNumber()), Unit>
303 operator%(UnitRatio<OtherNumber, Unit, OtherUnit> ratio) const {
304 return Quantity<decltype(Number() % OtherNumber()), Unit>(
305 value % ratio.unit1PerUnit2, unsafe);
306 }
307 template <typename OtherNumber, typename OtherUnit>
308 inline constexpr UnitRatio<decltype(Number() / OtherNumber()), Unit, OtherUnit>
309 operator/(Quantity<OtherNumber, OtherUnit> other) const {
310 return UnitRatio<decltype(Number() / OtherNumber()), Unit, OtherUnit>(
311 value / other.value, unsafe);
312 }
313
314 template <typename OtherNumber>
315 inline constexpr bool operator==(const Quantity<OtherNumber, Unit>& other) const {
316 return value == other.value;
317 }
318 template <typename OtherNumber>
319 inline constexpr bool operator!=(const Quantity<OtherNumber, Unit>& other) const {
320 return value != other.value;
321 }
322 template <typename OtherNumber>
323 inline constexpr bool operator<=(const Quantity<OtherNumber, Unit>& other) const {
324 return value <= other.value;
325 }
326 template <typename OtherNumber>
327 inline constexpr bool operator>=(const Quantity<OtherNumber, Unit>& other) const {
328 return value >= other.value;
329 }
330 template <typename OtherNumber>
331 inline constexpr bool operator<(const Quantity<OtherNumber, Unit>& other) const {
332 return value < other.value;
333 }
334 template <typename OtherNumber>
335 inline constexpr bool operator>(const Quantity<OtherNumber, Unit>& other) const {
336 return value > other.value;
337 }
338
339 template <typename OtherNumber>
340 inline Quantity& operator+=(const Quantity<OtherNumber, Unit>& other) {
341 value += other.value;
342 return *this;
343 }
344 template <typename OtherNumber>
345 inline Quantity& operator-=(const Quantity<OtherNumber, Unit>& other) {
346 value -= other.value;
347 return *this;
348 }
349 template <typename OtherNumber>
350 inline Quantity& operator*=(OtherNumber other) {
351 value *= other;
352 return *this;
353 }
354 template <typename OtherNumber>
355 inline Quantity& operator/=(OtherNumber other) {
356 value /= other.value;
357 return *this;
358 }
359
360 private:
361 Number value;
362
363 template <typename OtherNumber, typename OtherUnit>
364 friend class Quantity;
365
366 template <typename Number1, typename Number2, typename Unit2, typename>
367 friend inline constexpr auto operator*(Number1 a, Quantity<Number2, Unit2> b)
368 -> Quantity<decltype(Number1() * Number2()), Unit2>;
369 };
370
371 template <typename T> struct Unit_ {
372 static inline constexpr T get() { return T(1); }
373 };
374 template <typename T, typename U>
375 struct Unit_<Quantity<T, U>> {
376 static inline constexpr Quantity<decltype(Unit_<T>::get()), U> get() {
377 return Quantity<decltype(Unit_<T>::get()), U>(Unit_<T>::get(), unsafe);
378 }
379 };
380
381 template <typename T>
382 inline constexpr auto unit() -> decltype(Unit_<T>::get()) { return Unit_<T>::get(); }
383 // unit<Quantity<T, U>>() returns a Quantity of value 1. It also, intentionally, works on basic
384 // numeric types.
385
386 template <typename Number1, typename Number2, typename Unit,
387 typename = EnableIf<isIntegralOrBounded<Number1>()>>
388 inline constexpr auto operator*(Number1 a, Quantity<Number2, Unit> b)
389 -> Quantity<decltype(Number1() * Number2()), Unit> {
390 return Quantity<decltype(Number1() * Number2()), Unit>(a * b.value, unsafe);
391 }
392
393 template <typename Number1, typename Number2, typename Unit, typename Unit2>
394 inline constexpr auto operator*(UnitRatio<Number1, Unit2, Unit> ratio,
395 Quantity<Number2, Unit> measure)
396 -> decltype(measure * ratio) {
397 return measure * ratio;
398 }
399
400 // =======================================================================================
401 // Absolute measures
402
403 template <typename T, typename Label>
404 class Absolute {
405 // Wraps some other value -- typically a Quantity -- but represents a value measured based on
406 // some absolute origin. For example, if `Duration` is a type representing a time duration,
407 // Absolute<Duration, UnixEpoch> might be a calendar date.
408 //
409 // Since Absolute represents measurements relative to some arbitrary origin, the only sensible
410 // arithmetic to perform on them is addition and subtraction.
411
412 // TODO(someday): Do the same automatic expansion of integer width that Quantity does? Doesn't
413 // matter for our time use case, where we always use 64-bit anyway. Note that fixing this
414 // would implicitly allow things like multiplying an Absolute by a UnitRatio to change its
415 // units, which is actually totally logical and kind of neat.
416
417 public:
418 inline constexpr Absolute(MaxValue_): value(maxValue) {}
419 inline constexpr Absolute(MinValue_): value(minValue) {}
420 // Allow initialization from maxValue and minValue.
421 // TODO(msvc): decltype(maxValue) and decltype(minValue) deduce unknown-type for these function
422 // parameters, causing the compiler to complain of a duplicate constructor definition, so we
423 // specify MaxValue_ and MinValue_ types explicitly.
424
425 inline constexpr Absolute operator+(const T& other) const { return Absolute(value + other); }
426 inline constexpr Absolute operator-(const T& other) const { return Absolute(value - other); }
427 inline constexpr T operator-(const Absolute& other) const { return value - other.value; }
428
429 inline Absolute& operator+=(const T& other) { value += other; return *this; }
430 inline Absolute& operator-=(const T& other) { value -= other; return *this; }
431
432 inline constexpr bool operator==(const Absolute& other) const { return value == other.value; }
433 inline constexpr bool operator!=(const Absolute& other) const { return value != other.value; }
434 inline constexpr bool operator<=(const Absolute& other) const { return value <= other.value; }
435 inline constexpr bool operator>=(const Absolute& other) const { return value >= other.value; }
436 inline constexpr bool operator< (const Absolute& other) const { return value < other.value; }
437 inline constexpr bool operator> (const Absolute& other) const { return value > other.value; }
438
439 private:
440 T value;
441
442 explicit constexpr Absolute(T value): value(value) {}
443
444 template <typename U>
445 friend inline constexpr U origin();
446 };
447
448 template <typename T, typename Label>
449 inline constexpr Absolute<T, Label> operator+(const T& a, const Absolute<T, Label>& b) {
450 return b + a;
451 }
452
453 template <typename T> struct UnitOf_ { typedef T Type; };
454 template <typename T, typename Label> struct UnitOf_<Absolute<T, Label>> { typedef T Type; };
455 template <typename T>
456 using UnitOf = typename UnitOf_<T>::Type;
457 // UnitOf<Absolute<T, U>> is T. UnitOf<AnythingElse> is AnythingElse.
458
459 template <typename T>
460 inline constexpr T origin() { return T(0 * unit<UnitOf<T>>()); }
461 // origin<Absolute<T, U>>() returns an Absolute of value 0. It also, intentionally, works on basic
462 // numeric types.
463
464 // =======================================================================================
465 // Overflow avoidance
466
467 template <uint64_t n, uint accum = 0>
468 struct BitCount_ {
469 static constexpr uint value = BitCount_<(n >> 1), accum + 1>::value;
470 };
471 template <uint accum>
472 struct BitCount_<0, accum> {
473 static constexpr uint value = accum;
474 };
475
476 template <uint64_t n>
477 inline constexpr uint bitCount() { return BitCount_<n>::value; }
478 // Number of bits required to represent the number `n`.
479
480 template <uint bitCountBitCount> struct AtLeastUInt_ {
481 static_assert(bitCountBitCount < 7, "don't know how to represent integers over 64 bits");
482 };
483 template <> struct AtLeastUInt_<0> { typedef uint8_t Type; };
484 template <> struct AtLeastUInt_<1> { typedef uint8_t Type; };
485 template <> struct AtLeastUInt_<2> { typedef uint8_t Type; };
486 template <> struct AtLeastUInt_<3> { typedef uint8_t Type; };
487 template <> struct AtLeastUInt_<4> { typedef uint16_t Type; };
488 template <> struct AtLeastUInt_<5> { typedef uint32_t Type; };
489 template <> struct AtLeastUInt_<6> { typedef uint64_t Type; };
490
491 template <uint bits>
492 using AtLeastUInt = typename AtLeastUInt_<bitCount<max(bits, 1) - 1>()>::Type;
493 // AtLeastUInt<n> is an unsigned integer of at least n bits. E.g. AtLeastUInt<12> is uint16_t.
494
495 // -------------------------------------------------------------------
496
497 template <uint value>
498 class BoundedConst {
499 // A constant integer value on which we can do bit size analysis.
500
501 public:
502 BoundedConst() = default;
503
504 inline constexpr uint unwrap() const { return value; }
505
506 #define OP(op, check) \
507 template <uint other> \
508 inline constexpr BoundedConst<(value op other)> \
509 operator op(BoundedConst<other>) const { \
510 static_assert(check, "overflow in BoundedConst arithmetic"); \
511 return BoundedConst<(value op other)>(); \
512 }
513 #define COMPARE_OP(op) \
514 template <uint other> \
515 inline constexpr bool operator op(BoundedConst<other>) const { \
516 return value op other; \
517 }
518
519 OP(+, value + other >= value)
520 OP(-, value - other <= value)
521 OP(*, value * other / other == value)
522 OP(/, true) // div by zero already errors out; no other division ever overflows
523 OP(%, true) // mod by zero already errors out; no other modulus ever overflows
524 OP(<<, value << other >= value)
525 OP(>>, true) // right shift can't overflow
526 OP(&, true) // bitwise ops can't overflow
527 OP(|, true) // bitwise ops can't overflow
528
529 COMPARE_OP(==)
530 COMPARE_OP(!=)
531 COMPARE_OP(< )
532 COMPARE_OP(> )
533 COMPARE_OP(<=)
534 COMPARE_OP(>=)
535 #undef OP
536 #undef COMPARE_OP
537 };
538
539 template <uint64_t m, typename T>
540 struct Unit_<Bounded<m, T>> {
541 static inline constexpr BoundedConst<1> get() { return BoundedConst<1>(); }
542 };
543
544 template <uint value>
545 struct Unit_<BoundedConst<value>> {
546 static inline constexpr BoundedConst<1> get() { return BoundedConst<1>(); }
547 };
548
549 template <uint value>
550 inline constexpr BoundedConst<value> bounded() {
551 return BoundedConst<value>();
552 }
553
554 template <uint64_t a, uint64_t b>
555 static constexpr uint64_t boundedAdd() {
556 static_assert(a + b >= a, "possible overflow detected");
557 return a + b;
558 }
559 template <uint64_t a, uint64_t b>
560 static constexpr uint64_t boundedSub() {
561 static_assert(a - b <= a, "possible underflow detected");
562 return a - b;
563 }
564 template <uint64_t a, uint64_t b>
565 static constexpr uint64_t boundedMul() {
566 static_assert(a * b / b == a, "possible overflow detected");
567 return a * b;
568 }
569 template <uint64_t a, uint64_t b>
570 static constexpr uint64_t boundedLShift() {
571 static_assert(a << b >= a, "possible overflow detected");
572 return a << b;
573 }
574
575 template <uint a, uint b>
576 inline constexpr BoundedConst<kj::min(a, b)> min(BoundedConst<a>, BoundedConst<b>) {
577 return bounded<kj::min(a, b)>();
578 }
579 template <uint a, uint b>
580 inline constexpr BoundedConst<kj::max(a, b)> max(BoundedConst<a>, BoundedConst<b>) {
581 return bounded<kj::max(a, b)>();
582 }
583 // We need to override min() and max() between constants because the ternary operator in the
584 // default implementation would complain.
585
586 // -------------------------------------------------------------------
587
588 template <uint64_t maxN, typename T>
589 class Bounded {
590 public:
591 static_assert(maxN <= T(kj::maxValue), "possible overflow detected");
592
593 Bounded() = default;
594
595 Bounded(const Bounded& other) = default;
596 template <typename OtherInt, typename = EnableIf<isIntegral<OtherInt>()>>
597 inline constexpr Bounded(OtherInt value): value(value) {
598 static_assert(OtherInt(maxValue) <= maxN, "possible overflow detected");
599 }
600 template <uint64_t otherMax, typename OtherT>
601 inline constexpr Bounded(const Bounded<otherMax, OtherT>& other)
602 : value(other.value) {
603 static_assert(otherMax <= maxN, "possible overflow detected");
604 }
605 template <uint otherValue>
606 inline constexpr Bounded(BoundedConst<otherValue>)
607 : value(otherValue) {
608 static_assert(otherValue <= maxN, "overflow detected");
609 }
610
611 Bounded& operator=(const Bounded& other) = default;
612 template <typename OtherInt, typename = EnableIf<isIntegral<OtherInt>()>>
613 Bounded& operator=(OtherInt other) {
614 static_assert(OtherInt(maxValue) <= maxN, "possible overflow detected");
615 value = other;
616 return *this;
617 }
618 template <uint64_t otherMax, typename OtherT>
619 inline Bounded& operator=(const Bounded<otherMax, OtherT>& other) {
620 static_assert(otherMax <= maxN, "possible overflow detected");
621 value = other.value;
622 return *this;
623 }
624 template <uint otherValue>
625 inline Bounded& operator=(BoundedConst<otherValue>) {
626 static_assert(otherValue <= maxN, "overflow detected");
627 value = otherValue;
628 return *this;
629 }
630
631 inline constexpr T unwrap() const { return value; }
632
633 #define OP(op, newMax) \
634 template <uint64_t otherMax, typename otherT> \
635 inline constexpr Bounded<newMax, decltype(T() op otherT())> \
636 operator op(const Bounded<otherMax, otherT>& other) const { \
637 return Bounded<newMax, decltype(T() op otherT())>(value op other.value, unsafe); \
638 }
639 #define COMPARE_OP(op) \
640 template <uint64_t otherMax, typename OtherT> \
641 inline constexpr bool operator op(const Bounded<otherMax, OtherT>& other) const { \
642 return value op other.value; \
643 }
644
645 OP(+, (boundedAdd<maxN, otherMax>()))
646 OP(*, (boundedMul<maxN, otherMax>()))
647 OP(/, maxN)
648 OP(%, otherMax - 1)
649
650 // operator- is intentionally omitted because we mostly use this with unsigned types, and
651 // subtraction requires proof that subtrahend is not greater than the minuend.
652
653 COMPARE_OP(==)
654 COMPARE_OP(!=)
655 COMPARE_OP(< )
656 COMPARE_OP(> )
657 COMPARE_OP(<=)
658 COMPARE_OP(>=)
659
660 #undef OP
661 #undef COMPARE_OP
662
663 template <uint64_t newMax, typename ErrorFunc>
664 inline Bounded<newMax, T> assertMax(ErrorFunc&& func) const {
665 // Assert that the number is no more than `newMax`. Otherwise, call `func`.
666 static_assert(newMax < maxN, "this bounded size assertion is redundant");
667 if (KJ_UNLIKELY(value > newMax)) func();
668 return Bounded<newMax, T>(value, unsafe);
669 }
670
671 template <uint64_t otherMax, typename OtherT, typename ErrorFunc>
672 inline Bounded<maxN, decltype(T() - OtherT())> subtractChecked(
673 const Bounded<otherMax, OtherT>& other, ErrorFunc&& func) const {
674 // Subtract a number, calling func() if the result would underflow.
675 if (KJ_UNLIKELY(value < other.value)) func();
676 return Bounded<maxN, decltype(T() - OtherT())>(value - other.value, unsafe);
677 }
678
679 template <uint otherValue, typename ErrorFunc>
680 inline Bounded<maxN - otherValue, T> subtractChecked(
681 BoundedConst<otherValue>, ErrorFunc&& func) const {
682 // Subtract a number, calling func() if the result would underflow.
683 static_assert(otherValue <= maxN, "underflow detected");
684 if (KJ_UNLIKELY(value < otherValue)) func();
685 return Bounded<maxN - otherValue, T>(value - otherValue, unsafe);
686 }
687
688 template <uint64_t otherMax, typename OtherT>
689 inline Maybe<Bounded<maxN, decltype(T() - OtherT())>> trySubtract(
690 const Bounded<otherMax, OtherT>& other) const {
691 // Subtract a number, calling func() if the result would underflow.
692 if (value < other.value) {
693 return nullptr;
694 } else {
695 return Bounded<maxN, decltype(T() - OtherT())>(value - other.value, unsafe);
696 }
697 }
698
699 template <uint otherValue>
700 inline Maybe<Bounded<maxN - otherValue, T>> trySubtract(BoundedConst<otherValue>) const {
701 // Subtract a number, calling func() if the result would underflow.
702 if (value < otherValue) {
703 return nullptr;
704 } else {
705 return Bounded<maxN - otherValue, T>(value - otherValue, unsafe);
706 }
707 }
708
709 inline constexpr Bounded(T value, decltype(unsafe)): value(value) {}
710 template <uint64_t otherMax, typename OtherT>
711 inline constexpr Bounded(Bounded<otherMax, OtherT> value, decltype(unsafe))
712 : value(value.value) {}
713 // Mainly for internal use.
714 //
715 // Only use these as a last resort, with ample commentary on why you think it's safe.
716
717 private:
718 T value;
719
720 template <uint64_t, typename>
721 friend class Bounded;
722 };
723
724 template <typename Number>
725 inline constexpr Bounded<Number(kj::maxValue), Number> bounded(Number value) {
726 return Bounded<Number(kj::maxValue), Number>(value, unsafe);
727 }
728
729 inline constexpr Bounded<1, uint8_t> bounded(bool value) {
730 return Bounded<1, uint8_t>(value, unsafe);
731 }
732
733 template <uint bits, typename Number>
734 inline constexpr Bounded<maxValueForBits<bits>(), Number> assumeBits(Number value) {
735 return Bounded<maxValueForBits<bits>(), Number>(value, unsafe);
736 }
737
738 template <uint bits, uint64_t maxN, typename T>
739 inline constexpr Bounded<maxValueForBits<bits>(), T> assumeBits(Bounded<maxN, T> value) {
740 return Bounded<maxValueForBits<bits>(), T>(value, unsafe);
741 }
742
743 template <uint bits, typename Number, typename Unit>
744 inline constexpr auto assumeBits(Quantity<Number, Unit> value)
745 -> Quantity<decltype(assumeBits<bits>(value / unit<Quantity<Number, Unit>>())), Unit> {
746 return Quantity<decltype(assumeBits<bits>(value / unit<Quantity<Number, Unit>>())), Unit>(
747 assumeBits<bits>(value / unit<Quantity<Number, Unit>>()), unsafe);
748 }
749
750 template <uint64_t maxN, typename Number>
751 inline constexpr Bounded<maxN, Number> assumeMax(Number value) {
752 return Bounded<maxN, Number>(value, unsafe);
753 }
754
755 template <uint64_t newMaxN, uint64_t maxN, typename T>
756 inline constexpr Bounded<newMaxN, T> assumeMax(Bounded<maxN, T> value) {
757 return Bounded<newMaxN, T>(value, unsafe);
758 }
759
760 template <uint64_t maxN, typename Number, typename Unit>
761 inline constexpr auto assumeMax(Quantity<Number, Unit> value)
762 -> Quantity<decltype(assumeMax<maxN>(value / unit<Quantity<Number, Unit>>())), Unit> {
763 return Quantity<decltype(assumeMax<maxN>(value / unit<Quantity<Number, Unit>>())), Unit>(
764 assumeMax<maxN>(value / unit<Quantity<Number, Unit>>()), unsafe);
765 }
766
767 template <uint maxN, typename Number>
768 inline constexpr Bounded<maxN, Number> assumeMax(BoundedConst<maxN>, Number value) {
769 return assumeMax<maxN>(value);
770 }
771
772 template <uint newMaxN, uint64_t maxN, typename T>
773 inline constexpr Bounded<newMaxN, T> assumeMax(BoundedConst<maxN>, Bounded<maxN, T> value) {
774 return assumeMax<maxN>(value);
775 }
776
777 template <uint maxN, typename Number, typename Unit>
778 inline constexpr auto assumeMax(Quantity<BoundedConst<maxN>, Unit>, Quantity<Number, Unit> value)
779 -> decltype(assumeMax<maxN>(value)) {
780 return assumeMax<maxN>(value);
781 }
782
783 template <uint64_t newMax, uint64_t maxN, typename T, typename ErrorFunc>
784 inline Bounded<newMax, T> assertMax(Bounded<maxN, T> value, ErrorFunc&& errorFunc) {
785 // Assert that the bounded value is less than or equal to the given maximum, calling errorFunc()
786 // if not.
787 static_assert(newMax < maxN, "this bounded size assertion is redundant");
788 return value.template assertMax<newMax>(kj::fwd<ErrorFunc>(errorFunc));
789 }
790
791 template <uint64_t newMax, uint64_t maxN, typename T, typename Unit, typename ErrorFunc>
792 inline Quantity<Bounded<newMax, T>, Unit> assertMax(
793 Quantity<Bounded<maxN, T>, Unit> value, ErrorFunc&& errorFunc) {
794 // Assert that the bounded value is less than or equal to the given maximum, calling errorFunc()
795 // if not.
796 static_assert(newMax < maxN, "this bounded size assertion is redundant");
797 return (value / unit<decltype(value)>()).template assertMax<newMax>(
798 kj::fwd<ErrorFunc>(errorFunc)) * unit<decltype(value)>();
799 }
800
801 template <uint newMax, uint64_t maxN, typename T, typename ErrorFunc>
802 inline Bounded<newMax, T> assertMax(
803 BoundedConst<newMax>, Bounded<maxN, T> value, ErrorFunc&& errorFunc) {
804 return assertMax<newMax>(value, kj::mv(errorFunc));
805 }
806
807 template <uint newMax, uint64_t maxN, typename T, typename Unit, typename ErrorFunc>
808 inline Quantity<Bounded<newMax, T>, Unit> assertMax(
809 Quantity<BoundedConst<newMax>, Unit>,
810 Quantity<Bounded<maxN, T>, Unit> value, ErrorFunc&& errorFunc) {
811 return assertMax<newMax>(value, kj::mv(errorFunc));
812 }
813
814 template <uint64_t newBits, uint64_t maxN, typename T, typename ErrorFunc = ThrowOverflow>
815 inline Bounded<maxValueForBits<newBits>(), T> assertMaxBits(
816 Bounded<maxN, T> value, ErrorFunc&& errorFunc = ErrorFunc()) {
817 // Assert that the bounded value requires no more than the given number of bits, calling
818 // errorFunc() if not.
819 return assertMax<maxValueForBits<newBits>()>(value, kj::fwd<ErrorFunc>(errorFunc));
820 }
821
822 template <uint64_t newBits, uint64_t maxN, typename T, typename Unit,
823 typename ErrorFunc = ThrowOverflow>
824 inline Quantity<Bounded<maxValueForBits<newBits>(), T>, Unit> assertMaxBits(
825 Quantity<Bounded<maxN, T>, Unit> value, ErrorFunc&& errorFunc = ErrorFunc()) {
826 // Assert that the bounded value requires no more than the given number of bits, calling
827 // errorFunc() if not.
828 return assertMax<maxValueForBits<newBits>()>(value, kj::fwd<ErrorFunc>(errorFunc));
829 }
830
831 template <typename newT, uint64_t maxN, typename T>
832 inline constexpr Bounded<maxN, newT> upgradeBound(Bounded<maxN, T> value) {
833 return value;
834 }
835
836 template <typename newT, uint64_t maxN, typename T, typename Unit>
837 inline constexpr Quantity<Bounded<maxN, newT>, Unit> upgradeBound(
838 Quantity<Bounded<maxN, T>, Unit> value) {
839 return value;
840 }
841
842 template <uint64_t maxN, typename T, typename Other, typename ErrorFunc>
843 inline auto subtractChecked(Bounded<maxN, T> value, Other other, ErrorFunc&& errorFunc)
844 -> decltype(value.subtractChecked(other, kj::fwd<ErrorFunc>(errorFunc))) {
845 return value.subtractChecked(other, kj::fwd<ErrorFunc>(errorFunc));
846 }
847
848 template <typename T, typename U, typename Unit, typename ErrorFunc>
849 inline auto subtractChecked(Quantity<T, Unit> value, Quantity<U, Unit> other, ErrorFunc&& errorFunc)
850 -> Quantity<decltype(subtractChecked(T(), U(), kj::fwd<ErrorFunc>(errorFunc))), Unit> {
851 return subtractChecked(value / unit<Quantity<T, Unit>>(),
852 other / unit<Quantity<U, Unit>>(),
853 kj::fwd<ErrorFunc>(errorFunc))
854 * unit<Quantity<T, Unit>>();
855 }
856
857 template <uint64_t maxN, typename T, typename Other>
858 inline auto trySubtract(Bounded<maxN, T> value, Other other)
859 -> decltype(value.trySubtract(other)) {
860 return value.trySubtract(other);
861 }
862
863 template <typename T, typename U, typename Unit>
864 inline auto trySubtract(Quantity<T, Unit> value, Quantity<U, Unit> other)
865 -> Maybe<Quantity<decltype(subtractChecked(T(), U(), int())), Unit>> {
866 return trySubtract(value / unit<Quantity<T, Unit>>(),
867 other / unit<Quantity<U, Unit>>())
868 .map([](decltype(subtractChecked(T(), U(), int())) x) {
869 return x * unit<Quantity<T, Unit>>();
870 });
871 }
872
873 template <uint64_t aN, uint64_t bN, typename A, typename B>
874 inline constexpr Bounded<kj::min(aN, bN), WiderType<A, B>>
875 min(Bounded<aN, A> a, Bounded<bN, B> b) {
876 return Bounded<kj::min(aN, bN), WiderType<A, B>>(kj::min(a.unwrap(), b.unwrap()), unsafe);
877 }
878 template <uint64_t aN, uint64_t bN, typename A, typename B>
879 inline constexpr Bounded<kj::max(aN, bN), WiderType<A, B>>
880 max(Bounded<aN, A> a, Bounded<bN, B> b) {
881 return Bounded<kj::max(aN, bN), WiderType<A, B>>(kj::max(a.unwrap(), b.unwrap()), unsafe);
882 }
883 // We need to override min() and max() because:
884 // 1) WiderType<> might not choose the correct bounds.
885 // 2) One of the two sides of the ternary operator in the default implementation would fail to
886 // typecheck even though it is OK in practice.
887
888 // -------------------------------------------------------------------
889 // Operators between Bounded and BoundedConst
890
891 #define OP(op, newMax) \
892 template <uint64_t maxN, uint cvalue, typename T> \
893 inline constexpr Bounded<(newMax), decltype(T() op uint())> operator op( \
894 Bounded<maxN, T> value, BoundedConst<cvalue>) { \
895 return Bounded<(newMax), decltype(T() op uint())>(value.unwrap() op cvalue, unsafe); \
896 }
897
898 #define REVERSE_OP(op, newMax) \
899 template <uint64_t maxN, uint cvalue, typename T> \
900 inline constexpr Bounded<(newMax), decltype(uint() op T())> operator op( \
901 BoundedConst<cvalue>, Bounded<maxN, T> value) { \
902 return Bounded<(newMax), decltype(uint() op T())>(cvalue op value.unwrap(), unsafe); \
903 }
904
905 #define COMPARE_OP(op) \
906 template <uint64_t maxN, uint cvalue, typename T> \
907 inline constexpr bool operator op(Bounded<maxN, T> value, BoundedConst<cvalue>) { \
908 return value.unwrap() op cvalue; \
909 } \
910 template <uint64_t maxN, uint cvalue, typename T> \
911 inline constexpr bool operator op(BoundedConst<cvalue>, Bounded<maxN, T> value) { \
912 return cvalue op value.unwrap(); \
913 }
914
915 OP(+, (boundedAdd<maxN, cvalue>()))
916 REVERSE_OP(+, (boundedAdd<maxN, cvalue>()))
917
918 OP(*, (boundedMul<maxN, cvalue>()))
919 REVERSE_OP(*, (boundedAdd<maxN, cvalue>()))
920
921 OP(/, maxN / cvalue)
922 REVERSE_OP(/, cvalue) // denominator could be 1
923
924 OP(%, cvalue - 1)
925 REVERSE_OP(%, maxN - 1)
926
927 OP(<<, (boundedLShift<maxN, cvalue>()))
928 REVERSE_OP(<<, (boundedLShift<cvalue, maxN>()))
929
930 OP(>>, maxN >> cvalue)
931 REVERSE_OP(>>, cvalue >> maxN)
932
933 OP(&, maxValueForBits<bitCount<maxN>()>() & cvalue)
934 REVERSE_OP(&, maxValueForBits<bitCount<maxN>()>() & cvalue)
935
936 OP(|, maxN | cvalue)
937 REVERSE_OP(|, maxN | cvalue)
938
939 COMPARE_OP(==)
940 COMPARE_OP(!=)
941 COMPARE_OP(< )
942 COMPARE_OP(> )
943 COMPARE_OP(<=)
944 COMPARE_OP(>=)
945
946 #undef OP
947 #undef REVERSE_OP
948 #undef COMPARE_OP
949
950 template <uint64_t maxN, uint cvalue, typename T>
951 inline constexpr Bounded<cvalue, decltype(uint() - T())>
952 operator-(BoundedConst<cvalue>, Bounded<maxN, T> value) {
953 // We allow subtraction of a variable from a constant only if the constant is greater than or
954 // equal to the maximum possible value of the variable. Since the variable could be zero, the
955 // result can be as large as the constant.
956 //
957 // We do not allow subtraction of a constant from a variable because there's never a guarantee it
958 // won't underflow (unless the constant is zero, which is silly).
959 static_assert(cvalue >= maxN, "possible underflow detected");
960 return Bounded<cvalue, decltype(uint() - T())>(cvalue - value.unwrap(), unsafe);
961 }
962
963 template <uint64_t aN, uint b, typename A>
964 inline constexpr Bounded<kj::min(aN, b), A> min(Bounded<aN, A> a, BoundedConst<b>) {
965 return Bounded<kj::min(aN, b), A>(kj::min(b, a.unwrap()), unsafe);
966 }
967 template <uint64_t aN, uint b, typename A>
968 inline constexpr Bounded<kj::min(aN, b), A> min(BoundedConst<b>, Bounded<aN, A> a) {
969 return Bounded<kj::min(aN, b), A>(kj::min(a.unwrap(), b), unsafe);
970 }
971 template <uint64_t aN, uint b, typename A>
972 inline constexpr Bounded<kj::max(aN, b), A> max(Bounded<aN, A> a, BoundedConst<b>) {
973 return Bounded<kj::max(aN, b), A>(kj::max(b, a.unwrap()), unsafe);
974 }
975 template <uint64_t aN, uint b, typename A>
976 inline constexpr Bounded<kj::max(aN, b), A> max(BoundedConst<b>, Bounded<aN, A> a) {
977 return Bounded<kj::max(aN, b), A>(kj::max(a.unwrap(), b), unsafe);
978 }
979 // We need to override min() between a Bounded and a constant since:
980 // 1) WiderType<> might choose BoundedConst over a 1-byte Bounded, which is wrong.
981 // 2) To clamp the bounds of the output type.
982 // 3) Same ternary operator typechecking issues.
983
984 // -------------------------------------------------------------------
985
986 template <uint64_t maxN, typename T>
987 class SafeUnwrapper {
988 public:
989 inline explicit constexpr SafeUnwrapper(Bounded<maxN, T> value): value(value.unwrap()) {}
990
991 template <typename U, typename = EnableIf<isIntegral<U>()>>
992 inline constexpr operator U() const {
993 static_assert(maxN <= U(maxValue), "possible truncation detected");
994 return value;
995 }
996
997 inline constexpr operator bool() const {
998 static_assert(maxN <= 1, "possible truncation detected");
999 return value;
1000 }
1001
1002 private:
1003 T value;
1004 };
1005
1006 template <uint64_t maxN, typename T>
1007 inline constexpr SafeUnwrapper<maxN, T> unbound(Bounded<maxN, T> bounded) {
1008 // Unwraps the bounded value, returning a value that can be implicitly cast to any integer type.
1009 // If this implicit cast could truncate, a compile-time error will be raised.
1010 return SafeUnwrapper<maxN, T>(bounded);
1011 }
1012
1013 template <uint64_t value>
1014 class SafeConstUnwrapper {
1015 public:
1016 template <typename T, typename = EnableIf<isIntegral<T>()>>
1017 inline constexpr operator T() const {
1018 static_assert(value <= T(maxValue), "this operation will truncate");
1019 return value;
1020 }
1021
1022 inline constexpr operator bool() const {
1023 static_assert(value <= 1, "this operation will truncate");
1024 return value;
1025 }
1026 };
1027
1028 template <uint value>
1029 inline constexpr SafeConstUnwrapper<value> unbound(BoundedConst<value>) {
1030 return SafeConstUnwrapper<value>();
1031 }
1032
1033 template <typename T, typename U>
1034 inline constexpr T unboundAs(U value) {
1035 return unbound(value);
1036 }
1037
1038 template <uint64_t requestedMax, uint64_t maxN, typename T>
1039 inline constexpr T unboundMax(Bounded<maxN, T> value) {
1040 // Explicitly unguard expecting a value that is at most `maxN`.
1041 static_assert(maxN <= requestedMax, "possible overflow detected");
1042 return value.unwrap();
1043 }
1044
1045 template <uint64_t requestedMax, uint value>
1046 inline constexpr uint unboundMax(BoundedConst<value>) {
1047 // Explicitly unguard expecting a value that is at most `maxN`.
1048 static_assert(value <= requestedMax, "overflow detected");
1049 return value;
1050 }
1051
1052 template <uint bits, typename T>
1053 inline constexpr auto unboundMaxBits(T value) ->
1054 decltype(unboundMax<maxValueForBits<bits>()>(value)) {
1055 // Explicitly unguard expecting a value that fits into `bits` bits.
1056 return unboundMax<maxValueForBits<bits>()>(value);
1057 }
1058
1059 #define OP(op) \
1060 template <uint64_t maxN, typename T, typename U> \
1061 inline constexpr auto operator op(T a, SafeUnwrapper<maxN, U> b) -> decltype(a op (T)b) { \
1062 return a op (AtLeastUInt<sizeof(T)*8>)b; \
1063 } \
1064 template <uint64_t maxN, typename T, typename U> \
1065 inline constexpr auto operator op(SafeUnwrapper<maxN, U> b, T a) -> decltype((T)b op a) { \
1066 return (AtLeastUInt<sizeof(T)*8>)b op a; \
1067 } \
1068 template <uint64_t value, typename T> \
1069 inline constexpr auto operator op(T a, SafeConstUnwrapper<value> b) -> decltype(a op (T)b) { \
1070 return a op (AtLeastUInt<sizeof(T)*8>)b; \
1071 } \
1072 template <uint64_t value, typename T> \
1073 inline constexpr auto operator op(SafeConstUnwrapper<value> b, T a) -> decltype((T)b op a) { \
1074 return (AtLeastUInt<sizeof(T)*8>)b op a; \
1075 }
1076
1077 OP(+)
1078 OP(-)
1079 OP(*)
1080 OP(/)
1081 OP(%)
1082 OP(<<)
1083 OP(>>)
1084 OP(&)
1085 OP(|)
1086 OP(==)
1087 OP(!=)
1088 OP(<=)
1089 OP(>=)
1090 OP(<)
1091 OP(>)
1092
1093 #undef OP
1094
1095 // -------------------------------------------------------------------
1096
1097 template <uint64_t maxN, typename T>
1098 class Range<Bounded<maxN, T>> {
1099 public:
1100 inline constexpr Range(Bounded<maxN, T> begin, Bounded<maxN, T> end)
1101 : inner(unbound(begin), unbound(end)) {}
1102 inline explicit constexpr Range(Bounded<maxN, T> end)
1103 : inner(unbound(end)) {}
1104
1105 class Iterator {
1106 public:
1107 Iterator() = default;
1108 inline explicit Iterator(typename Range<T>::Iterator inner): inner(inner) {}
1109
1110 inline Bounded<maxN, T> operator* () const { return Bounded<maxN, T>(*inner, unsafe); }
1111 inline Iterator& operator++() { ++inner; return *this; }
1112
1113 inline bool operator==(const Iterator& other) const { return inner == other.inner; }
1114 inline bool operator!=(const Iterator& other) const { return inner != other.inner; }
1115
1116 private:
1117 typename Range<T>::Iterator inner;
1118 };
1119
1120 inline Iterator begin() const { return Iterator(inner.begin()); }
1121 inline Iterator end() const { return Iterator(inner.end()); }
1122
1123 private:
1124 Range<T> inner;
1125 };
1126
1127 template <typename T, typename U>
1128 class Range<Quantity<T, U>> {
1129 public:
1130 inline constexpr Range(Quantity<T, U> begin, Quantity<T, U> end)
1131 : inner(begin / unit<Quantity<T, U>>(), end / unit<Quantity<T, U>>()) {}
1132 inline explicit constexpr Range(Quantity<T, U> end)
1133 : inner(end / unit<Quantity<T, U>>()) {}
1134
1135 class Iterator {
1136 public:
1137 Iterator() = default;
1138 inline explicit Iterator(typename Range<T>::Iterator inner): inner(inner) {}
1139
1140 inline Quantity<T, U> operator* () const { return *inner * unit<Quantity<T, U>>(); }
1141 inline Iterator& operator++() { ++inner; return *this; }
1142
1143 inline bool operator==(const Iterator& other) const { return inner == other.inner; }
1144 inline bool operator!=(const Iterator& other) const { return inner != other.inner; }
1145
1146 private:
1147 typename Range<T>::Iterator inner;
1148 };
1149
1150 inline Iterator begin() const { return Iterator(inner.begin()); }
1151 inline Iterator end() const { return Iterator(inner.end()); }
1152
1153 private:
1154 Range<T> inner;
1155 };
1156
1157 template <uint value>
1158 inline constexpr Range<Bounded<value, uint>> zeroTo(BoundedConst<value> end) {
1159 return Range<Bounded<value, uint>>(end);
1160 }
1161
1162 template <uint value, typename Unit>
1163 inline constexpr Range<Quantity<Bounded<value, uint>, Unit>>
1164 zeroTo(Quantity<BoundedConst<value>, Unit> end) {
1165 return Range<Quantity<Bounded<value, uint>, Unit>>(end);
1166 }
1167
1168 } // namespace kj
1169
1170 KJ_END_HEADER