Mercurial > repos > rliterman > csp2
comparison CSP2/CSP2_env/env-d9b9114564458d9d-741b3de822f2aaca6c6caa4325c4afce/include/openssl/bn.h @ 69:33d812a61356
planemo upload commit 2e9511a184a1ca667c7be0c6321a36dc4e3d116d
author | jpayne |
---|---|
date | Tue, 18 Mar 2025 17:55:14 -0400 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
67:0e9998148a16 | 69:33d812a61356 |
---|---|
1 /* | |
2 * Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved. | |
3 * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved | |
4 * | |
5 * Licensed under the OpenSSL license (the "License"). You may not use | |
6 * this file except in compliance with the License. You can obtain a copy | |
7 * in the file LICENSE in the source distribution or at | |
8 * https://www.openssl.org/source/license.html | |
9 */ | |
10 | |
11 #ifndef HEADER_BN_H | |
12 # define HEADER_BN_H | |
13 | |
14 # include <openssl/e_os2.h> | |
15 # ifndef OPENSSL_NO_STDIO | |
16 # include <stdio.h> | |
17 # endif | |
18 # include <openssl/opensslconf.h> | |
19 # include <openssl/ossl_typ.h> | |
20 # include <openssl/crypto.h> | |
21 # include <openssl/bnerr.h> | |
22 | |
23 #ifdef __cplusplus | |
24 extern "C" { | |
25 #endif | |
26 | |
27 /* | |
28 * 64-bit processor with LP64 ABI | |
29 */ | |
30 # ifdef SIXTY_FOUR_BIT_LONG | |
31 # define BN_ULONG unsigned long | |
32 # define BN_BYTES 8 | |
33 # endif | |
34 | |
35 /* | |
36 * 64-bit processor other than LP64 ABI | |
37 */ | |
38 # ifdef SIXTY_FOUR_BIT | |
39 # define BN_ULONG unsigned long long | |
40 # define BN_BYTES 8 | |
41 # endif | |
42 | |
43 # ifdef THIRTY_TWO_BIT | |
44 # define BN_ULONG unsigned int | |
45 # define BN_BYTES 4 | |
46 # endif | |
47 | |
48 # define BN_BITS2 (BN_BYTES * 8) | |
49 # define BN_BITS (BN_BITS2 * 2) | |
50 # define BN_TBIT ((BN_ULONG)1 << (BN_BITS2 - 1)) | |
51 | |
52 # define BN_FLG_MALLOCED 0x01 | |
53 # define BN_FLG_STATIC_DATA 0x02 | |
54 | |
55 /* | |
56 * avoid leaking exponent information through timing, | |
57 * BN_mod_exp_mont() will call BN_mod_exp_mont_consttime, | |
58 * BN_div() will call BN_div_no_branch, | |
59 * BN_mod_inverse() will call bn_mod_inverse_no_branch. | |
60 */ | |
61 # define BN_FLG_CONSTTIME 0x04 | |
62 # define BN_FLG_SECURE 0x08 | |
63 | |
64 # if OPENSSL_API_COMPAT < 0x00908000L | |
65 /* deprecated name for the flag */ | |
66 # define BN_FLG_EXP_CONSTTIME BN_FLG_CONSTTIME | |
67 # define BN_FLG_FREE 0x8000 /* used for debugging */ | |
68 # endif | |
69 | |
70 void BN_set_flags(BIGNUM *b, int n); | |
71 int BN_get_flags(const BIGNUM *b, int n); | |
72 | |
73 /* Values for |top| in BN_rand() */ | |
74 #define BN_RAND_TOP_ANY -1 | |
75 #define BN_RAND_TOP_ONE 0 | |
76 #define BN_RAND_TOP_TWO 1 | |
77 | |
78 /* Values for |bottom| in BN_rand() */ | |
79 #define BN_RAND_BOTTOM_ANY 0 | |
80 #define BN_RAND_BOTTOM_ODD 1 | |
81 | |
82 /* | |
83 * get a clone of a BIGNUM with changed flags, for *temporary* use only (the | |
84 * two BIGNUMs cannot be used in parallel!). Also only for *read only* use. The | |
85 * value |dest| should be a newly allocated BIGNUM obtained via BN_new() that | |
86 * has not been otherwise initialised or used. | |
87 */ | |
88 void BN_with_flags(BIGNUM *dest, const BIGNUM *b, int flags); | |
89 | |
90 /* Wrapper function to make using BN_GENCB easier */ | |
91 int BN_GENCB_call(BN_GENCB *cb, int a, int b); | |
92 | |
93 BN_GENCB *BN_GENCB_new(void); | |
94 void BN_GENCB_free(BN_GENCB *cb); | |
95 | |
96 /* Populate a BN_GENCB structure with an "old"-style callback */ | |
97 void BN_GENCB_set_old(BN_GENCB *gencb, void (*callback) (int, int, void *), | |
98 void *cb_arg); | |
99 | |
100 /* Populate a BN_GENCB structure with a "new"-style callback */ | |
101 void BN_GENCB_set(BN_GENCB *gencb, int (*callback) (int, int, BN_GENCB *), | |
102 void *cb_arg); | |
103 | |
104 void *BN_GENCB_get_arg(BN_GENCB *cb); | |
105 | |
106 # define BN_prime_checks 0 /* default: select number of iterations based | |
107 * on the size of the number */ | |
108 | |
109 /* | |
110 * BN_prime_checks_for_size() returns the number of Miller-Rabin iterations | |
111 * that will be done for checking that a random number is probably prime. The | |
112 * error rate for accepting a composite number as prime depends on the size of | |
113 * the prime |b|. The error rates used are for calculating an RSA key with 2 primes, | |
114 * and so the level is what you would expect for a key of double the size of the | |
115 * prime. | |
116 * | |
117 * This table is generated using the algorithm of FIPS PUB 186-4 | |
118 * Digital Signature Standard (DSS), section F.1, page 117. | |
119 * (https://dx.doi.org/10.6028/NIST.FIPS.186-4) | |
120 * | |
121 * The following magma script was used to generate the output: | |
122 * securitybits:=125; | |
123 * k:=1024; | |
124 * for t:=1 to 65 do | |
125 * for M:=3 to Floor(2*Sqrt(k-1)-1) do | |
126 * S:=0; | |
127 * // Sum over m | |
128 * for m:=3 to M do | |
129 * s:=0; | |
130 * // Sum over j | |
131 * for j:=2 to m do | |
132 * s+:=(RealField(32)!2)^-(j+(k-1)/j); | |
133 * end for; | |
134 * S+:=2^(m-(m-1)*t)*s; | |
135 * end for; | |
136 * A:=2^(k-2-M*t); | |
137 * B:=8*(Pi(RealField(32))^2-6)/3*2^(k-2)*S; | |
138 * pkt:=2.00743*Log(2)*k*2^-k*(A+B); | |
139 * seclevel:=Floor(-Log(2,pkt)); | |
140 * if seclevel ge securitybits then | |
141 * printf "k: %5o, security: %o bits (t: %o, M: %o)\n",k,seclevel,t,M; | |
142 * break; | |
143 * end if; | |
144 * end for; | |
145 * if seclevel ge securitybits then break; end if; | |
146 * end for; | |
147 * | |
148 * It can be run online at: | |
149 * http://magma.maths.usyd.edu.au/calc | |
150 * | |
151 * And will output: | |
152 * k: 1024, security: 129 bits (t: 6, M: 23) | |
153 * | |
154 * k is the number of bits of the prime, securitybits is the level we want to | |
155 * reach. | |
156 * | |
157 * prime length | RSA key size | # MR tests | security level | |
158 * -------------+--------------|------------+--------------- | |
159 * (b) >= 6394 | >= 12788 | 3 | 256 bit | |
160 * (b) >= 3747 | >= 7494 | 3 | 192 bit | |
161 * (b) >= 1345 | >= 2690 | 4 | 128 bit | |
162 * (b) >= 1080 | >= 2160 | 5 | 128 bit | |
163 * (b) >= 852 | >= 1704 | 5 | 112 bit | |
164 * (b) >= 476 | >= 952 | 5 | 80 bit | |
165 * (b) >= 400 | >= 800 | 6 | 80 bit | |
166 * (b) >= 347 | >= 694 | 7 | 80 bit | |
167 * (b) >= 308 | >= 616 | 8 | 80 bit | |
168 * (b) >= 55 | >= 110 | 27 | 64 bit | |
169 * (b) >= 6 | >= 12 | 34 | 64 bit | |
170 */ | |
171 | |
172 # define BN_prime_checks_for_size(b) ((b) >= 3747 ? 3 : \ | |
173 (b) >= 1345 ? 4 : \ | |
174 (b) >= 476 ? 5 : \ | |
175 (b) >= 400 ? 6 : \ | |
176 (b) >= 347 ? 7 : \ | |
177 (b) >= 308 ? 8 : \ | |
178 (b) >= 55 ? 27 : \ | |
179 /* b >= 6 */ 34) | |
180 | |
181 # define BN_num_bytes(a) ((BN_num_bits(a)+7)/8) | |
182 | |
183 int BN_abs_is_word(const BIGNUM *a, const BN_ULONG w); | |
184 int BN_is_zero(const BIGNUM *a); | |
185 int BN_is_one(const BIGNUM *a); | |
186 int BN_is_word(const BIGNUM *a, const BN_ULONG w); | |
187 int BN_is_odd(const BIGNUM *a); | |
188 | |
189 # define BN_one(a) (BN_set_word((a),1)) | |
190 | |
191 void BN_zero_ex(BIGNUM *a); | |
192 | |
193 # if OPENSSL_API_COMPAT >= 0x00908000L | |
194 # define BN_zero(a) BN_zero_ex(a) | |
195 # else | |
196 # define BN_zero(a) (BN_set_word((a),0)) | |
197 # endif | |
198 | |
199 const BIGNUM *BN_value_one(void); | |
200 char *BN_options(void); | |
201 BN_CTX *BN_CTX_new(void); | |
202 BN_CTX *BN_CTX_secure_new(void); | |
203 void BN_CTX_free(BN_CTX *c); | |
204 void BN_CTX_start(BN_CTX *ctx); | |
205 BIGNUM *BN_CTX_get(BN_CTX *ctx); | |
206 void BN_CTX_end(BN_CTX *ctx); | |
207 int BN_rand(BIGNUM *rnd, int bits, int top, int bottom); | |
208 int BN_priv_rand(BIGNUM *rnd, int bits, int top, int bottom); | |
209 int BN_rand_range(BIGNUM *rnd, const BIGNUM *range); | |
210 int BN_priv_rand_range(BIGNUM *rnd, const BIGNUM *range); | |
211 int BN_pseudo_rand(BIGNUM *rnd, int bits, int top, int bottom); | |
212 int BN_pseudo_rand_range(BIGNUM *rnd, const BIGNUM *range); | |
213 int BN_num_bits(const BIGNUM *a); | |
214 int BN_num_bits_word(BN_ULONG l); | |
215 int BN_security_bits(int L, int N); | |
216 BIGNUM *BN_new(void); | |
217 BIGNUM *BN_secure_new(void); | |
218 void BN_clear_free(BIGNUM *a); | |
219 BIGNUM *BN_copy(BIGNUM *a, const BIGNUM *b); | |
220 void BN_swap(BIGNUM *a, BIGNUM *b); | |
221 BIGNUM *BN_bin2bn(const unsigned char *s, int len, BIGNUM *ret); | |
222 int BN_bn2bin(const BIGNUM *a, unsigned char *to); | |
223 int BN_bn2binpad(const BIGNUM *a, unsigned char *to, int tolen); | |
224 BIGNUM *BN_lebin2bn(const unsigned char *s, int len, BIGNUM *ret); | |
225 int BN_bn2lebinpad(const BIGNUM *a, unsigned char *to, int tolen); | |
226 BIGNUM *BN_mpi2bn(const unsigned char *s, int len, BIGNUM *ret); | |
227 int BN_bn2mpi(const BIGNUM *a, unsigned char *to); | |
228 int BN_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b); | |
229 int BN_usub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b); | |
230 int BN_uadd(BIGNUM *r, const BIGNUM *a, const BIGNUM *b); | |
231 int BN_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b); | |
232 int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx); | |
233 int BN_sqr(BIGNUM *r, const BIGNUM *a, BN_CTX *ctx); | |
234 /** BN_set_negative sets sign of a BIGNUM | |
235 * \param b pointer to the BIGNUM object | |
236 * \param n 0 if the BIGNUM b should be positive and a value != 0 otherwise | |
237 */ | |
238 void BN_set_negative(BIGNUM *b, int n); | |
239 /** BN_is_negative returns 1 if the BIGNUM is negative | |
240 * \param b pointer to the BIGNUM object | |
241 * \return 1 if a < 0 and 0 otherwise | |
242 */ | |
243 int BN_is_negative(const BIGNUM *b); | |
244 | |
245 int BN_div(BIGNUM *dv, BIGNUM *rem, const BIGNUM *m, const BIGNUM *d, | |
246 BN_CTX *ctx); | |
247 # define BN_mod(rem,m,d,ctx) BN_div(NULL,(rem),(m),(d),(ctx)) | |
248 int BN_nnmod(BIGNUM *r, const BIGNUM *m, const BIGNUM *d, BN_CTX *ctx); | |
249 int BN_mod_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m, | |
250 BN_CTX *ctx); | |
251 int BN_mod_add_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, | |
252 const BIGNUM *m); | |
253 int BN_mod_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m, | |
254 BN_CTX *ctx); | |
255 int BN_mod_sub_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, | |
256 const BIGNUM *m); | |
257 int BN_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m, | |
258 BN_CTX *ctx); | |
259 int BN_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx); | |
260 int BN_mod_lshift1(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx); | |
261 int BN_mod_lshift1_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *m); | |
262 int BN_mod_lshift(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m, | |
263 BN_CTX *ctx); | |
264 int BN_mod_lshift_quick(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m); | |
265 | |
266 BN_ULONG BN_mod_word(const BIGNUM *a, BN_ULONG w); | |
267 BN_ULONG BN_div_word(BIGNUM *a, BN_ULONG w); | |
268 int BN_mul_word(BIGNUM *a, BN_ULONG w); | |
269 int BN_add_word(BIGNUM *a, BN_ULONG w); | |
270 int BN_sub_word(BIGNUM *a, BN_ULONG w); | |
271 int BN_set_word(BIGNUM *a, BN_ULONG w); | |
272 BN_ULONG BN_get_word(const BIGNUM *a); | |
273 | |
274 int BN_cmp(const BIGNUM *a, const BIGNUM *b); | |
275 void BN_free(BIGNUM *a); | |
276 int BN_is_bit_set(const BIGNUM *a, int n); | |
277 int BN_lshift(BIGNUM *r, const BIGNUM *a, int n); | |
278 int BN_lshift1(BIGNUM *r, const BIGNUM *a); | |
279 int BN_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx); | |
280 | |
281 int BN_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, | |
282 const BIGNUM *m, BN_CTX *ctx); | |
283 int BN_mod_exp_mont(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, | |
284 const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx); | |
285 int BN_mod_exp_mont_consttime(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p, | |
286 const BIGNUM *m, BN_CTX *ctx, | |
287 BN_MONT_CTX *in_mont); | |
288 int BN_mod_exp_mont_word(BIGNUM *r, BN_ULONG a, const BIGNUM *p, | |
289 const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx); | |
290 int BN_mod_exp2_mont(BIGNUM *r, const BIGNUM *a1, const BIGNUM *p1, | |
291 const BIGNUM *a2, const BIGNUM *p2, const BIGNUM *m, | |
292 BN_CTX *ctx, BN_MONT_CTX *m_ctx); | |
293 int BN_mod_exp_simple(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, | |
294 const BIGNUM *m, BN_CTX *ctx); | |
295 | |
296 int BN_mask_bits(BIGNUM *a, int n); | |
297 # ifndef OPENSSL_NO_STDIO | |
298 int BN_print_fp(FILE *fp, const BIGNUM *a); | |
299 # endif | |
300 int BN_print(BIO *bio, const BIGNUM *a); | |
301 int BN_reciprocal(BIGNUM *r, const BIGNUM *m, int len, BN_CTX *ctx); | |
302 int BN_rshift(BIGNUM *r, const BIGNUM *a, int n); | |
303 int BN_rshift1(BIGNUM *r, const BIGNUM *a); | |
304 void BN_clear(BIGNUM *a); | |
305 BIGNUM *BN_dup(const BIGNUM *a); | |
306 int BN_ucmp(const BIGNUM *a, const BIGNUM *b); | |
307 int BN_set_bit(BIGNUM *a, int n); | |
308 int BN_clear_bit(BIGNUM *a, int n); | |
309 char *BN_bn2hex(const BIGNUM *a); | |
310 char *BN_bn2dec(const BIGNUM *a); | |
311 int BN_hex2bn(BIGNUM **a, const char *str); | |
312 int BN_dec2bn(BIGNUM **a, const char *str); | |
313 int BN_asc2bn(BIGNUM **a, const char *str); | |
314 int BN_gcd(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx); | |
315 int BN_kronecker(const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx); /* returns | |
316 * -2 for | |
317 * error */ | |
318 BIGNUM *BN_mod_inverse(BIGNUM *ret, | |
319 const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx); | |
320 BIGNUM *BN_mod_sqrt(BIGNUM *ret, | |
321 const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx); | |
322 | |
323 void BN_consttime_swap(BN_ULONG swap, BIGNUM *a, BIGNUM *b, int nwords); | |
324 | |
325 /* Deprecated versions */ | |
326 DEPRECATEDIN_0_9_8(BIGNUM *BN_generate_prime(BIGNUM *ret, int bits, int safe, | |
327 const BIGNUM *add, | |
328 const BIGNUM *rem, | |
329 void (*callback) (int, int, | |
330 void *), | |
331 void *cb_arg)) | |
332 DEPRECATEDIN_0_9_8(int | |
333 BN_is_prime(const BIGNUM *p, int nchecks, | |
334 void (*callback) (int, int, void *), | |
335 BN_CTX *ctx, void *cb_arg)) | |
336 DEPRECATEDIN_0_9_8(int | |
337 BN_is_prime_fasttest(const BIGNUM *p, int nchecks, | |
338 void (*callback) (int, int, void *), | |
339 BN_CTX *ctx, void *cb_arg, | |
340 int do_trial_division)) | |
341 | |
342 /* Newer versions */ | |
343 int BN_generate_prime_ex(BIGNUM *ret, int bits, int safe, const BIGNUM *add, | |
344 const BIGNUM *rem, BN_GENCB *cb); | |
345 int BN_is_prime_ex(const BIGNUM *p, int nchecks, BN_CTX *ctx, BN_GENCB *cb); | |
346 int BN_is_prime_fasttest_ex(const BIGNUM *p, int nchecks, BN_CTX *ctx, | |
347 int do_trial_division, BN_GENCB *cb); | |
348 | |
349 int BN_X931_generate_Xpq(BIGNUM *Xp, BIGNUM *Xq, int nbits, BN_CTX *ctx); | |
350 | |
351 int BN_X931_derive_prime_ex(BIGNUM *p, BIGNUM *p1, BIGNUM *p2, | |
352 const BIGNUM *Xp, const BIGNUM *Xp1, | |
353 const BIGNUM *Xp2, const BIGNUM *e, BN_CTX *ctx, | |
354 BN_GENCB *cb); | |
355 int BN_X931_generate_prime_ex(BIGNUM *p, BIGNUM *p1, BIGNUM *p2, BIGNUM *Xp1, | |
356 BIGNUM *Xp2, const BIGNUM *Xp, const BIGNUM *e, | |
357 BN_CTX *ctx, BN_GENCB *cb); | |
358 | |
359 BN_MONT_CTX *BN_MONT_CTX_new(void); | |
360 int BN_mod_mul_montgomery(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, | |
361 BN_MONT_CTX *mont, BN_CTX *ctx); | |
362 int BN_to_montgomery(BIGNUM *r, const BIGNUM *a, BN_MONT_CTX *mont, | |
363 BN_CTX *ctx); | |
364 int BN_from_montgomery(BIGNUM *r, const BIGNUM *a, BN_MONT_CTX *mont, | |
365 BN_CTX *ctx); | |
366 void BN_MONT_CTX_free(BN_MONT_CTX *mont); | |
367 int BN_MONT_CTX_set(BN_MONT_CTX *mont, const BIGNUM *mod, BN_CTX *ctx); | |
368 BN_MONT_CTX *BN_MONT_CTX_copy(BN_MONT_CTX *to, BN_MONT_CTX *from); | |
369 BN_MONT_CTX *BN_MONT_CTX_set_locked(BN_MONT_CTX **pmont, CRYPTO_RWLOCK *lock, | |
370 const BIGNUM *mod, BN_CTX *ctx); | |
371 | |
372 /* BN_BLINDING flags */ | |
373 # define BN_BLINDING_NO_UPDATE 0x00000001 | |
374 # define BN_BLINDING_NO_RECREATE 0x00000002 | |
375 | |
376 BN_BLINDING *BN_BLINDING_new(const BIGNUM *A, const BIGNUM *Ai, BIGNUM *mod); | |
377 void BN_BLINDING_free(BN_BLINDING *b); | |
378 int BN_BLINDING_update(BN_BLINDING *b, BN_CTX *ctx); | |
379 int BN_BLINDING_convert(BIGNUM *n, BN_BLINDING *b, BN_CTX *ctx); | |
380 int BN_BLINDING_invert(BIGNUM *n, BN_BLINDING *b, BN_CTX *ctx); | |
381 int BN_BLINDING_convert_ex(BIGNUM *n, BIGNUM *r, BN_BLINDING *b, BN_CTX *); | |
382 int BN_BLINDING_invert_ex(BIGNUM *n, const BIGNUM *r, BN_BLINDING *b, | |
383 BN_CTX *); | |
384 | |
385 int BN_BLINDING_is_current_thread(BN_BLINDING *b); | |
386 void BN_BLINDING_set_current_thread(BN_BLINDING *b); | |
387 int BN_BLINDING_lock(BN_BLINDING *b); | |
388 int BN_BLINDING_unlock(BN_BLINDING *b); | |
389 | |
390 unsigned long BN_BLINDING_get_flags(const BN_BLINDING *); | |
391 void BN_BLINDING_set_flags(BN_BLINDING *, unsigned long); | |
392 BN_BLINDING *BN_BLINDING_create_param(BN_BLINDING *b, | |
393 const BIGNUM *e, BIGNUM *m, BN_CTX *ctx, | |
394 int (*bn_mod_exp) (BIGNUM *r, | |
395 const BIGNUM *a, | |
396 const BIGNUM *p, | |
397 const BIGNUM *m, | |
398 BN_CTX *ctx, | |
399 BN_MONT_CTX *m_ctx), | |
400 BN_MONT_CTX *m_ctx); | |
401 | |
402 DEPRECATEDIN_0_9_8(void BN_set_params(int mul, int high, int low, int mont)) | |
403 DEPRECATEDIN_0_9_8(int BN_get_params(int which)) /* 0, mul, 1 high, 2 low, 3 | |
404 * mont */ | |
405 | |
406 BN_RECP_CTX *BN_RECP_CTX_new(void); | |
407 void BN_RECP_CTX_free(BN_RECP_CTX *recp); | |
408 int BN_RECP_CTX_set(BN_RECP_CTX *recp, const BIGNUM *rdiv, BN_CTX *ctx); | |
409 int BN_mod_mul_reciprocal(BIGNUM *r, const BIGNUM *x, const BIGNUM *y, | |
410 BN_RECP_CTX *recp, BN_CTX *ctx); | |
411 int BN_mod_exp_recp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, | |
412 const BIGNUM *m, BN_CTX *ctx); | |
413 int BN_div_recp(BIGNUM *dv, BIGNUM *rem, const BIGNUM *m, | |
414 BN_RECP_CTX *recp, BN_CTX *ctx); | |
415 | |
416 # ifndef OPENSSL_NO_EC2M | |
417 | |
418 /* | |
419 * Functions for arithmetic over binary polynomials represented by BIGNUMs. | |
420 * The BIGNUM::neg property of BIGNUMs representing binary polynomials is | |
421 * ignored. Note that input arguments are not const so that their bit arrays | |
422 * can be expanded to the appropriate size if needed. | |
423 */ | |
424 | |
425 /* | |
426 * r = a + b | |
427 */ | |
428 int BN_GF2m_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b); | |
429 # define BN_GF2m_sub(r, a, b) BN_GF2m_add(r, a, b) | |
430 /* | |
431 * r=a mod p | |
432 */ | |
433 int BN_GF2m_mod(BIGNUM *r, const BIGNUM *a, const BIGNUM *p); | |
434 /* r = (a * b) mod p */ | |
435 int BN_GF2m_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, | |
436 const BIGNUM *p, BN_CTX *ctx); | |
437 /* r = (a * a) mod p */ | |
438 int BN_GF2m_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx); | |
439 /* r = (1 / b) mod p */ | |
440 int BN_GF2m_mod_inv(BIGNUM *r, const BIGNUM *b, const BIGNUM *p, BN_CTX *ctx); | |
441 /* r = (a / b) mod p */ | |
442 int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, | |
443 const BIGNUM *p, BN_CTX *ctx); | |
444 /* r = (a ^ b) mod p */ | |
445 int BN_GF2m_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, | |
446 const BIGNUM *p, BN_CTX *ctx); | |
447 /* r = sqrt(a) mod p */ | |
448 int BN_GF2m_mod_sqrt(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, | |
449 BN_CTX *ctx); | |
450 /* r^2 + r = a mod p */ | |
451 int BN_GF2m_mod_solve_quad(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, | |
452 BN_CTX *ctx); | |
453 # define BN_GF2m_cmp(a, b) BN_ucmp((a), (b)) | |
454 /*- | |
455 * Some functions allow for representation of the irreducible polynomials | |
456 * as an unsigned int[], say p. The irreducible f(t) is then of the form: | |
457 * t^p[0] + t^p[1] + ... + t^p[k] | |
458 * where m = p[0] > p[1] > ... > p[k] = 0. | |
459 */ | |
460 /* r = a mod p */ | |
461 int BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const int p[]); | |
462 /* r = (a * b) mod p */ | |
463 int BN_GF2m_mod_mul_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, | |
464 const int p[], BN_CTX *ctx); | |
465 /* r = (a * a) mod p */ | |
466 int BN_GF2m_mod_sqr_arr(BIGNUM *r, const BIGNUM *a, const int p[], | |
467 BN_CTX *ctx); | |
468 /* r = (1 / b) mod p */ | |
469 int BN_GF2m_mod_inv_arr(BIGNUM *r, const BIGNUM *b, const int p[], | |
470 BN_CTX *ctx); | |
471 /* r = (a / b) mod p */ | |
472 int BN_GF2m_mod_div_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, | |
473 const int p[], BN_CTX *ctx); | |
474 /* r = (a ^ b) mod p */ | |
475 int BN_GF2m_mod_exp_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, | |
476 const int p[], BN_CTX *ctx); | |
477 /* r = sqrt(a) mod p */ | |
478 int BN_GF2m_mod_sqrt_arr(BIGNUM *r, const BIGNUM *a, | |
479 const int p[], BN_CTX *ctx); | |
480 /* r^2 + r = a mod p */ | |
481 int BN_GF2m_mod_solve_quad_arr(BIGNUM *r, const BIGNUM *a, | |
482 const int p[], BN_CTX *ctx); | |
483 int BN_GF2m_poly2arr(const BIGNUM *a, int p[], int max); | |
484 int BN_GF2m_arr2poly(const int p[], BIGNUM *a); | |
485 | |
486 # endif | |
487 | |
488 /* | |
489 * faster mod functions for the 'NIST primes' 0 <= a < p^2 | |
490 */ | |
491 int BN_nist_mod_192(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx); | |
492 int BN_nist_mod_224(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx); | |
493 int BN_nist_mod_256(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx); | |
494 int BN_nist_mod_384(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx); | |
495 int BN_nist_mod_521(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx); | |
496 | |
497 const BIGNUM *BN_get0_nist_prime_192(void); | |
498 const BIGNUM *BN_get0_nist_prime_224(void); | |
499 const BIGNUM *BN_get0_nist_prime_256(void); | |
500 const BIGNUM *BN_get0_nist_prime_384(void); | |
501 const BIGNUM *BN_get0_nist_prime_521(void); | |
502 | |
503 int (*BN_nist_mod_func(const BIGNUM *p)) (BIGNUM *r, const BIGNUM *a, | |
504 const BIGNUM *field, BN_CTX *ctx); | |
505 | |
506 int BN_generate_dsa_nonce(BIGNUM *out, const BIGNUM *range, | |
507 const BIGNUM *priv, const unsigned char *message, | |
508 size_t message_len, BN_CTX *ctx); | |
509 | |
510 /* Primes from RFC 2409 */ | |
511 BIGNUM *BN_get_rfc2409_prime_768(BIGNUM *bn); | |
512 BIGNUM *BN_get_rfc2409_prime_1024(BIGNUM *bn); | |
513 | |
514 /* Primes from RFC 3526 */ | |
515 BIGNUM *BN_get_rfc3526_prime_1536(BIGNUM *bn); | |
516 BIGNUM *BN_get_rfc3526_prime_2048(BIGNUM *bn); | |
517 BIGNUM *BN_get_rfc3526_prime_3072(BIGNUM *bn); | |
518 BIGNUM *BN_get_rfc3526_prime_4096(BIGNUM *bn); | |
519 BIGNUM *BN_get_rfc3526_prime_6144(BIGNUM *bn); | |
520 BIGNUM *BN_get_rfc3526_prime_8192(BIGNUM *bn); | |
521 | |
522 # if OPENSSL_API_COMPAT < 0x10100000L | |
523 # define get_rfc2409_prime_768 BN_get_rfc2409_prime_768 | |
524 # define get_rfc2409_prime_1024 BN_get_rfc2409_prime_1024 | |
525 # define get_rfc3526_prime_1536 BN_get_rfc3526_prime_1536 | |
526 # define get_rfc3526_prime_2048 BN_get_rfc3526_prime_2048 | |
527 # define get_rfc3526_prime_3072 BN_get_rfc3526_prime_3072 | |
528 # define get_rfc3526_prime_4096 BN_get_rfc3526_prime_4096 | |
529 # define get_rfc3526_prime_6144 BN_get_rfc3526_prime_6144 | |
530 # define get_rfc3526_prime_8192 BN_get_rfc3526_prime_8192 | |
531 # endif | |
532 | |
533 int BN_bntest_rand(BIGNUM *rnd, int bits, int top, int bottom); | |
534 | |
535 | |
536 # ifdef __cplusplus | |
537 } | |
538 # endif | |
539 #endif |