jpayne@69
|
1 // Copyright (c) 2013-2014 Sandstorm Development Group, Inc. and contributors
|
jpayne@69
|
2 // Licensed under the MIT License:
|
jpayne@69
|
3 //
|
jpayne@69
|
4 // Permission is hereby granted, free of charge, to any person obtaining a copy
|
jpayne@69
|
5 // of this software and associated documentation files (the "Software"), to deal
|
jpayne@69
|
6 // in the Software without restriction, including without limitation the rights
|
jpayne@69
|
7 // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
jpayne@69
|
8 // copies of the Software, and to permit persons to whom the Software is
|
jpayne@69
|
9 // furnished to do so, subject to the following conditions:
|
jpayne@69
|
10 //
|
jpayne@69
|
11 // The above copyright notice and this permission notice shall be included in
|
jpayne@69
|
12 // all copies or substantial portions of the Software.
|
jpayne@69
|
13 //
|
jpayne@69
|
14 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
jpayne@69
|
15 // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
jpayne@69
|
16 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
jpayne@69
|
17 // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
jpayne@69
|
18 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
jpayne@69
|
19 // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
jpayne@69
|
20 // THE SOFTWARE.
|
jpayne@69
|
21
|
jpayne@69
|
22 // This file contains types which are intended to help detect incorrect usage at compile
|
jpayne@69
|
23 // time, but should then be optimized down to basic primitives (usually, integers) by the
|
jpayne@69
|
24 // compiler.
|
jpayne@69
|
25
|
jpayne@69
|
26 #pragma once
|
jpayne@69
|
27
|
jpayne@69
|
28 #include "common.h"
|
jpayne@69
|
29 #include <inttypes.h>
|
jpayne@69
|
30
|
jpayne@69
|
31 KJ_BEGIN_HEADER
|
jpayne@69
|
32
|
jpayne@69
|
33 namespace kj {
|
jpayne@69
|
34
|
jpayne@69
|
35 // =======================================================================================
|
jpayne@69
|
36 // IDs
|
jpayne@69
|
37
|
jpayne@69
|
38 template <typename UnderlyingType, typename Label>
|
jpayne@69
|
39 struct Id {
|
jpayne@69
|
40 // A type-safe numeric ID. `UnderlyingType` is the underlying integer representation. `Label`
|
jpayne@69
|
41 // distinguishes this Id from other Id types. Sample usage:
|
jpayne@69
|
42 //
|
jpayne@69
|
43 // class Foo;
|
jpayne@69
|
44 // typedef Id<uint, Foo> FooId;
|
jpayne@69
|
45 //
|
jpayne@69
|
46 // class Bar;
|
jpayne@69
|
47 // typedef Id<uint, Bar> BarId;
|
jpayne@69
|
48 //
|
jpayne@69
|
49 // You can now use the FooId and BarId types without any possibility of accidentally using a
|
jpayne@69
|
50 // FooId when you really wanted a BarId or vice-versa.
|
jpayne@69
|
51
|
jpayne@69
|
52 UnderlyingType value;
|
jpayne@69
|
53
|
jpayne@69
|
54 inline constexpr Id(): value(0) {}
|
jpayne@69
|
55 inline constexpr explicit Id(int value): value(value) {}
|
jpayne@69
|
56
|
jpayne@69
|
57 inline constexpr bool operator==(const Id& other) const { return value == other.value; }
|
jpayne@69
|
58 inline constexpr bool operator!=(const Id& other) const { return value != other.value; }
|
jpayne@69
|
59 inline constexpr bool operator<=(const Id& other) const { return value <= other.value; }
|
jpayne@69
|
60 inline constexpr bool operator>=(const Id& other) const { return value >= other.value; }
|
jpayne@69
|
61 inline constexpr bool operator< (const Id& other) const { return value < other.value; }
|
jpayne@69
|
62 inline constexpr bool operator> (const Id& other) const { return value > other.value; }
|
jpayne@69
|
63 };
|
jpayne@69
|
64
|
jpayne@69
|
65 // =======================================================================================
|
jpayne@69
|
66 // Quantity and UnitRatio -- implement unit analysis via the type system
|
jpayne@69
|
67
|
jpayne@69
|
68 struct Unsafe_ {};
|
jpayne@69
|
69 constexpr Unsafe_ unsafe = Unsafe_();
|
jpayne@69
|
70 // Use as a parameter to constructors that are unsafe to indicate that you really do mean it.
|
jpayne@69
|
71
|
jpayne@69
|
72 template <uint64_t maxN, typename T>
|
jpayne@69
|
73 class Bounded;
|
jpayne@69
|
74 template <uint value>
|
jpayne@69
|
75 class BoundedConst;
|
jpayne@69
|
76
|
jpayne@69
|
77 template <typename T>
|
jpayne@69
|
78 struct IsIntegralOrBounded_ { static constexpr bool value = isIntegral<T>(); };
|
jpayne@69
|
79 template <uint64_t m, typename T>
|
jpayne@69
|
80 struct IsIntegralOrBounded_<Bounded<m, T>> { static constexpr bool value = true; };
|
jpayne@69
|
81 template <uint v>
|
jpayne@69
|
82 struct IsIntegralOrBounded_<BoundedConst<v>> { static constexpr bool value = true; };
|
jpayne@69
|
83
|
jpayne@69
|
84 template <typename T>
|
jpayne@69
|
85 inline constexpr bool isIntegralOrBounded() { return IsIntegralOrBounded_<T>::value; }
|
jpayne@69
|
86
|
jpayne@69
|
87 template <typename Number, typename Unit1, typename Unit2>
|
jpayne@69
|
88 class UnitRatio {
|
jpayne@69
|
89 // A multiplier used to convert Quantities of one unit to Quantities of another unit. See
|
jpayne@69
|
90 // Quantity, below.
|
jpayne@69
|
91 //
|
jpayne@69
|
92 // Construct this type by dividing one Quantity by another of a different unit. Use this type
|
jpayne@69
|
93 // by multiplying it by a Quantity, or dividing a Quantity by it.
|
jpayne@69
|
94
|
jpayne@69
|
95 static_assert(isIntegralOrBounded<Number>(),
|
jpayne@69
|
96 "Underlying type for UnitRatio must be integer.");
|
jpayne@69
|
97
|
jpayne@69
|
98 public:
|
jpayne@69
|
99 inline UnitRatio() {}
|
jpayne@69
|
100
|
jpayne@69
|
101 constexpr UnitRatio(Number unit1PerUnit2, decltype(unsafe)): unit1PerUnit2(unit1PerUnit2) {}
|
jpayne@69
|
102 // This constructor was intended to be private, but GCC complains about it being private in a
|
jpayne@69
|
103 // bunch of places that don't appear to even call it, so I made it public. Oh well.
|
jpayne@69
|
104
|
jpayne@69
|
105 template <typename OtherNumber>
|
jpayne@69
|
106 inline constexpr UnitRatio(const UnitRatio<OtherNumber, Unit1, Unit2>& other)
|
jpayne@69
|
107 : unit1PerUnit2(other.unit1PerUnit2) {}
|
jpayne@69
|
108
|
jpayne@69
|
109 template <typename OtherNumber>
|
jpayne@69
|
110 inline constexpr UnitRatio<decltype(Number()+OtherNumber()), Unit1, Unit2>
|
jpayne@69
|
111 operator+(UnitRatio<OtherNumber, Unit1, Unit2> other) const {
|
jpayne@69
|
112 return UnitRatio<decltype(Number()+OtherNumber()), Unit1, Unit2>(
|
jpayne@69
|
113 unit1PerUnit2 + other.unit1PerUnit2, unsafe);
|
jpayne@69
|
114 }
|
jpayne@69
|
115 template <typename OtherNumber>
|
jpayne@69
|
116 inline constexpr UnitRatio<decltype(Number()-OtherNumber()), Unit1, Unit2>
|
jpayne@69
|
117 operator-(UnitRatio<OtherNumber, Unit1, Unit2> other) const {
|
jpayne@69
|
118 return UnitRatio<decltype(Number()-OtherNumber()), Unit1, Unit2>(
|
jpayne@69
|
119 unit1PerUnit2 - other.unit1PerUnit2, unsafe);
|
jpayne@69
|
120 }
|
jpayne@69
|
121
|
jpayne@69
|
122 template <typename OtherNumber, typename Unit3>
|
jpayne@69
|
123 inline constexpr UnitRatio<decltype(Number()*OtherNumber()), Unit3, Unit2>
|
jpayne@69
|
124 operator*(UnitRatio<OtherNumber, Unit3, Unit1> other) const {
|
jpayne@69
|
125 // U1 / U2 * U3 / U1 = U3 / U2
|
jpayne@69
|
126 return UnitRatio<decltype(Number()*OtherNumber()), Unit3, Unit2>(
|
jpayne@69
|
127 unit1PerUnit2 * other.unit1PerUnit2, unsafe);
|
jpayne@69
|
128 }
|
jpayne@69
|
129 template <typename OtherNumber, typename Unit3>
|
jpayne@69
|
130 inline constexpr UnitRatio<decltype(Number()*OtherNumber()), Unit1, Unit3>
|
jpayne@69
|
131 operator*(UnitRatio<OtherNumber, Unit2, Unit3> other) const {
|
jpayne@69
|
132 // U1 / U2 * U2 / U3 = U1 / U3
|
jpayne@69
|
133 return UnitRatio<decltype(Number()*OtherNumber()), Unit1, Unit3>(
|
jpayne@69
|
134 unit1PerUnit2 * other.unit1PerUnit2, unsafe);
|
jpayne@69
|
135 }
|
jpayne@69
|
136
|
jpayne@69
|
137 template <typename OtherNumber, typename Unit3>
|
jpayne@69
|
138 inline constexpr UnitRatio<decltype(Number()*OtherNumber()), Unit3, Unit2>
|
jpayne@69
|
139 operator/(UnitRatio<OtherNumber, Unit1, Unit3> other) const {
|
jpayne@69
|
140 // (U1 / U2) / (U1 / U3) = U3 / U2
|
jpayne@69
|
141 return UnitRatio<decltype(Number()*OtherNumber()), Unit3, Unit2>(
|
jpayne@69
|
142 unit1PerUnit2 / other.unit1PerUnit2, unsafe);
|
jpayne@69
|
143 }
|
jpayne@69
|
144 template <typename OtherNumber, typename Unit3>
|
jpayne@69
|
145 inline constexpr UnitRatio<decltype(Number()*OtherNumber()), Unit1, Unit3>
|
jpayne@69
|
146 operator/(UnitRatio<OtherNumber, Unit3, Unit2> other) const {
|
jpayne@69
|
147 // (U1 / U2) / (U3 / U2) = U1 / U3
|
jpayne@69
|
148 return UnitRatio<decltype(Number()*OtherNumber()), Unit1, Unit3>(
|
jpayne@69
|
149 unit1PerUnit2 / other.unit1PerUnit2, unsafe);
|
jpayne@69
|
150 }
|
jpayne@69
|
151
|
jpayne@69
|
152 template <typename OtherNumber>
|
jpayne@69
|
153 inline decltype(Number() / OtherNumber())
|
jpayne@69
|
154 operator/(UnitRatio<OtherNumber, Unit1, Unit2> other) const {
|
jpayne@69
|
155 return unit1PerUnit2 / other.unit1PerUnit2;
|
jpayne@69
|
156 }
|
jpayne@69
|
157
|
jpayne@69
|
158 template <typename OtherNumber>
|
jpayne@69
|
159 inline constexpr bool operator==(const UnitRatio<OtherNumber, Unit1, Unit2>& other) const {
|
jpayne@69
|
160 return unit1PerUnit2 == other.unit1PerUnit2;
|
jpayne@69
|
161 }
|
jpayne@69
|
162 template <typename OtherNumber>
|
jpayne@69
|
163 inline constexpr bool operator!=(const UnitRatio<OtherNumber, Unit1, Unit2>& other) const {
|
jpayne@69
|
164 return unit1PerUnit2 != other.unit1PerUnit2;
|
jpayne@69
|
165 }
|
jpayne@69
|
166
|
jpayne@69
|
167 private:
|
jpayne@69
|
168 Number unit1PerUnit2;
|
jpayne@69
|
169
|
jpayne@69
|
170 template <typename OtherNumber, typename OtherUnit>
|
jpayne@69
|
171 friend class Quantity;
|
jpayne@69
|
172 template <typename OtherNumber, typename OtherUnit1, typename OtherUnit2>
|
jpayne@69
|
173 friend class UnitRatio;
|
jpayne@69
|
174
|
jpayne@69
|
175 template <typename N1, typename N2, typename U1, typename U2, typename>
|
jpayne@69
|
176 friend inline constexpr UnitRatio<decltype(N1() * N2()), U1, U2>
|
jpayne@69
|
177 operator*(N1, UnitRatio<N2, U1, U2>);
|
jpayne@69
|
178 };
|
jpayne@69
|
179
|
jpayne@69
|
180 template <typename N1, typename N2, typename U1, typename U2,
|
jpayne@69
|
181 typename = EnableIf<isIntegralOrBounded<N1>() && isIntegralOrBounded<N2>()>>
|
jpayne@69
|
182 inline constexpr UnitRatio<decltype(N1() * N2()), U1, U2>
|
jpayne@69
|
183 operator*(N1 n, UnitRatio<N2, U1, U2> r) {
|
jpayne@69
|
184 return UnitRatio<decltype(N1() * N2()), U1, U2>(n * r.unit1PerUnit2, unsafe);
|
jpayne@69
|
185 }
|
jpayne@69
|
186
|
jpayne@69
|
187 template <typename Number, typename Unit>
|
jpayne@69
|
188 class Quantity {
|
jpayne@69
|
189 // A type-safe numeric quantity, specified in terms of some unit. Two Quantities cannot be used
|
jpayne@69
|
190 // in arithmetic unless they use the same unit. The `Unit` type parameter is only used to prevent
|
jpayne@69
|
191 // accidental mixing of units; this type is never instantiated and can very well be incomplete.
|
jpayne@69
|
192 // `Number` is the underlying primitive numeric type.
|
jpayne@69
|
193 //
|
jpayne@69
|
194 // Quantities support most basic arithmetic operators, intelligently handling units, and
|
jpayne@69
|
195 // automatically casting the underlying type in the same way that the compiler would.
|
jpayne@69
|
196 //
|
jpayne@69
|
197 // To convert a primitive number to a Quantity, multiply it by unit<Quantity<N, U>>().
|
jpayne@69
|
198 // To convert a Quantity to a primitive number, divide it by unit<Quantity<N, U>>().
|
jpayne@69
|
199 // To convert a Quantity of one unit to another unit, multiply or divide by a UnitRatio.
|
jpayne@69
|
200 //
|
jpayne@69
|
201 // The Quantity class is not well-suited to hardcore physics as it does not allow multiplying
|
jpayne@69
|
202 // one quantity by another. For example, multiplying meters by meters won't get you square
|
jpayne@69
|
203 // meters; it will get you a compiler error. It would be interesting to see if template
|
jpayne@69
|
204 // metaprogramming could properly deal with such things but this isn't needed for the present
|
jpayne@69
|
205 // use case.
|
jpayne@69
|
206 //
|
jpayne@69
|
207 // Sample usage:
|
jpayne@69
|
208 //
|
jpayne@69
|
209 // class SecondsLabel;
|
jpayne@69
|
210 // typedef Quantity<double, SecondsLabel> Seconds;
|
jpayne@69
|
211 // constexpr Seconds SECONDS = unit<Seconds>();
|
jpayne@69
|
212 //
|
jpayne@69
|
213 // class MinutesLabel;
|
jpayne@69
|
214 // typedef Quantity<double, MinutesLabel> Minutes;
|
jpayne@69
|
215 // constexpr Minutes MINUTES = unit<Minutes>();
|
jpayne@69
|
216 //
|
jpayne@69
|
217 // constexpr UnitRatio<double, SecondsLabel, MinutesLabel> SECONDS_PER_MINUTE =
|
jpayne@69
|
218 // 60 * SECONDS / MINUTES;
|
jpayne@69
|
219 //
|
jpayne@69
|
220 // void waitFor(Seconds seconds) {
|
jpayne@69
|
221 // sleep(seconds / SECONDS);
|
jpayne@69
|
222 // }
|
jpayne@69
|
223 // void waitFor(Minutes minutes) {
|
jpayne@69
|
224 // waitFor(minutes * SECONDS_PER_MINUTE);
|
jpayne@69
|
225 // }
|
jpayne@69
|
226 //
|
jpayne@69
|
227 // void waitThreeMinutes() {
|
jpayne@69
|
228 // waitFor(3 * MINUTES);
|
jpayne@69
|
229 // }
|
jpayne@69
|
230
|
jpayne@69
|
231 static_assert(isIntegralOrBounded<Number>(),
|
jpayne@69
|
232 "Underlying type for Quantity must be integer.");
|
jpayne@69
|
233
|
jpayne@69
|
234 public:
|
jpayne@69
|
235 inline constexpr Quantity() = default;
|
jpayne@69
|
236
|
jpayne@69
|
237 inline constexpr Quantity(MaxValue_): value(maxValue) {}
|
jpayne@69
|
238 inline constexpr Quantity(MinValue_): value(minValue) {}
|
jpayne@69
|
239 // Allow initialization from maxValue and minValue.
|
jpayne@69
|
240 // TODO(msvc): decltype(maxValue) and decltype(minValue) deduce unknown-type for these function
|
jpayne@69
|
241 // parameters, causing the compiler to complain of a duplicate constructor definition, so we
|
jpayne@69
|
242 // specify MaxValue_ and MinValue_ types explicitly.
|
jpayne@69
|
243
|
jpayne@69
|
244 inline constexpr Quantity(Number value, decltype(unsafe)): value(value) {}
|
jpayne@69
|
245 // This constructor was intended to be private, but GCC complains about it being private in a
|
jpayne@69
|
246 // bunch of places that don't appear to even call it, so I made it public. Oh well.
|
jpayne@69
|
247
|
jpayne@69
|
248 template <typename OtherNumber>
|
jpayne@69
|
249 inline constexpr Quantity(const Quantity<OtherNumber, Unit>& other)
|
jpayne@69
|
250 : value(other.value) {}
|
jpayne@69
|
251
|
jpayne@69
|
252 template <typename OtherNumber>
|
jpayne@69
|
253 inline Quantity& operator=(const Quantity<OtherNumber, Unit>& other) {
|
jpayne@69
|
254 value = other.value;
|
jpayne@69
|
255 return *this;
|
jpayne@69
|
256 }
|
jpayne@69
|
257
|
jpayne@69
|
258 template <typename OtherNumber>
|
jpayne@69
|
259 inline constexpr Quantity<decltype(Number() + OtherNumber()), Unit>
|
jpayne@69
|
260 operator+(const Quantity<OtherNumber, Unit>& other) const {
|
jpayne@69
|
261 return Quantity<decltype(Number() + OtherNumber()), Unit>(value + other.value, unsafe);
|
jpayne@69
|
262 }
|
jpayne@69
|
263 template <typename OtherNumber>
|
jpayne@69
|
264 inline constexpr Quantity<decltype(Number() - OtherNumber()), Unit>
|
jpayne@69
|
265 operator-(const Quantity<OtherNumber, Unit>& other) const {
|
jpayne@69
|
266 return Quantity<decltype(Number() - OtherNumber()), Unit>(value - other.value, unsafe);
|
jpayne@69
|
267 }
|
jpayne@69
|
268 template <typename OtherNumber, typename = EnableIf<isIntegralOrBounded<OtherNumber>()>>
|
jpayne@69
|
269 inline constexpr Quantity<decltype(Number() * OtherNumber()), Unit>
|
jpayne@69
|
270 operator*(OtherNumber other) const {
|
jpayne@69
|
271 return Quantity<decltype(Number() * other), Unit>(value * other, unsafe);
|
jpayne@69
|
272 }
|
jpayne@69
|
273 template <typename OtherNumber, typename = EnableIf<isIntegralOrBounded<OtherNumber>()>>
|
jpayne@69
|
274 inline constexpr Quantity<decltype(Number() / OtherNumber()), Unit>
|
jpayne@69
|
275 operator/(OtherNumber other) const {
|
jpayne@69
|
276 return Quantity<decltype(Number() / other), Unit>(value / other, unsafe);
|
jpayne@69
|
277 }
|
jpayne@69
|
278 template <typename OtherNumber>
|
jpayne@69
|
279 inline constexpr decltype(Number() / OtherNumber())
|
jpayne@69
|
280 operator/(const Quantity<OtherNumber, Unit>& other) const {
|
jpayne@69
|
281 return value / other.value;
|
jpayne@69
|
282 }
|
jpayne@69
|
283 template <typename OtherNumber>
|
jpayne@69
|
284 inline constexpr Quantity<decltype(Number() % OtherNumber()), Unit>
|
jpayne@69
|
285 operator%(const Quantity<OtherNumber, Unit>& other) const {
|
jpayne@69
|
286 return Quantity<decltype(Number() % OtherNumber()), Unit>(value % other.value, unsafe);
|
jpayne@69
|
287 }
|
jpayne@69
|
288
|
jpayne@69
|
289 template <typename OtherNumber, typename OtherUnit>
|
jpayne@69
|
290 inline constexpr Quantity<decltype(Number() * OtherNumber()), OtherUnit>
|
jpayne@69
|
291 operator*(UnitRatio<OtherNumber, OtherUnit, Unit> ratio) const {
|
jpayne@69
|
292 return Quantity<decltype(Number() * OtherNumber()), OtherUnit>(
|
jpayne@69
|
293 value * ratio.unit1PerUnit2, unsafe);
|
jpayne@69
|
294 }
|
jpayne@69
|
295 template <typename OtherNumber, typename OtherUnit>
|
jpayne@69
|
296 inline constexpr Quantity<decltype(Number() / OtherNumber()), OtherUnit>
|
jpayne@69
|
297 operator/(UnitRatio<OtherNumber, Unit, OtherUnit> ratio) const {
|
jpayne@69
|
298 return Quantity<decltype(Number() / OtherNumber()), OtherUnit>(
|
jpayne@69
|
299 value / ratio.unit1PerUnit2, unsafe);
|
jpayne@69
|
300 }
|
jpayne@69
|
301 template <typename OtherNumber, typename OtherUnit>
|
jpayne@69
|
302 inline constexpr Quantity<decltype(Number() % OtherNumber()), Unit>
|
jpayne@69
|
303 operator%(UnitRatio<OtherNumber, Unit, OtherUnit> ratio) const {
|
jpayne@69
|
304 return Quantity<decltype(Number() % OtherNumber()), Unit>(
|
jpayne@69
|
305 value % ratio.unit1PerUnit2, unsafe);
|
jpayne@69
|
306 }
|
jpayne@69
|
307 template <typename OtherNumber, typename OtherUnit>
|
jpayne@69
|
308 inline constexpr UnitRatio<decltype(Number() / OtherNumber()), Unit, OtherUnit>
|
jpayne@69
|
309 operator/(Quantity<OtherNumber, OtherUnit> other) const {
|
jpayne@69
|
310 return UnitRatio<decltype(Number() / OtherNumber()), Unit, OtherUnit>(
|
jpayne@69
|
311 value / other.value, unsafe);
|
jpayne@69
|
312 }
|
jpayne@69
|
313
|
jpayne@69
|
314 template <typename OtherNumber>
|
jpayne@69
|
315 inline constexpr bool operator==(const Quantity<OtherNumber, Unit>& other) const {
|
jpayne@69
|
316 return value == other.value;
|
jpayne@69
|
317 }
|
jpayne@69
|
318 template <typename OtherNumber>
|
jpayne@69
|
319 inline constexpr bool operator!=(const Quantity<OtherNumber, Unit>& other) const {
|
jpayne@69
|
320 return value != other.value;
|
jpayne@69
|
321 }
|
jpayne@69
|
322 template <typename OtherNumber>
|
jpayne@69
|
323 inline constexpr bool operator<=(const Quantity<OtherNumber, Unit>& other) const {
|
jpayne@69
|
324 return value <= other.value;
|
jpayne@69
|
325 }
|
jpayne@69
|
326 template <typename OtherNumber>
|
jpayne@69
|
327 inline constexpr bool operator>=(const Quantity<OtherNumber, Unit>& other) const {
|
jpayne@69
|
328 return value >= other.value;
|
jpayne@69
|
329 }
|
jpayne@69
|
330 template <typename OtherNumber>
|
jpayne@69
|
331 inline constexpr bool operator<(const Quantity<OtherNumber, Unit>& other) const {
|
jpayne@69
|
332 return value < other.value;
|
jpayne@69
|
333 }
|
jpayne@69
|
334 template <typename OtherNumber>
|
jpayne@69
|
335 inline constexpr bool operator>(const Quantity<OtherNumber, Unit>& other) const {
|
jpayne@69
|
336 return value > other.value;
|
jpayne@69
|
337 }
|
jpayne@69
|
338
|
jpayne@69
|
339 template <typename OtherNumber>
|
jpayne@69
|
340 inline Quantity& operator+=(const Quantity<OtherNumber, Unit>& other) {
|
jpayne@69
|
341 value += other.value;
|
jpayne@69
|
342 return *this;
|
jpayne@69
|
343 }
|
jpayne@69
|
344 template <typename OtherNumber>
|
jpayne@69
|
345 inline Quantity& operator-=(const Quantity<OtherNumber, Unit>& other) {
|
jpayne@69
|
346 value -= other.value;
|
jpayne@69
|
347 return *this;
|
jpayne@69
|
348 }
|
jpayne@69
|
349 template <typename OtherNumber>
|
jpayne@69
|
350 inline Quantity& operator*=(OtherNumber other) {
|
jpayne@69
|
351 value *= other;
|
jpayne@69
|
352 return *this;
|
jpayne@69
|
353 }
|
jpayne@69
|
354 template <typename OtherNumber>
|
jpayne@69
|
355 inline Quantity& operator/=(OtherNumber other) {
|
jpayne@69
|
356 value /= other.value;
|
jpayne@69
|
357 return *this;
|
jpayne@69
|
358 }
|
jpayne@69
|
359
|
jpayne@69
|
360 private:
|
jpayne@69
|
361 Number value;
|
jpayne@69
|
362
|
jpayne@69
|
363 template <typename OtherNumber, typename OtherUnit>
|
jpayne@69
|
364 friend class Quantity;
|
jpayne@69
|
365
|
jpayne@69
|
366 template <typename Number1, typename Number2, typename Unit2, typename>
|
jpayne@69
|
367 friend inline constexpr auto operator*(Number1 a, Quantity<Number2, Unit2> b)
|
jpayne@69
|
368 -> Quantity<decltype(Number1() * Number2()), Unit2>;
|
jpayne@69
|
369 };
|
jpayne@69
|
370
|
jpayne@69
|
371 template <typename T> struct Unit_ {
|
jpayne@69
|
372 static inline constexpr T get() { return T(1); }
|
jpayne@69
|
373 };
|
jpayne@69
|
374 template <typename T, typename U>
|
jpayne@69
|
375 struct Unit_<Quantity<T, U>> {
|
jpayne@69
|
376 static inline constexpr Quantity<decltype(Unit_<T>::get()), U> get() {
|
jpayne@69
|
377 return Quantity<decltype(Unit_<T>::get()), U>(Unit_<T>::get(), unsafe);
|
jpayne@69
|
378 }
|
jpayne@69
|
379 };
|
jpayne@69
|
380
|
jpayne@69
|
381 template <typename T>
|
jpayne@69
|
382 inline constexpr auto unit() -> decltype(Unit_<T>::get()) { return Unit_<T>::get(); }
|
jpayne@69
|
383 // unit<Quantity<T, U>>() returns a Quantity of value 1. It also, intentionally, works on basic
|
jpayne@69
|
384 // numeric types.
|
jpayne@69
|
385
|
jpayne@69
|
386 template <typename Number1, typename Number2, typename Unit,
|
jpayne@69
|
387 typename = EnableIf<isIntegralOrBounded<Number1>()>>
|
jpayne@69
|
388 inline constexpr auto operator*(Number1 a, Quantity<Number2, Unit> b)
|
jpayne@69
|
389 -> Quantity<decltype(Number1() * Number2()), Unit> {
|
jpayne@69
|
390 return Quantity<decltype(Number1() * Number2()), Unit>(a * b.value, unsafe);
|
jpayne@69
|
391 }
|
jpayne@69
|
392
|
jpayne@69
|
393 template <typename Number1, typename Number2, typename Unit, typename Unit2>
|
jpayne@69
|
394 inline constexpr auto operator*(UnitRatio<Number1, Unit2, Unit> ratio,
|
jpayne@69
|
395 Quantity<Number2, Unit> measure)
|
jpayne@69
|
396 -> decltype(measure * ratio) {
|
jpayne@69
|
397 return measure * ratio;
|
jpayne@69
|
398 }
|
jpayne@69
|
399
|
jpayne@69
|
400 // =======================================================================================
|
jpayne@69
|
401 // Absolute measures
|
jpayne@69
|
402
|
jpayne@69
|
403 template <typename T, typename Label>
|
jpayne@69
|
404 class Absolute {
|
jpayne@69
|
405 // Wraps some other value -- typically a Quantity -- but represents a value measured based on
|
jpayne@69
|
406 // some absolute origin. For example, if `Duration` is a type representing a time duration,
|
jpayne@69
|
407 // Absolute<Duration, UnixEpoch> might be a calendar date.
|
jpayne@69
|
408 //
|
jpayne@69
|
409 // Since Absolute represents measurements relative to some arbitrary origin, the only sensible
|
jpayne@69
|
410 // arithmetic to perform on them is addition and subtraction.
|
jpayne@69
|
411
|
jpayne@69
|
412 // TODO(someday): Do the same automatic expansion of integer width that Quantity does? Doesn't
|
jpayne@69
|
413 // matter for our time use case, where we always use 64-bit anyway. Note that fixing this
|
jpayne@69
|
414 // would implicitly allow things like multiplying an Absolute by a UnitRatio to change its
|
jpayne@69
|
415 // units, which is actually totally logical and kind of neat.
|
jpayne@69
|
416
|
jpayne@69
|
417 public:
|
jpayne@69
|
418 inline constexpr Absolute(MaxValue_): value(maxValue) {}
|
jpayne@69
|
419 inline constexpr Absolute(MinValue_): value(minValue) {}
|
jpayne@69
|
420 // Allow initialization from maxValue and minValue.
|
jpayne@69
|
421 // TODO(msvc): decltype(maxValue) and decltype(minValue) deduce unknown-type for these function
|
jpayne@69
|
422 // parameters, causing the compiler to complain of a duplicate constructor definition, so we
|
jpayne@69
|
423 // specify MaxValue_ and MinValue_ types explicitly.
|
jpayne@69
|
424
|
jpayne@69
|
425 inline constexpr Absolute operator+(const T& other) const { return Absolute(value + other); }
|
jpayne@69
|
426 inline constexpr Absolute operator-(const T& other) const { return Absolute(value - other); }
|
jpayne@69
|
427 inline constexpr T operator-(const Absolute& other) const { return value - other.value; }
|
jpayne@69
|
428
|
jpayne@69
|
429 inline Absolute& operator+=(const T& other) { value += other; return *this; }
|
jpayne@69
|
430 inline Absolute& operator-=(const T& other) { value -= other; return *this; }
|
jpayne@69
|
431
|
jpayne@69
|
432 inline constexpr bool operator==(const Absolute& other) const { return value == other.value; }
|
jpayne@69
|
433 inline constexpr bool operator!=(const Absolute& other) const { return value != other.value; }
|
jpayne@69
|
434 inline constexpr bool operator<=(const Absolute& other) const { return value <= other.value; }
|
jpayne@69
|
435 inline constexpr bool operator>=(const Absolute& other) const { return value >= other.value; }
|
jpayne@69
|
436 inline constexpr bool operator< (const Absolute& other) const { return value < other.value; }
|
jpayne@69
|
437 inline constexpr bool operator> (const Absolute& other) const { return value > other.value; }
|
jpayne@69
|
438
|
jpayne@69
|
439 private:
|
jpayne@69
|
440 T value;
|
jpayne@69
|
441
|
jpayne@69
|
442 explicit constexpr Absolute(T value): value(value) {}
|
jpayne@69
|
443
|
jpayne@69
|
444 template <typename U>
|
jpayne@69
|
445 friend inline constexpr U origin();
|
jpayne@69
|
446 };
|
jpayne@69
|
447
|
jpayne@69
|
448 template <typename T, typename Label>
|
jpayne@69
|
449 inline constexpr Absolute<T, Label> operator+(const T& a, const Absolute<T, Label>& b) {
|
jpayne@69
|
450 return b + a;
|
jpayne@69
|
451 }
|
jpayne@69
|
452
|
jpayne@69
|
453 template <typename T> struct UnitOf_ { typedef T Type; };
|
jpayne@69
|
454 template <typename T, typename Label> struct UnitOf_<Absolute<T, Label>> { typedef T Type; };
|
jpayne@69
|
455 template <typename T>
|
jpayne@69
|
456 using UnitOf = typename UnitOf_<T>::Type;
|
jpayne@69
|
457 // UnitOf<Absolute<T, U>> is T. UnitOf<AnythingElse> is AnythingElse.
|
jpayne@69
|
458
|
jpayne@69
|
459 template <typename T>
|
jpayne@69
|
460 inline constexpr T origin() { return T(0 * unit<UnitOf<T>>()); }
|
jpayne@69
|
461 // origin<Absolute<T, U>>() returns an Absolute of value 0. It also, intentionally, works on basic
|
jpayne@69
|
462 // numeric types.
|
jpayne@69
|
463
|
jpayne@69
|
464 // =======================================================================================
|
jpayne@69
|
465 // Overflow avoidance
|
jpayne@69
|
466
|
jpayne@69
|
467 template <uint64_t n, uint accum = 0>
|
jpayne@69
|
468 struct BitCount_ {
|
jpayne@69
|
469 static constexpr uint value = BitCount_<(n >> 1), accum + 1>::value;
|
jpayne@69
|
470 };
|
jpayne@69
|
471 template <uint accum>
|
jpayne@69
|
472 struct BitCount_<0, accum> {
|
jpayne@69
|
473 static constexpr uint value = accum;
|
jpayne@69
|
474 };
|
jpayne@69
|
475
|
jpayne@69
|
476 template <uint64_t n>
|
jpayne@69
|
477 inline constexpr uint bitCount() { return BitCount_<n>::value; }
|
jpayne@69
|
478 // Number of bits required to represent the number `n`.
|
jpayne@69
|
479
|
jpayne@69
|
480 template <uint bitCountBitCount> struct AtLeastUInt_ {
|
jpayne@69
|
481 static_assert(bitCountBitCount < 7, "don't know how to represent integers over 64 bits");
|
jpayne@69
|
482 };
|
jpayne@69
|
483 template <> struct AtLeastUInt_<0> { typedef uint8_t Type; };
|
jpayne@69
|
484 template <> struct AtLeastUInt_<1> { typedef uint8_t Type; };
|
jpayne@69
|
485 template <> struct AtLeastUInt_<2> { typedef uint8_t Type; };
|
jpayne@69
|
486 template <> struct AtLeastUInt_<3> { typedef uint8_t Type; };
|
jpayne@69
|
487 template <> struct AtLeastUInt_<4> { typedef uint16_t Type; };
|
jpayne@69
|
488 template <> struct AtLeastUInt_<5> { typedef uint32_t Type; };
|
jpayne@69
|
489 template <> struct AtLeastUInt_<6> { typedef uint64_t Type; };
|
jpayne@69
|
490
|
jpayne@69
|
491 template <uint bits>
|
jpayne@69
|
492 using AtLeastUInt = typename AtLeastUInt_<bitCount<max(bits, 1) - 1>()>::Type;
|
jpayne@69
|
493 // AtLeastUInt<n> is an unsigned integer of at least n bits. E.g. AtLeastUInt<12> is uint16_t.
|
jpayne@69
|
494
|
jpayne@69
|
495 // -------------------------------------------------------------------
|
jpayne@69
|
496
|
jpayne@69
|
497 template <uint value>
|
jpayne@69
|
498 class BoundedConst {
|
jpayne@69
|
499 // A constant integer value on which we can do bit size analysis.
|
jpayne@69
|
500
|
jpayne@69
|
501 public:
|
jpayne@69
|
502 BoundedConst() = default;
|
jpayne@69
|
503
|
jpayne@69
|
504 inline constexpr uint unwrap() const { return value; }
|
jpayne@69
|
505
|
jpayne@69
|
506 #define OP(op, check) \
|
jpayne@69
|
507 template <uint other> \
|
jpayne@69
|
508 inline constexpr BoundedConst<(value op other)> \
|
jpayne@69
|
509 operator op(BoundedConst<other>) const { \
|
jpayne@69
|
510 static_assert(check, "overflow in BoundedConst arithmetic"); \
|
jpayne@69
|
511 return BoundedConst<(value op other)>(); \
|
jpayne@69
|
512 }
|
jpayne@69
|
513 #define COMPARE_OP(op) \
|
jpayne@69
|
514 template <uint other> \
|
jpayne@69
|
515 inline constexpr bool operator op(BoundedConst<other>) const { \
|
jpayne@69
|
516 return value op other; \
|
jpayne@69
|
517 }
|
jpayne@69
|
518
|
jpayne@69
|
519 OP(+, value + other >= value)
|
jpayne@69
|
520 OP(-, value - other <= value)
|
jpayne@69
|
521 OP(*, value * other / other == value)
|
jpayne@69
|
522 OP(/, true) // div by zero already errors out; no other division ever overflows
|
jpayne@69
|
523 OP(%, true) // mod by zero already errors out; no other modulus ever overflows
|
jpayne@69
|
524 OP(<<, value << other >= value)
|
jpayne@69
|
525 OP(>>, true) // right shift can't overflow
|
jpayne@69
|
526 OP(&, true) // bitwise ops can't overflow
|
jpayne@69
|
527 OP(|, true) // bitwise ops can't overflow
|
jpayne@69
|
528
|
jpayne@69
|
529 COMPARE_OP(==)
|
jpayne@69
|
530 COMPARE_OP(!=)
|
jpayne@69
|
531 COMPARE_OP(< )
|
jpayne@69
|
532 COMPARE_OP(> )
|
jpayne@69
|
533 COMPARE_OP(<=)
|
jpayne@69
|
534 COMPARE_OP(>=)
|
jpayne@69
|
535 #undef OP
|
jpayne@69
|
536 #undef COMPARE_OP
|
jpayne@69
|
537 };
|
jpayne@69
|
538
|
jpayne@69
|
539 template <uint64_t m, typename T>
|
jpayne@69
|
540 struct Unit_<Bounded<m, T>> {
|
jpayne@69
|
541 static inline constexpr BoundedConst<1> get() { return BoundedConst<1>(); }
|
jpayne@69
|
542 };
|
jpayne@69
|
543
|
jpayne@69
|
544 template <uint value>
|
jpayne@69
|
545 struct Unit_<BoundedConst<value>> {
|
jpayne@69
|
546 static inline constexpr BoundedConst<1> get() { return BoundedConst<1>(); }
|
jpayne@69
|
547 };
|
jpayne@69
|
548
|
jpayne@69
|
549 template <uint value>
|
jpayne@69
|
550 inline constexpr BoundedConst<value> bounded() {
|
jpayne@69
|
551 return BoundedConst<value>();
|
jpayne@69
|
552 }
|
jpayne@69
|
553
|
jpayne@69
|
554 template <uint64_t a, uint64_t b>
|
jpayne@69
|
555 static constexpr uint64_t boundedAdd() {
|
jpayne@69
|
556 static_assert(a + b >= a, "possible overflow detected");
|
jpayne@69
|
557 return a + b;
|
jpayne@69
|
558 }
|
jpayne@69
|
559 template <uint64_t a, uint64_t b>
|
jpayne@69
|
560 static constexpr uint64_t boundedSub() {
|
jpayne@69
|
561 static_assert(a - b <= a, "possible underflow detected");
|
jpayne@69
|
562 return a - b;
|
jpayne@69
|
563 }
|
jpayne@69
|
564 template <uint64_t a, uint64_t b>
|
jpayne@69
|
565 static constexpr uint64_t boundedMul() {
|
jpayne@69
|
566 static_assert(a * b / b == a, "possible overflow detected");
|
jpayne@69
|
567 return a * b;
|
jpayne@69
|
568 }
|
jpayne@69
|
569 template <uint64_t a, uint64_t b>
|
jpayne@69
|
570 static constexpr uint64_t boundedLShift() {
|
jpayne@69
|
571 static_assert(a << b >= a, "possible overflow detected");
|
jpayne@69
|
572 return a << b;
|
jpayne@69
|
573 }
|
jpayne@69
|
574
|
jpayne@69
|
575 template <uint a, uint b>
|
jpayne@69
|
576 inline constexpr BoundedConst<kj::min(a, b)> min(BoundedConst<a>, BoundedConst<b>) {
|
jpayne@69
|
577 return bounded<kj::min(a, b)>();
|
jpayne@69
|
578 }
|
jpayne@69
|
579 template <uint a, uint b>
|
jpayne@69
|
580 inline constexpr BoundedConst<kj::max(a, b)> max(BoundedConst<a>, BoundedConst<b>) {
|
jpayne@69
|
581 return bounded<kj::max(a, b)>();
|
jpayne@69
|
582 }
|
jpayne@69
|
583 // We need to override min() and max() between constants because the ternary operator in the
|
jpayne@69
|
584 // default implementation would complain.
|
jpayne@69
|
585
|
jpayne@69
|
586 // -------------------------------------------------------------------
|
jpayne@69
|
587
|
jpayne@69
|
588 template <uint64_t maxN, typename T>
|
jpayne@69
|
589 class Bounded {
|
jpayne@69
|
590 public:
|
jpayne@69
|
591 static_assert(maxN <= T(kj::maxValue), "possible overflow detected");
|
jpayne@69
|
592
|
jpayne@69
|
593 Bounded() = default;
|
jpayne@69
|
594
|
jpayne@69
|
595 Bounded(const Bounded& other) = default;
|
jpayne@69
|
596 template <typename OtherInt, typename = EnableIf<isIntegral<OtherInt>()>>
|
jpayne@69
|
597 inline constexpr Bounded(OtherInt value): value(value) {
|
jpayne@69
|
598 static_assert(OtherInt(maxValue) <= maxN, "possible overflow detected");
|
jpayne@69
|
599 }
|
jpayne@69
|
600 template <uint64_t otherMax, typename OtherT>
|
jpayne@69
|
601 inline constexpr Bounded(const Bounded<otherMax, OtherT>& other)
|
jpayne@69
|
602 : value(other.value) {
|
jpayne@69
|
603 static_assert(otherMax <= maxN, "possible overflow detected");
|
jpayne@69
|
604 }
|
jpayne@69
|
605 template <uint otherValue>
|
jpayne@69
|
606 inline constexpr Bounded(BoundedConst<otherValue>)
|
jpayne@69
|
607 : value(otherValue) {
|
jpayne@69
|
608 static_assert(otherValue <= maxN, "overflow detected");
|
jpayne@69
|
609 }
|
jpayne@69
|
610
|
jpayne@69
|
611 Bounded& operator=(const Bounded& other) = default;
|
jpayne@69
|
612 template <typename OtherInt, typename = EnableIf<isIntegral<OtherInt>()>>
|
jpayne@69
|
613 Bounded& operator=(OtherInt other) {
|
jpayne@69
|
614 static_assert(OtherInt(maxValue) <= maxN, "possible overflow detected");
|
jpayne@69
|
615 value = other;
|
jpayne@69
|
616 return *this;
|
jpayne@69
|
617 }
|
jpayne@69
|
618 template <uint64_t otherMax, typename OtherT>
|
jpayne@69
|
619 inline Bounded& operator=(const Bounded<otherMax, OtherT>& other) {
|
jpayne@69
|
620 static_assert(otherMax <= maxN, "possible overflow detected");
|
jpayne@69
|
621 value = other.value;
|
jpayne@69
|
622 return *this;
|
jpayne@69
|
623 }
|
jpayne@69
|
624 template <uint otherValue>
|
jpayne@69
|
625 inline Bounded& operator=(BoundedConst<otherValue>) {
|
jpayne@69
|
626 static_assert(otherValue <= maxN, "overflow detected");
|
jpayne@69
|
627 value = otherValue;
|
jpayne@69
|
628 return *this;
|
jpayne@69
|
629 }
|
jpayne@69
|
630
|
jpayne@69
|
631 inline constexpr T unwrap() const { return value; }
|
jpayne@69
|
632
|
jpayne@69
|
633 #define OP(op, newMax) \
|
jpayne@69
|
634 template <uint64_t otherMax, typename otherT> \
|
jpayne@69
|
635 inline constexpr Bounded<newMax, decltype(T() op otherT())> \
|
jpayne@69
|
636 operator op(const Bounded<otherMax, otherT>& other) const { \
|
jpayne@69
|
637 return Bounded<newMax, decltype(T() op otherT())>(value op other.value, unsafe); \
|
jpayne@69
|
638 }
|
jpayne@69
|
639 #define COMPARE_OP(op) \
|
jpayne@69
|
640 template <uint64_t otherMax, typename OtherT> \
|
jpayne@69
|
641 inline constexpr bool operator op(const Bounded<otherMax, OtherT>& other) const { \
|
jpayne@69
|
642 return value op other.value; \
|
jpayne@69
|
643 }
|
jpayne@69
|
644
|
jpayne@69
|
645 OP(+, (boundedAdd<maxN, otherMax>()))
|
jpayne@69
|
646 OP(*, (boundedMul<maxN, otherMax>()))
|
jpayne@69
|
647 OP(/, maxN)
|
jpayne@69
|
648 OP(%, otherMax - 1)
|
jpayne@69
|
649
|
jpayne@69
|
650 // operator- is intentionally omitted because we mostly use this with unsigned types, and
|
jpayne@69
|
651 // subtraction requires proof that subtrahend is not greater than the minuend.
|
jpayne@69
|
652
|
jpayne@69
|
653 COMPARE_OP(==)
|
jpayne@69
|
654 COMPARE_OP(!=)
|
jpayne@69
|
655 COMPARE_OP(< )
|
jpayne@69
|
656 COMPARE_OP(> )
|
jpayne@69
|
657 COMPARE_OP(<=)
|
jpayne@69
|
658 COMPARE_OP(>=)
|
jpayne@69
|
659
|
jpayne@69
|
660 #undef OP
|
jpayne@69
|
661 #undef COMPARE_OP
|
jpayne@69
|
662
|
jpayne@69
|
663 template <uint64_t newMax, typename ErrorFunc>
|
jpayne@69
|
664 inline Bounded<newMax, T> assertMax(ErrorFunc&& func) const {
|
jpayne@69
|
665 // Assert that the number is no more than `newMax`. Otherwise, call `func`.
|
jpayne@69
|
666 static_assert(newMax < maxN, "this bounded size assertion is redundant");
|
jpayne@69
|
667 if (KJ_UNLIKELY(value > newMax)) func();
|
jpayne@69
|
668 return Bounded<newMax, T>(value, unsafe);
|
jpayne@69
|
669 }
|
jpayne@69
|
670
|
jpayne@69
|
671 template <uint64_t otherMax, typename OtherT, typename ErrorFunc>
|
jpayne@69
|
672 inline Bounded<maxN, decltype(T() - OtherT())> subtractChecked(
|
jpayne@69
|
673 const Bounded<otherMax, OtherT>& other, ErrorFunc&& func) const {
|
jpayne@69
|
674 // Subtract a number, calling func() if the result would underflow.
|
jpayne@69
|
675 if (KJ_UNLIKELY(value < other.value)) func();
|
jpayne@69
|
676 return Bounded<maxN, decltype(T() - OtherT())>(value - other.value, unsafe);
|
jpayne@69
|
677 }
|
jpayne@69
|
678
|
jpayne@69
|
679 template <uint otherValue, typename ErrorFunc>
|
jpayne@69
|
680 inline Bounded<maxN - otherValue, T> subtractChecked(
|
jpayne@69
|
681 BoundedConst<otherValue>, ErrorFunc&& func) const {
|
jpayne@69
|
682 // Subtract a number, calling func() if the result would underflow.
|
jpayne@69
|
683 static_assert(otherValue <= maxN, "underflow detected");
|
jpayne@69
|
684 if (KJ_UNLIKELY(value < otherValue)) func();
|
jpayne@69
|
685 return Bounded<maxN - otherValue, T>(value - otherValue, unsafe);
|
jpayne@69
|
686 }
|
jpayne@69
|
687
|
jpayne@69
|
688 template <uint64_t otherMax, typename OtherT>
|
jpayne@69
|
689 inline Maybe<Bounded<maxN, decltype(T() - OtherT())>> trySubtract(
|
jpayne@69
|
690 const Bounded<otherMax, OtherT>& other) const {
|
jpayne@69
|
691 // Subtract a number, calling func() if the result would underflow.
|
jpayne@69
|
692 if (value < other.value) {
|
jpayne@69
|
693 return nullptr;
|
jpayne@69
|
694 } else {
|
jpayne@69
|
695 return Bounded<maxN, decltype(T() - OtherT())>(value - other.value, unsafe);
|
jpayne@69
|
696 }
|
jpayne@69
|
697 }
|
jpayne@69
|
698
|
jpayne@69
|
699 template <uint otherValue>
|
jpayne@69
|
700 inline Maybe<Bounded<maxN - otherValue, T>> trySubtract(BoundedConst<otherValue>) const {
|
jpayne@69
|
701 // Subtract a number, calling func() if the result would underflow.
|
jpayne@69
|
702 if (value < otherValue) {
|
jpayne@69
|
703 return nullptr;
|
jpayne@69
|
704 } else {
|
jpayne@69
|
705 return Bounded<maxN - otherValue, T>(value - otherValue, unsafe);
|
jpayne@69
|
706 }
|
jpayne@69
|
707 }
|
jpayne@69
|
708
|
jpayne@69
|
709 inline constexpr Bounded(T value, decltype(unsafe)): value(value) {}
|
jpayne@69
|
710 template <uint64_t otherMax, typename OtherT>
|
jpayne@69
|
711 inline constexpr Bounded(Bounded<otherMax, OtherT> value, decltype(unsafe))
|
jpayne@69
|
712 : value(value.value) {}
|
jpayne@69
|
713 // Mainly for internal use.
|
jpayne@69
|
714 //
|
jpayne@69
|
715 // Only use these as a last resort, with ample commentary on why you think it's safe.
|
jpayne@69
|
716
|
jpayne@69
|
717 private:
|
jpayne@69
|
718 T value;
|
jpayne@69
|
719
|
jpayne@69
|
720 template <uint64_t, typename>
|
jpayne@69
|
721 friend class Bounded;
|
jpayne@69
|
722 };
|
jpayne@69
|
723
|
jpayne@69
|
724 template <typename Number>
|
jpayne@69
|
725 inline constexpr Bounded<Number(kj::maxValue), Number> bounded(Number value) {
|
jpayne@69
|
726 return Bounded<Number(kj::maxValue), Number>(value, unsafe);
|
jpayne@69
|
727 }
|
jpayne@69
|
728
|
jpayne@69
|
729 inline constexpr Bounded<1, uint8_t> bounded(bool value) {
|
jpayne@69
|
730 return Bounded<1, uint8_t>(value, unsafe);
|
jpayne@69
|
731 }
|
jpayne@69
|
732
|
jpayne@69
|
733 template <uint bits, typename Number>
|
jpayne@69
|
734 inline constexpr Bounded<maxValueForBits<bits>(), Number> assumeBits(Number value) {
|
jpayne@69
|
735 return Bounded<maxValueForBits<bits>(), Number>(value, unsafe);
|
jpayne@69
|
736 }
|
jpayne@69
|
737
|
jpayne@69
|
738 template <uint bits, uint64_t maxN, typename T>
|
jpayne@69
|
739 inline constexpr Bounded<maxValueForBits<bits>(), T> assumeBits(Bounded<maxN, T> value) {
|
jpayne@69
|
740 return Bounded<maxValueForBits<bits>(), T>(value, unsafe);
|
jpayne@69
|
741 }
|
jpayne@69
|
742
|
jpayne@69
|
743 template <uint bits, typename Number, typename Unit>
|
jpayne@69
|
744 inline constexpr auto assumeBits(Quantity<Number, Unit> value)
|
jpayne@69
|
745 -> Quantity<decltype(assumeBits<bits>(value / unit<Quantity<Number, Unit>>())), Unit> {
|
jpayne@69
|
746 return Quantity<decltype(assumeBits<bits>(value / unit<Quantity<Number, Unit>>())), Unit>(
|
jpayne@69
|
747 assumeBits<bits>(value / unit<Quantity<Number, Unit>>()), unsafe);
|
jpayne@69
|
748 }
|
jpayne@69
|
749
|
jpayne@69
|
750 template <uint64_t maxN, typename Number>
|
jpayne@69
|
751 inline constexpr Bounded<maxN, Number> assumeMax(Number value) {
|
jpayne@69
|
752 return Bounded<maxN, Number>(value, unsafe);
|
jpayne@69
|
753 }
|
jpayne@69
|
754
|
jpayne@69
|
755 template <uint64_t newMaxN, uint64_t maxN, typename T>
|
jpayne@69
|
756 inline constexpr Bounded<newMaxN, T> assumeMax(Bounded<maxN, T> value) {
|
jpayne@69
|
757 return Bounded<newMaxN, T>(value, unsafe);
|
jpayne@69
|
758 }
|
jpayne@69
|
759
|
jpayne@69
|
760 template <uint64_t maxN, typename Number, typename Unit>
|
jpayne@69
|
761 inline constexpr auto assumeMax(Quantity<Number, Unit> value)
|
jpayne@69
|
762 -> Quantity<decltype(assumeMax<maxN>(value / unit<Quantity<Number, Unit>>())), Unit> {
|
jpayne@69
|
763 return Quantity<decltype(assumeMax<maxN>(value / unit<Quantity<Number, Unit>>())), Unit>(
|
jpayne@69
|
764 assumeMax<maxN>(value / unit<Quantity<Number, Unit>>()), unsafe);
|
jpayne@69
|
765 }
|
jpayne@69
|
766
|
jpayne@69
|
767 template <uint maxN, typename Number>
|
jpayne@69
|
768 inline constexpr Bounded<maxN, Number> assumeMax(BoundedConst<maxN>, Number value) {
|
jpayne@69
|
769 return assumeMax<maxN>(value);
|
jpayne@69
|
770 }
|
jpayne@69
|
771
|
jpayne@69
|
772 template <uint newMaxN, uint64_t maxN, typename T>
|
jpayne@69
|
773 inline constexpr Bounded<newMaxN, T> assumeMax(BoundedConst<maxN>, Bounded<maxN, T> value) {
|
jpayne@69
|
774 return assumeMax<maxN>(value);
|
jpayne@69
|
775 }
|
jpayne@69
|
776
|
jpayne@69
|
777 template <uint maxN, typename Number, typename Unit>
|
jpayne@69
|
778 inline constexpr auto assumeMax(Quantity<BoundedConst<maxN>, Unit>, Quantity<Number, Unit> value)
|
jpayne@69
|
779 -> decltype(assumeMax<maxN>(value)) {
|
jpayne@69
|
780 return assumeMax<maxN>(value);
|
jpayne@69
|
781 }
|
jpayne@69
|
782
|
jpayne@69
|
783 template <uint64_t newMax, uint64_t maxN, typename T, typename ErrorFunc>
|
jpayne@69
|
784 inline Bounded<newMax, T> assertMax(Bounded<maxN, T> value, ErrorFunc&& errorFunc) {
|
jpayne@69
|
785 // Assert that the bounded value is less than or equal to the given maximum, calling errorFunc()
|
jpayne@69
|
786 // if not.
|
jpayne@69
|
787 static_assert(newMax < maxN, "this bounded size assertion is redundant");
|
jpayne@69
|
788 return value.template assertMax<newMax>(kj::fwd<ErrorFunc>(errorFunc));
|
jpayne@69
|
789 }
|
jpayne@69
|
790
|
jpayne@69
|
791 template <uint64_t newMax, uint64_t maxN, typename T, typename Unit, typename ErrorFunc>
|
jpayne@69
|
792 inline Quantity<Bounded<newMax, T>, Unit> assertMax(
|
jpayne@69
|
793 Quantity<Bounded<maxN, T>, Unit> value, ErrorFunc&& errorFunc) {
|
jpayne@69
|
794 // Assert that the bounded value is less than or equal to the given maximum, calling errorFunc()
|
jpayne@69
|
795 // if not.
|
jpayne@69
|
796 static_assert(newMax < maxN, "this bounded size assertion is redundant");
|
jpayne@69
|
797 return (value / unit<decltype(value)>()).template assertMax<newMax>(
|
jpayne@69
|
798 kj::fwd<ErrorFunc>(errorFunc)) * unit<decltype(value)>();
|
jpayne@69
|
799 }
|
jpayne@69
|
800
|
jpayne@69
|
801 template <uint newMax, uint64_t maxN, typename T, typename ErrorFunc>
|
jpayne@69
|
802 inline Bounded<newMax, T> assertMax(
|
jpayne@69
|
803 BoundedConst<newMax>, Bounded<maxN, T> value, ErrorFunc&& errorFunc) {
|
jpayne@69
|
804 return assertMax<newMax>(value, kj::mv(errorFunc));
|
jpayne@69
|
805 }
|
jpayne@69
|
806
|
jpayne@69
|
807 template <uint newMax, uint64_t maxN, typename T, typename Unit, typename ErrorFunc>
|
jpayne@69
|
808 inline Quantity<Bounded<newMax, T>, Unit> assertMax(
|
jpayne@69
|
809 Quantity<BoundedConst<newMax>, Unit>,
|
jpayne@69
|
810 Quantity<Bounded<maxN, T>, Unit> value, ErrorFunc&& errorFunc) {
|
jpayne@69
|
811 return assertMax<newMax>(value, kj::mv(errorFunc));
|
jpayne@69
|
812 }
|
jpayne@69
|
813
|
jpayne@69
|
814 template <uint64_t newBits, uint64_t maxN, typename T, typename ErrorFunc = ThrowOverflow>
|
jpayne@69
|
815 inline Bounded<maxValueForBits<newBits>(), T> assertMaxBits(
|
jpayne@69
|
816 Bounded<maxN, T> value, ErrorFunc&& errorFunc = ErrorFunc()) {
|
jpayne@69
|
817 // Assert that the bounded value requires no more than the given number of bits, calling
|
jpayne@69
|
818 // errorFunc() if not.
|
jpayne@69
|
819 return assertMax<maxValueForBits<newBits>()>(value, kj::fwd<ErrorFunc>(errorFunc));
|
jpayne@69
|
820 }
|
jpayne@69
|
821
|
jpayne@69
|
822 template <uint64_t newBits, uint64_t maxN, typename T, typename Unit,
|
jpayne@69
|
823 typename ErrorFunc = ThrowOverflow>
|
jpayne@69
|
824 inline Quantity<Bounded<maxValueForBits<newBits>(), T>, Unit> assertMaxBits(
|
jpayne@69
|
825 Quantity<Bounded<maxN, T>, Unit> value, ErrorFunc&& errorFunc = ErrorFunc()) {
|
jpayne@69
|
826 // Assert that the bounded value requires no more than the given number of bits, calling
|
jpayne@69
|
827 // errorFunc() if not.
|
jpayne@69
|
828 return assertMax<maxValueForBits<newBits>()>(value, kj::fwd<ErrorFunc>(errorFunc));
|
jpayne@69
|
829 }
|
jpayne@69
|
830
|
jpayne@69
|
831 template <typename newT, uint64_t maxN, typename T>
|
jpayne@69
|
832 inline constexpr Bounded<maxN, newT> upgradeBound(Bounded<maxN, T> value) {
|
jpayne@69
|
833 return value;
|
jpayne@69
|
834 }
|
jpayne@69
|
835
|
jpayne@69
|
836 template <typename newT, uint64_t maxN, typename T, typename Unit>
|
jpayne@69
|
837 inline constexpr Quantity<Bounded<maxN, newT>, Unit> upgradeBound(
|
jpayne@69
|
838 Quantity<Bounded<maxN, T>, Unit> value) {
|
jpayne@69
|
839 return value;
|
jpayne@69
|
840 }
|
jpayne@69
|
841
|
jpayne@69
|
842 template <uint64_t maxN, typename T, typename Other, typename ErrorFunc>
|
jpayne@69
|
843 inline auto subtractChecked(Bounded<maxN, T> value, Other other, ErrorFunc&& errorFunc)
|
jpayne@69
|
844 -> decltype(value.subtractChecked(other, kj::fwd<ErrorFunc>(errorFunc))) {
|
jpayne@69
|
845 return value.subtractChecked(other, kj::fwd<ErrorFunc>(errorFunc));
|
jpayne@69
|
846 }
|
jpayne@69
|
847
|
jpayne@69
|
848 template <typename T, typename U, typename Unit, typename ErrorFunc>
|
jpayne@69
|
849 inline auto subtractChecked(Quantity<T, Unit> value, Quantity<U, Unit> other, ErrorFunc&& errorFunc)
|
jpayne@69
|
850 -> Quantity<decltype(subtractChecked(T(), U(), kj::fwd<ErrorFunc>(errorFunc))), Unit> {
|
jpayne@69
|
851 return subtractChecked(value / unit<Quantity<T, Unit>>(),
|
jpayne@69
|
852 other / unit<Quantity<U, Unit>>(),
|
jpayne@69
|
853 kj::fwd<ErrorFunc>(errorFunc))
|
jpayne@69
|
854 * unit<Quantity<T, Unit>>();
|
jpayne@69
|
855 }
|
jpayne@69
|
856
|
jpayne@69
|
857 template <uint64_t maxN, typename T, typename Other>
|
jpayne@69
|
858 inline auto trySubtract(Bounded<maxN, T> value, Other other)
|
jpayne@69
|
859 -> decltype(value.trySubtract(other)) {
|
jpayne@69
|
860 return value.trySubtract(other);
|
jpayne@69
|
861 }
|
jpayne@69
|
862
|
jpayne@69
|
863 template <typename T, typename U, typename Unit>
|
jpayne@69
|
864 inline auto trySubtract(Quantity<T, Unit> value, Quantity<U, Unit> other)
|
jpayne@69
|
865 -> Maybe<Quantity<decltype(subtractChecked(T(), U(), int())), Unit>> {
|
jpayne@69
|
866 return trySubtract(value / unit<Quantity<T, Unit>>(),
|
jpayne@69
|
867 other / unit<Quantity<U, Unit>>())
|
jpayne@69
|
868 .map([](decltype(subtractChecked(T(), U(), int())) x) {
|
jpayne@69
|
869 return x * unit<Quantity<T, Unit>>();
|
jpayne@69
|
870 });
|
jpayne@69
|
871 }
|
jpayne@69
|
872
|
jpayne@69
|
873 template <uint64_t aN, uint64_t bN, typename A, typename B>
|
jpayne@69
|
874 inline constexpr Bounded<kj::min(aN, bN), WiderType<A, B>>
|
jpayne@69
|
875 min(Bounded<aN, A> a, Bounded<bN, B> b) {
|
jpayne@69
|
876 return Bounded<kj::min(aN, bN), WiderType<A, B>>(kj::min(a.unwrap(), b.unwrap()), unsafe);
|
jpayne@69
|
877 }
|
jpayne@69
|
878 template <uint64_t aN, uint64_t bN, typename A, typename B>
|
jpayne@69
|
879 inline constexpr Bounded<kj::max(aN, bN), WiderType<A, B>>
|
jpayne@69
|
880 max(Bounded<aN, A> a, Bounded<bN, B> b) {
|
jpayne@69
|
881 return Bounded<kj::max(aN, bN), WiderType<A, B>>(kj::max(a.unwrap(), b.unwrap()), unsafe);
|
jpayne@69
|
882 }
|
jpayne@69
|
883 // We need to override min() and max() because:
|
jpayne@69
|
884 // 1) WiderType<> might not choose the correct bounds.
|
jpayne@69
|
885 // 2) One of the two sides of the ternary operator in the default implementation would fail to
|
jpayne@69
|
886 // typecheck even though it is OK in practice.
|
jpayne@69
|
887
|
jpayne@69
|
888 // -------------------------------------------------------------------
|
jpayne@69
|
889 // Operators between Bounded and BoundedConst
|
jpayne@69
|
890
|
jpayne@69
|
891 #define OP(op, newMax) \
|
jpayne@69
|
892 template <uint64_t maxN, uint cvalue, typename T> \
|
jpayne@69
|
893 inline constexpr Bounded<(newMax), decltype(T() op uint())> operator op( \
|
jpayne@69
|
894 Bounded<maxN, T> value, BoundedConst<cvalue>) { \
|
jpayne@69
|
895 return Bounded<(newMax), decltype(T() op uint())>(value.unwrap() op cvalue, unsafe); \
|
jpayne@69
|
896 }
|
jpayne@69
|
897
|
jpayne@69
|
898 #define REVERSE_OP(op, newMax) \
|
jpayne@69
|
899 template <uint64_t maxN, uint cvalue, typename T> \
|
jpayne@69
|
900 inline constexpr Bounded<(newMax), decltype(uint() op T())> operator op( \
|
jpayne@69
|
901 BoundedConst<cvalue>, Bounded<maxN, T> value) { \
|
jpayne@69
|
902 return Bounded<(newMax), decltype(uint() op T())>(cvalue op value.unwrap(), unsafe); \
|
jpayne@69
|
903 }
|
jpayne@69
|
904
|
jpayne@69
|
905 #define COMPARE_OP(op) \
|
jpayne@69
|
906 template <uint64_t maxN, uint cvalue, typename T> \
|
jpayne@69
|
907 inline constexpr bool operator op(Bounded<maxN, T> value, BoundedConst<cvalue>) { \
|
jpayne@69
|
908 return value.unwrap() op cvalue; \
|
jpayne@69
|
909 } \
|
jpayne@69
|
910 template <uint64_t maxN, uint cvalue, typename T> \
|
jpayne@69
|
911 inline constexpr bool operator op(BoundedConst<cvalue>, Bounded<maxN, T> value) { \
|
jpayne@69
|
912 return cvalue op value.unwrap(); \
|
jpayne@69
|
913 }
|
jpayne@69
|
914
|
jpayne@69
|
915 OP(+, (boundedAdd<maxN, cvalue>()))
|
jpayne@69
|
916 REVERSE_OP(+, (boundedAdd<maxN, cvalue>()))
|
jpayne@69
|
917
|
jpayne@69
|
918 OP(*, (boundedMul<maxN, cvalue>()))
|
jpayne@69
|
919 REVERSE_OP(*, (boundedAdd<maxN, cvalue>()))
|
jpayne@69
|
920
|
jpayne@69
|
921 OP(/, maxN / cvalue)
|
jpayne@69
|
922 REVERSE_OP(/, cvalue) // denominator could be 1
|
jpayne@69
|
923
|
jpayne@69
|
924 OP(%, cvalue - 1)
|
jpayne@69
|
925 REVERSE_OP(%, maxN - 1)
|
jpayne@69
|
926
|
jpayne@69
|
927 OP(<<, (boundedLShift<maxN, cvalue>()))
|
jpayne@69
|
928 REVERSE_OP(<<, (boundedLShift<cvalue, maxN>()))
|
jpayne@69
|
929
|
jpayne@69
|
930 OP(>>, maxN >> cvalue)
|
jpayne@69
|
931 REVERSE_OP(>>, cvalue >> maxN)
|
jpayne@69
|
932
|
jpayne@69
|
933 OP(&, maxValueForBits<bitCount<maxN>()>() & cvalue)
|
jpayne@69
|
934 REVERSE_OP(&, maxValueForBits<bitCount<maxN>()>() & cvalue)
|
jpayne@69
|
935
|
jpayne@69
|
936 OP(|, maxN | cvalue)
|
jpayne@69
|
937 REVERSE_OP(|, maxN | cvalue)
|
jpayne@69
|
938
|
jpayne@69
|
939 COMPARE_OP(==)
|
jpayne@69
|
940 COMPARE_OP(!=)
|
jpayne@69
|
941 COMPARE_OP(< )
|
jpayne@69
|
942 COMPARE_OP(> )
|
jpayne@69
|
943 COMPARE_OP(<=)
|
jpayne@69
|
944 COMPARE_OP(>=)
|
jpayne@69
|
945
|
jpayne@69
|
946 #undef OP
|
jpayne@69
|
947 #undef REVERSE_OP
|
jpayne@69
|
948 #undef COMPARE_OP
|
jpayne@69
|
949
|
jpayne@69
|
950 template <uint64_t maxN, uint cvalue, typename T>
|
jpayne@69
|
951 inline constexpr Bounded<cvalue, decltype(uint() - T())>
|
jpayne@69
|
952 operator-(BoundedConst<cvalue>, Bounded<maxN, T> value) {
|
jpayne@69
|
953 // We allow subtraction of a variable from a constant only if the constant is greater than or
|
jpayne@69
|
954 // equal to the maximum possible value of the variable. Since the variable could be zero, the
|
jpayne@69
|
955 // result can be as large as the constant.
|
jpayne@69
|
956 //
|
jpayne@69
|
957 // We do not allow subtraction of a constant from a variable because there's never a guarantee it
|
jpayne@69
|
958 // won't underflow (unless the constant is zero, which is silly).
|
jpayne@69
|
959 static_assert(cvalue >= maxN, "possible underflow detected");
|
jpayne@69
|
960 return Bounded<cvalue, decltype(uint() - T())>(cvalue - value.unwrap(), unsafe);
|
jpayne@69
|
961 }
|
jpayne@69
|
962
|
jpayne@69
|
963 template <uint64_t aN, uint b, typename A>
|
jpayne@69
|
964 inline constexpr Bounded<kj::min(aN, b), A> min(Bounded<aN, A> a, BoundedConst<b>) {
|
jpayne@69
|
965 return Bounded<kj::min(aN, b), A>(kj::min(b, a.unwrap()), unsafe);
|
jpayne@69
|
966 }
|
jpayne@69
|
967 template <uint64_t aN, uint b, typename A>
|
jpayne@69
|
968 inline constexpr Bounded<kj::min(aN, b), A> min(BoundedConst<b>, Bounded<aN, A> a) {
|
jpayne@69
|
969 return Bounded<kj::min(aN, b), A>(kj::min(a.unwrap(), b), unsafe);
|
jpayne@69
|
970 }
|
jpayne@69
|
971 template <uint64_t aN, uint b, typename A>
|
jpayne@69
|
972 inline constexpr Bounded<kj::max(aN, b), A> max(Bounded<aN, A> a, BoundedConst<b>) {
|
jpayne@69
|
973 return Bounded<kj::max(aN, b), A>(kj::max(b, a.unwrap()), unsafe);
|
jpayne@69
|
974 }
|
jpayne@69
|
975 template <uint64_t aN, uint b, typename A>
|
jpayne@69
|
976 inline constexpr Bounded<kj::max(aN, b), A> max(BoundedConst<b>, Bounded<aN, A> a) {
|
jpayne@69
|
977 return Bounded<kj::max(aN, b), A>(kj::max(a.unwrap(), b), unsafe);
|
jpayne@69
|
978 }
|
jpayne@69
|
979 // We need to override min() between a Bounded and a constant since:
|
jpayne@69
|
980 // 1) WiderType<> might choose BoundedConst over a 1-byte Bounded, which is wrong.
|
jpayne@69
|
981 // 2) To clamp the bounds of the output type.
|
jpayne@69
|
982 // 3) Same ternary operator typechecking issues.
|
jpayne@69
|
983
|
jpayne@69
|
984 // -------------------------------------------------------------------
|
jpayne@69
|
985
|
jpayne@69
|
986 template <uint64_t maxN, typename T>
|
jpayne@69
|
987 class SafeUnwrapper {
|
jpayne@69
|
988 public:
|
jpayne@69
|
989 inline explicit constexpr SafeUnwrapper(Bounded<maxN, T> value): value(value.unwrap()) {}
|
jpayne@69
|
990
|
jpayne@69
|
991 template <typename U, typename = EnableIf<isIntegral<U>()>>
|
jpayne@69
|
992 inline constexpr operator U() const {
|
jpayne@69
|
993 static_assert(maxN <= U(maxValue), "possible truncation detected");
|
jpayne@69
|
994 return value;
|
jpayne@69
|
995 }
|
jpayne@69
|
996
|
jpayne@69
|
997 inline constexpr operator bool() const {
|
jpayne@69
|
998 static_assert(maxN <= 1, "possible truncation detected");
|
jpayne@69
|
999 return value;
|
jpayne@69
|
1000 }
|
jpayne@69
|
1001
|
jpayne@69
|
1002 private:
|
jpayne@69
|
1003 T value;
|
jpayne@69
|
1004 };
|
jpayne@69
|
1005
|
jpayne@69
|
1006 template <uint64_t maxN, typename T>
|
jpayne@69
|
1007 inline constexpr SafeUnwrapper<maxN, T> unbound(Bounded<maxN, T> bounded) {
|
jpayne@69
|
1008 // Unwraps the bounded value, returning a value that can be implicitly cast to any integer type.
|
jpayne@69
|
1009 // If this implicit cast could truncate, a compile-time error will be raised.
|
jpayne@69
|
1010 return SafeUnwrapper<maxN, T>(bounded);
|
jpayne@69
|
1011 }
|
jpayne@69
|
1012
|
jpayne@69
|
1013 template <uint64_t value>
|
jpayne@69
|
1014 class SafeConstUnwrapper {
|
jpayne@69
|
1015 public:
|
jpayne@69
|
1016 template <typename T, typename = EnableIf<isIntegral<T>()>>
|
jpayne@69
|
1017 inline constexpr operator T() const {
|
jpayne@69
|
1018 static_assert(value <= T(maxValue), "this operation will truncate");
|
jpayne@69
|
1019 return value;
|
jpayne@69
|
1020 }
|
jpayne@69
|
1021
|
jpayne@69
|
1022 inline constexpr operator bool() const {
|
jpayne@69
|
1023 static_assert(value <= 1, "this operation will truncate");
|
jpayne@69
|
1024 return value;
|
jpayne@69
|
1025 }
|
jpayne@69
|
1026 };
|
jpayne@69
|
1027
|
jpayne@69
|
1028 template <uint value>
|
jpayne@69
|
1029 inline constexpr SafeConstUnwrapper<value> unbound(BoundedConst<value>) {
|
jpayne@69
|
1030 return SafeConstUnwrapper<value>();
|
jpayne@69
|
1031 }
|
jpayne@69
|
1032
|
jpayne@69
|
1033 template <typename T, typename U>
|
jpayne@69
|
1034 inline constexpr T unboundAs(U value) {
|
jpayne@69
|
1035 return unbound(value);
|
jpayne@69
|
1036 }
|
jpayne@69
|
1037
|
jpayne@69
|
1038 template <uint64_t requestedMax, uint64_t maxN, typename T>
|
jpayne@69
|
1039 inline constexpr T unboundMax(Bounded<maxN, T> value) {
|
jpayne@69
|
1040 // Explicitly unguard expecting a value that is at most `maxN`.
|
jpayne@69
|
1041 static_assert(maxN <= requestedMax, "possible overflow detected");
|
jpayne@69
|
1042 return value.unwrap();
|
jpayne@69
|
1043 }
|
jpayne@69
|
1044
|
jpayne@69
|
1045 template <uint64_t requestedMax, uint value>
|
jpayne@69
|
1046 inline constexpr uint unboundMax(BoundedConst<value>) {
|
jpayne@69
|
1047 // Explicitly unguard expecting a value that is at most `maxN`.
|
jpayne@69
|
1048 static_assert(value <= requestedMax, "overflow detected");
|
jpayne@69
|
1049 return value;
|
jpayne@69
|
1050 }
|
jpayne@69
|
1051
|
jpayne@69
|
1052 template <uint bits, typename T>
|
jpayne@69
|
1053 inline constexpr auto unboundMaxBits(T value) ->
|
jpayne@69
|
1054 decltype(unboundMax<maxValueForBits<bits>()>(value)) {
|
jpayne@69
|
1055 // Explicitly unguard expecting a value that fits into `bits` bits.
|
jpayne@69
|
1056 return unboundMax<maxValueForBits<bits>()>(value);
|
jpayne@69
|
1057 }
|
jpayne@69
|
1058
|
jpayne@69
|
1059 #define OP(op) \
|
jpayne@69
|
1060 template <uint64_t maxN, typename T, typename U> \
|
jpayne@69
|
1061 inline constexpr auto operator op(T a, SafeUnwrapper<maxN, U> b) -> decltype(a op (T)b) { \
|
jpayne@69
|
1062 return a op (AtLeastUInt<sizeof(T)*8>)b; \
|
jpayne@69
|
1063 } \
|
jpayne@69
|
1064 template <uint64_t maxN, typename T, typename U> \
|
jpayne@69
|
1065 inline constexpr auto operator op(SafeUnwrapper<maxN, U> b, T a) -> decltype((T)b op a) { \
|
jpayne@69
|
1066 return (AtLeastUInt<sizeof(T)*8>)b op a; \
|
jpayne@69
|
1067 } \
|
jpayne@69
|
1068 template <uint64_t value, typename T> \
|
jpayne@69
|
1069 inline constexpr auto operator op(T a, SafeConstUnwrapper<value> b) -> decltype(a op (T)b) { \
|
jpayne@69
|
1070 return a op (AtLeastUInt<sizeof(T)*8>)b; \
|
jpayne@69
|
1071 } \
|
jpayne@69
|
1072 template <uint64_t value, typename T> \
|
jpayne@69
|
1073 inline constexpr auto operator op(SafeConstUnwrapper<value> b, T a) -> decltype((T)b op a) { \
|
jpayne@69
|
1074 return (AtLeastUInt<sizeof(T)*8>)b op a; \
|
jpayne@69
|
1075 }
|
jpayne@69
|
1076
|
jpayne@69
|
1077 OP(+)
|
jpayne@69
|
1078 OP(-)
|
jpayne@69
|
1079 OP(*)
|
jpayne@69
|
1080 OP(/)
|
jpayne@69
|
1081 OP(%)
|
jpayne@69
|
1082 OP(<<)
|
jpayne@69
|
1083 OP(>>)
|
jpayne@69
|
1084 OP(&)
|
jpayne@69
|
1085 OP(|)
|
jpayne@69
|
1086 OP(==)
|
jpayne@69
|
1087 OP(!=)
|
jpayne@69
|
1088 OP(<=)
|
jpayne@69
|
1089 OP(>=)
|
jpayne@69
|
1090 OP(<)
|
jpayne@69
|
1091 OP(>)
|
jpayne@69
|
1092
|
jpayne@69
|
1093 #undef OP
|
jpayne@69
|
1094
|
jpayne@69
|
1095 // -------------------------------------------------------------------
|
jpayne@69
|
1096
|
jpayne@69
|
1097 template <uint64_t maxN, typename T>
|
jpayne@69
|
1098 class Range<Bounded<maxN, T>> {
|
jpayne@69
|
1099 public:
|
jpayne@69
|
1100 inline constexpr Range(Bounded<maxN, T> begin, Bounded<maxN, T> end)
|
jpayne@69
|
1101 : inner(unbound(begin), unbound(end)) {}
|
jpayne@69
|
1102 inline explicit constexpr Range(Bounded<maxN, T> end)
|
jpayne@69
|
1103 : inner(unbound(end)) {}
|
jpayne@69
|
1104
|
jpayne@69
|
1105 class Iterator {
|
jpayne@69
|
1106 public:
|
jpayne@69
|
1107 Iterator() = default;
|
jpayne@69
|
1108 inline explicit Iterator(typename Range<T>::Iterator inner): inner(inner) {}
|
jpayne@69
|
1109
|
jpayne@69
|
1110 inline Bounded<maxN, T> operator* () const { return Bounded<maxN, T>(*inner, unsafe); }
|
jpayne@69
|
1111 inline Iterator& operator++() { ++inner; return *this; }
|
jpayne@69
|
1112
|
jpayne@69
|
1113 inline bool operator==(const Iterator& other) const { return inner == other.inner; }
|
jpayne@69
|
1114 inline bool operator!=(const Iterator& other) const { return inner != other.inner; }
|
jpayne@69
|
1115
|
jpayne@69
|
1116 private:
|
jpayne@69
|
1117 typename Range<T>::Iterator inner;
|
jpayne@69
|
1118 };
|
jpayne@69
|
1119
|
jpayne@69
|
1120 inline Iterator begin() const { return Iterator(inner.begin()); }
|
jpayne@69
|
1121 inline Iterator end() const { return Iterator(inner.end()); }
|
jpayne@69
|
1122
|
jpayne@69
|
1123 private:
|
jpayne@69
|
1124 Range<T> inner;
|
jpayne@69
|
1125 };
|
jpayne@69
|
1126
|
jpayne@69
|
1127 template <typename T, typename U>
|
jpayne@69
|
1128 class Range<Quantity<T, U>> {
|
jpayne@69
|
1129 public:
|
jpayne@69
|
1130 inline constexpr Range(Quantity<T, U> begin, Quantity<T, U> end)
|
jpayne@69
|
1131 : inner(begin / unit<Quantity<T, U>>(), end / unit<Quantity<T, U>>()) {}
|
jpayne@69
|
1132 inline explicit constexpr Range(Quantity<T, U> end)
|
jpayne@69
|
1133 : inner(end / unit<Quantity<T, U>>()) {}
|
jpayne@69
|
1134
|
jpayne@69
|
1135 class Iterator {
|
jpayne@69
|
1136 public:
|
jpayne@69
|
1137 Iterator() = default;
|
jpayne@69
|
1138 inline explicit Iterator(typename Range<T>::Iterator inner): inner(inner) {}
|
jpayne@69
|
1139
|
jpayne@69
|
1140 inline Quantity<T, U> operator* () const { return *inner * unit<Quantity<T, U>>(); }
|
jpayne@69
|
1141 inline Iterator& operator++() { ++inner; return *this; }
|
jpayne@69
|
1142
|
jpayne@69
|
1143 inline bool operator==(const Iterator& other) const { return inner == other.inner; }
|
jpayne@69
|
1144 inline bool operator!=(const Iterator& other) const { return inner != other.inner; }
|
jpayne@69
|
1145
|
jpayne@69
|
1146 private:
|
jpayne@69
|
1147 typename Range<T>::Iterator inner;
|
jpayne@69
|
1148 };
|
jpayne@69
|
1149
|
jpayne@69
|
1150 inline Iterator begin() const { return Iterator(inner.begin()); }
|
jpayne@69
|
1151 inline Iterator end() const { return Iterator(inner.end()); }
|
jpayne@69
|
1152
|
jpayne@69
|
1153 private:
|
jpayne@69
|
1154 Range<T> inner;
|
jpayne@69
|
1155 };
|
jpayne@69
|
1156
|
jpayne@69
|
1157 template <uint value>
|
jpayne@69
|
1158 inline constexpr Range<Bounded<value, uint>> zeroTo(BoundedConst<value> end) {
|
jpayne@69
|
1159 return Range<Bounded<value, uint>>(end);
|
jpayne@69
|
1160 }
|
jpayne@69
|
1161
|
jpayne@69
|
1162 template <uint value, typename Unit>
|
jpayne@69
|
1163 inline constexpr Range<Quantity<Bounded<value, uint>, Unit>>
|
jpayne@69
|
1164 zeroTo(Quantity<BoundedConst<value>, Unit> end) {
|
jpayne@69
|
1165 return Range<Quantity<Bounded<value, uint>, Unit>>(end);
|
jpayne@69
|
1166 }
|
jpayne@69
|
1167
|
jpayne@69
|
1168 } // namespace kj
|
jpayne@69
|
1169
|
jpayne@69
|
1170 KJ_END_HEADER
|