annotate CSP2/CSP2_env/env-d9b9114564458d9d-741b3de822f2aaca6c6caa4325c4afce/include/openssl/bn.h @ 69:33d812a61356

planemo upload commit 2e9511a184a1ca667c7be0c6321a36dc4e3d116d
author jpayne
date Tue, 18 Mar 2025 17:55:14 -0400
parents
children
rev   line source
jpayne@69 1 /*
jpayne@69 2 * Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved.
jpayne@69 3 * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
jpayne@69 4 *
jpayne@69 5 * Licensed under the OpenSSL license (the "License"). You may not use
jpayne@69 6 * this file except in compliance with the License. You can obtain a copy
jpayne@69 7 * in the file LICENSE in the source distribution or at
jpayne@69 8 * https://www.openssl.org/source/license.html
jpayne@69 9 */
jpayne@69 10
jpayne@69 11 #ifndef HEADER_BN_H
jpayne@69 12 # define HEADER_BN_H
jpayne@69 13
jpayne@69 14 # include <openssl/e_os2.h>
jpayne@69 15 # ifndef OPENSSL_NO_STDIO
jpayne@69 16 # include <stdio.h>
jpayne@69 17 # endif
jpayne@69 18 # include <openssl/opensslconf.h>
jpayne@69 19 # include <openssl/ossl_typ.h>
jpayne@69 20 # include <openssl/crypto.h>
jpayne@69 21 # include <openssl/bnerr.h>
jpayne@69 22
jpayne@69 23 #ifdef __cplusplus
jpayne@69 24 extern "C" {
jpayne@69 25 #endif
jpayne@69 26
jpayne@69 27 /*
jpayne@69 28 * 64-bit processor with LP64 ABI
jpayne@69 29 */
jpayne@69 30 # ifdef SIXTY_FOUR_BIT_LONG
jpayne@69 31 # define BN_ULONG unsigned long
jpayne@69 32 # define BN_BYTES 8
jpayne@69 33 # endif
jpayne@69 34
jpayne@69 35 /*
jpayne@69 36 * 64-bit processor other than LP64 ABI
jpayne@69 37 */
jpayne@69 38 # ifdef SIXTY_FOUR_BIT
jpayne@69 39 # define BN_ULONG unsigned long long
jpayne@69 40 # define BN_BYTES 8
jpayne@69 41 # endif
jpayne@69 42
jpayne@69 43 # ifdef THIRTY_TWO_BIT
jpayne@69 44 # define BN_ULONG unsigned int
jpayne@69 45 # define BN_BYTES 4
jpayne@69 46 # endif
jpayne@69 47
jpayne@69 48 # define BN_BITS2 (BN_BYTES * 8)
jpayne@69 49 # define BN_BITS (BN_BITS2 * 2)
jpayne@69 50 # define BN_TBIT ((BN_ULONG)1 << (BN_BITS2 - 1))
jpayne@69 51
jpayne@69 52 # define BN_FLG_MALLOCED 0x01
jpayne@69 53 # define BN_FLG_STATIC_DATA 0x02
jpayne@69 54
jpayne@69 55 /*
jpayne@69 56 * avoid leaking exponent information through timing,
jpayne@69 57 * BN_mod_exp_mont() will call BN_mod_exp_mont_consttime,
jpayne@69 58 * BN_div() will call BN_div_no_branch,
jpayne@69 59 * BN_mod_inverse() will call bn_mod_inverse_no_branch.
jpayne@69 60 */
jpayne@69 61 # define BN_FLG_CONSTTIME 0x04
jpayne@69 62 # define BN_FLG_SECURE 0x08
jpayne@69 63
jpayne@69 64 # if OPENSSL_API_COMPAT < 0x00908000L
jpayne@69 65 /* deprecated name for the flag */
jpayne@69 66 # define BN_FLG_EXP_CONSTTIME BN_FLG_CONSTTIME
jpayne@69 67 # define BN_FLG_FREE 0x8000 /* used for debugging */
jpayne@69 68 # endif
jpayne@69 69
jpayne@69 70 void BN_set_flags(BIGNUM *b, int n);
jpayne@69 71 int BN_get_flags(const BIGNUM *b, int n);
jpayne@69 72
jpayne@69 73 /* Values for |top| in BN_rand() */
jpayne@69 74 #define BN_RAND_TOP_ANY -1
jpayne@69 75 #define BN_RAND_TOP_ONE 0
jpayne@69 76 #define BN_RAND_TOP_TWO 1
jpayne@69 77
jpayne@69 78 /* Values for |bottom| in BN_rand() */
jpayne@69 79 #define BN_RAND_BOTTOM_ANY 0
jpayne@69 80 #define BN_RAND_BOTTOM_ODD 1
jpayne@69 81
jpayne@69 82 /*
jpayne@69 83 * get a clone of a BIGNUM with changed flags, for *temporary* use only (the
jpayne@69 84 * two BIGNUMs cannot be used in parallel!). Also only for *read only* use. The
jpayne@69 85 * value |dest| should be a newly allocated BIGNUM obtained via BN_new() that
jpayne@69 86 * has not been otherwise initialised or used.
jpayne@69 87 */
jpayne@69 88 void BN_with_flags(BIGNUM *dest, const BIGNUM *b, int flags);
jpayne@69 89
jpayne@69 90 /* Wrapper function to make using BN_GENCB easier */
jpayne@69 91 int BN_GENCB_call(BN_GENCB *cb, int a, int b);
jpayne@69 92
jpayne@69 93 BN_GENCB *BN_GENCB_new(void);
jpayne@69 94 void BN_GENCB_free(BN_GENCB *cb);
jpayne@69 95
jpayne@69 96 /* Populate a BN_GENCB structure with an "old"-style callback */
jpayne@69 97 void BN_GENCB_set_old(BN_GENCB *gencb, void (*callback) (int, int, void *),
jpayne@69 98 void *cb_arg);
jpayne@69 99
jpayne@69 100 /* Populate a BN_GENCB structure with a "new"-style callback */
jpayne@69 101 void BN_GENCB_set(BN_GENCB *gencb, int (*callback) (int, int, BN_GENCB *),
jpayne@69 102 void *cb_arg);
jpayne@69 103
jpayne@69 104 void *BN_GENCB_get_arg(BN_GENCB *cb);
jpayne@69 105
jpayne@69 106 # define BN_prime_checks 0 /* default: select number of iterations based
jpayne@69 107 * on the size of the number */
jpayne@69 108
jpayne@69 109 /*
jpayne@69 110 * BN_prime_checks_for_size() returns the number of Miller-Rabin iterations
jpayne@69 111 * that will be done for checking that a random number is probably prime. The
jpayne@69 112 * error rate for accepting a composite number as prime depends on the size of
jpayne@69 113 * the prime |b|. The error rates used are for calculating an RSA key with 2 primes,
jpayne@69 114 * and so the level is what you would expect for a key of double the size of the
jpayne@69 115 * prime.
jpayne@69 116 *
jpayne@69 117 * This table is generated using the algorithm of FIPS PUB 186-4
jpayne@69 118 * Digital Signature Standard (DSS), section F.1, page 117.
jpayne@69 119 * (https://dx.doi.org/10.6028/NIST.FIPS.186-4)
jpayne@69 120 *
jpayne@69 121 * The following magma script was used to generate the output:
jpayne@69 122 * securitybits:=125;
jpayne@69 123 * k:=1024;
jpayne@69 124 * for t:=1 to 65 do
jpayne@69 125 * for M:=3 to Floor(2*Sqrt(k-1)-1) do
jpayne@69 126 * S:=0;
jpayne@69 127 * // Sum over m
jpayne@69 128 * for m:=3 to M do
jpayne@69 129 * s:=0;
jpayne@69 130 * // Sum over j
jpayne@69 131 * for j:=2 to m do
jpayne@69 132 * s+:=(RealField(32)!2)^-(j+(k-1)/j);
jpayne@69 133 * end for;
jpayne@69 134 * S+:=2^(m-(m-1)*t)*s;
jpayne@69 135 * end for;
jpayne@69 136 * A:=2^(k-2-M*t);
jpayne@69 137 * B:=8*(Pi(RealField(32))^2-6)/3*2^(k-2)*S;
jpayne@69 138 * pkt:=2.00743*Log(2)*k*2^-k*(A+B);
jpayne@69 139 * seclevel:=Floor(-Log(2,pkt));
jpayne@69 140 * if seclevel ge securitybits then
jpayne@69 141 * printf "k: %5o, security: %o bits (t: %o, M: %o)\n",k,seclevel,t,M;
jpayne@69 142 * break;
jpayne@69 143 * end if;
jpayne@69 144 * end for;
jpayne@69 145 * if seclevel ge securitybits then break; end if;
jpayne@69 146 * end for;
jpayne@69 147 *
jpayne@69 148 * It can be run online at:
jpayne@69 149 * http://magma.maths.usyd.edu.au/calc
jpayne@69 150 *
jpayne@69 151 * And will output:
jpayne@69 152 * k: 1024, security: 129 bits (t: 6, M: 23)
jpayne@69 153 *
jpayne@69 154 * k is the number of bits of the prime, securitybits is the level we want to
jpayne@69 155 * reach.
jpayne@69 156 *
jpayne@69 157 * prime length | RSA key size | # MR tests | security level
jpayne@69 158 * -------------+--------------|------------+---------------
jpayne@69 159 * (b) >= 6394 | >= 12788 | 3 | 256 bit
jpayne@69 160 * (b) >= 3747 | >= 7494 | 3 | 192 bit
jpayne@69 161 * (b) >= 1345 | >= 2690 | 4 | 128 bit
jpayne@69 162 * (b) >= 1080 | >= 2160 | 5 | 128 bit
jpayne@69 163 * (b) >= 852 | >= 1704 | 5 | 112 bit
jpayne@69 164 * (b) >= 476 | >= 952 | 5 | 80 bit
jpayne@69 165 * (b) >= 400 | >= 800 | 6 | 80 bit
jpayne@69 166 * (b) >= 347 | >= 694 | 7 | 80 bit
jpayne@69 167 * (b) >= 308 | >= 616 | 8 | 80 bit
jpayne@69 168 * (b) >= 55 | >= 110 | 27 | 64 bit
jpayne@69 169 * (b) >= 6 | >= 12 | 34 | 64 bit
jpayne@69 170 */
jpayne@69 171
jpayne@69 172 # define BN_prime_checks_for_size(b) ((b) >= 3747 ? 3 : \
jpayne@69 173 (b) >= 1345 ? 4 : \
jpayne@69 174 (b) >= 476 ? 5 : \
jpayne@69 175 (b) >= 400 ? 6 : \
jpayne@69 176 (b) >= 347 ? 7 : \
jpayne@69 177 (b) >= 308 ? 8 : \
jpayne@69 178 (b) >= 55 ? 27 : \
jpayne@69 179 /* b >= 6 */ 34)
jpayne@69 180
jpayne@69 181 # define BN_num_bytes(a) ((BN_num_bits(a)+7)/8)
jpayne@69 182
jpayne@69 183 int BN_abs_is_word(const BIGNUM *a, const BN_ULONG w);
jpayne@69 184 int BN_is_zero(const BIGNUM *a);
jpayne@69 185 int BN_is_one(const BIGNUM *a);
jpayne@69 186 int BN_is_word(const BIGNUM *a, const BN_ULONG w);
jpayne@69 187 int BN_is_odd(const BIGNUM *a);
jpayne@69 188
jpayne@69 189 # define BN_one(a) (BN_set_word((a),1))
jpayne@69 190
jpayne@69 191 void BN_zero_ex(BIGNUM *a);
jpayne@69 192
jpayne@69 193 # if OPENSSL_API_COMPAT >= 0x00908000L
jpayne@69 194 # define BN_zero(a) BN_zero_ex(a)
jpayne@69 195 # else
jpayne@69 196 # define BN_zero(a) (BN_set_word((a),0))
jpayne@69 197 # endif
jpayne@69 198
jpayne@69 199 const BIGNUM *BN_value_one(void);
jpayne@69 200 char *BN_options(void);
jpayne@69 201 BN_CTX *BN_CTX_new(void);
jpayne@69 202 BN_CTX *BN_CTX_secure_new(void);
jpayne@69 203 void BN_CTX_free(BN_CTX *c);
jpayne@69 204 void BN_CTX_start(BN_CTX *ctx);
jpayne@69 205 BIGNUM *BN_CTX_get(BN_CTX *ctx);
jpayne@69 206 void BN_CTX_end(BN_CTX *ctx);
jpayne@69 207 int BN_rand(BIGNUM *rnd, int bits, int top, int bottom);
jpayne@69 208 int BN_priv_rand(BIGNUM *rnd, int bits, int top, int bottom);
jpayne@69 209 int BN_rand_range(BIGNUM *rnd, const BIGNUM *range);
jpayne@69 210 int BN_priv_rand_range(BIGNUM *rnd, const BIGNUM *range);
jpayne@69 211 int BN_pseudo_rand(BIGNUM *rnd, int bits, int top, int bottom);
jpayne@69 212 int BN_pseudo_rand_range(BIGNUM *rnd, const BIGNUM *range);
jpayne@69 213 int BN_num_bits(const BIGNUM *a);
jpayne@69 214 int BN_num_bits_word(BN_ULONG l);
jpayne@69 215 int BN_security_bits(int L, int N);
jpayne@69 216 BIGNUM *BN_new(void);
jpayne@69 217 BIGNUM *BN_secure_new(void);
jpayne@69 218 void BN_clear_free(BIGNUM *a);
jpayne@69 219 BIGNUM *BN_copy(BIGNUM *a, const BIGNUM *b);
jpayne@69 220 void BN_swap(BIGNUM *a, BIGNUM *b);
jpayne@69 221 BIGNUM *BN_bin2bn(const unsigned char *s, int len, BIGNUM *ret);
jpayne@69 222 int BN_bn2bin(const BIGNUM *a, unsigned char *to);
jpayne@69 223 int BN_bn2binpad(const BIGNUM *a, unsigned char *to, int tolen);
jpayne@69 224 BIGNUM *BN_lebin2bn(const unsigned char *s, int len, BIGNUM *ret);
jpayne@69 225 int BN_bn2lebinpad(const BIGNUM *a, unsigned char *to, int tolen);
jpayne@69 226 BIGNUM *BN_mpi2bn(const unsigned char *s, int len, BIGNUM *ret);
jpayne@69 227 int BN_bn2mpi(const BIGNUM *a, unsigned char *to);
jpayne@69 228 int BN_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
jpayne@69 229 int BN_usub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
jpayne@69 230 int BN_uadd(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
jpayne@69 231 int BN_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
jpayne@69 232 int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx);
jpayne@69 233 int BN_sqr(BIGNUM *r, const BIGNUM *a, BN_CTX *ctx);
jpayne@69 234 /** BN_set_negative sets sign of a BIGNUM
jpayne@69 235 * \param b pointer to the BIGNUM object
jpayne@69 236 * \param n 0 if the BIGNUM b should be positive and a value != 0 otherwise
jpayne@69 237 */
jpayne@69 238 void BN_set_negative(BIGNUM *b, int n);
jpayne@69 239 /** BN_is_negative returns 1 if the BIGNUM is negative
jpayne@69 240 * \param b pointer to the BIGNUM object
jpayne@69 241 * \return 1 if a < 0 and 0 otherwise
jpayne@69 242 */
jpayne@69 243 int BN_is_negative(const BIGNUM *b);
jpayne@69 244
jpayne@69 245 int BN_div(BIGNUM *dv, BIGNUM *rem, const BIGNUM *m, const BIGNUM *d,
jpayne@69 246 BN_CTX *ctx);
jpayne@69 247 # define BN_mod(rem,m,d,ctx) BN_div(NULL,(rem),(m),(d),(ctx))
jpayne@69 248 int BN_nnmod(BIGNUM *r, const BIGNUM *m, const BIGNUM *d, BN_CTX *ctx);
jpayne@69 249 int BN_mod_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m,
jpayne@69 250 BN_CTX *ctx);
jpayne@69 251 int BN_mod_add_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
jpayne@69 252 const BIGNUM *m);
jpayne@69 253 int BN_mod_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m,
jpayne@69 254 BN_CTX *ctx);
jpayne@69 255 int BN_mod_sub_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
jpayne@69 256 const BIGNUM *m);
jpayne@69 257 int BN_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m,
jpayne@69 258 BN_CTX *ctx);
jpayne@69 259 int BN_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);
jpayne@69 260 int BN_mod_lshift1(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);
jpayne@69 261 int BN_mod_lshift1_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *m);
jpayne@69 262 int BN_mod_lshift(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m,
jpayne@69 263 BN_CTX *ctx);
jpayne@69 264 int BN_mod_lshift_quick(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m);
jpayne@69 265
jpayne@69 266 BN_ULONG BN_mod_word(const BIGNUM *a, BN_ULONG w);
jpayne@69 267 BN_ULONG BN_div_word(BIGNUM *a, BN_ULONG w);
jpayne@69 268 int BN_mul_word(BIGNUM *a, BN_ULONG w);
jpayne@69 269 int BN_add_word(BIGNUM *a, BN_ULONG w);
jpayne@69 270 int BN_sub_word(BIGNUM *a, BN_ULONG w);
jpayne@69 271 int BN_set_word(BIGNUM *a, BN_ULONG w);
jpayne@69 272 BN_ULONG BN_get_word(const BIGNUM *a);
jpayne@69 273
jpayne@69 274 int BN_cmp(const BIGNUM *a, const BIGNUM *b);
jpayne@69 275 void BN_free(BIGNUM *a);
jpayne@69 276 int BN_is_bit_set(const BIGNUM *a, int n);
jpayne@69 277 int BN_lshift(BIGNUM *r, const BIGNUM *a, int n);
jpayne@69 278 int BN_lshift1(BIGNUM *r, const BIGNUM *a);
jpayne@69 279 int BN_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx);
jpayne@69 280
jpayne@69 281 int BN_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
jpayne@69 282 const BIGNUM *m, BN_CTX *ctx);
jpayne@69 283 int BN_mod_exp_mont(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
jpayne@69 284 const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx);
jpayne@69 285 int BN_mod_exp_mont_consttime(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p,
jpayne@69 286 const BIGNUM *m, BN_CTX *ctx,
jpayne@69 287 BN_MONT_CTX *in_mont);
jpayne@69 288 int BN_mod_exp_mont_word(BIGNUM *r, BN_ULONG a, const BIGNUM *p,
jpayne@69 289 const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx);
jpayne@69 290 int BN_mod_exp2_mont(BIGNUM *r, const BIGNUM *a1, const BIGNUM *p1,
jpayne@69 291 const BIGNUM *a2, const BIGNUM *p2, const BIGNUM *m,
jpayne@69 292 BN_CTX *ctx, BN_MONT_CTX *m_ctx);
jpayne@69 293 int BN_mod_exp_simple(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
jpayne@69 294 const BIGNUM *m, BN_CTX *ctx);
jpayne@69 295
jpayne@69 296 int BN_mask_bits(BIGNUM *a, int n);
jpayne@69 297 # ifndef OPENSSL_NO_STDIO
jpayne@69 298 int BN_print_fp(FILE *fp, const BIGNUM *a);
jpayne@69 299 # endif
jpayne@69 300 int BN_print(BIO *bio, const BIGNUM *a);
jpayne@69 301 int BN_reciprocal(BIGNUM *r, const BIGNUM *m, int len, BN_CTX *ctx);
jpayne@69 302 int BN_rshift(BIGNUM *r, const BIGNUM *a, int n);
jpayne@69 303 int BN_rshift1(BIGNUM *r, const BIGNUM *a);
jpayne@69 304 void BN_clear(BIGNUM *a);
jpayne@69 305 BIGNUM *BN_dup(const BIGNUM *a);
jpayne@69 306 int BN_ucmp(const BIGNUM *a, const BIGNUM *b);
jpayne@69 307 int BN_set_bit(BIGNUM *a, int n);
jpayne@69 308 int BN_clear_bit(BIGNUM *a, int n);
jpayne@69 309 char *BN_bn2hex(const BIGNUM *a);
jpayne@69 310 char *BN_bn2dec(const BIGNUM *a);
jpayne@69 311 int BN_hex2bn(BIGNUM **a, const char *str);
jpayne@69 312 int BN_dec2bn(BIGNUM **a, const char *str);
jpayne@69 313 int BN_asc2bn(BIGNUM **a, const char *str);
jpayne@69 314 int BN_gcd(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx);
jpayne@69 315 int BN_kronecker(const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx); /* returns
jpayne@69 316 * -2 for
jpayne@69 317 * error */
jpayne@69 318 BIGNUM *BN_mod_inverse(BIGNUM *ret,
jpayne@69 319 const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx);
jpayne@69 320 BIGNUM *BN_mod_sqrt(BIGNUM *ret,
jpayne@69 321 const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx);
jpayne@69 322
jpayne@69 323 void BN_consttime_swap(BN_ULONG swap, BIGNUM *a, BIGNUM *b, int nwords);
jpayne@69 324
jpayne@69 325 /* Deprecated versions */
jpayne@69 326 DEPRECATEDIN_0_9_8(BIGNUM *BN_generate_prime(BIGNUM *ret, int bits, int safe,
jpayne@69 327 const BIGNUM *add,
jpayne@69 328 const BIGNUM *rem,
jpayne@69 329 void (*callback) (int, int,
jpayne@69 330 void *),
jpayne@69 331 void *cb_arg))
jpayne@69 332 DEPRECATEDIN_0_9_8(int
jpayne@69 333 BN_is_prime(const BIGNUM *p, int nchecks,
jpayne@69 334 void (*callback) (int, int, void *),
jpayne@69 335 BN_CTX *ctx, void *cb_arg))
jpayne@69 336 DEPRECATEDIN_0_9_8(int
jpayne@69 337 BN_is_prime_fasttest(const BIGNUM *p, int nchecks,
jpayne@69 338 void (*callback) (int, int, void *),
jpayne@69 339 BN_CTX *ctx, void *cb_arg,
jpayne@69 340 int do_trial_division))
jpayne@69 341
jpayne@69 342 /* Newer versions */
jpayne@69 343 int BN_generate_prime_ex(BIGNUM *ret, int bits, int safe, const BIGNUM *add,
jpayne@69 344 const BIGNUM *rem, BN_GENCB *cb);
jpayne@69 345 int BN_is_prime_ex(const BIGNUM *p, int nchecks, BN_CTX *ctx, BN_GENCB *cb);
jpayne@69 346 int BN_is_prime_fasttest_ex(const BIGNUM *p, int nchecks, BN_CTX *ctx,
jpayne@69 347 int do_trial_division, BN_GENCB *cb);
jpayne@69 348
jpayne@69 349 int BN_X931_generate_Xpq(BIGNUM *Xp, BIGNUM *Xq, int nbits, BN_CTX *ctx);
jpayne@69 350
jpayne@69 351 int BN_X931_derive_prime_ex(BIGNUM *p, BIGNUM *p1, BIGNUM *p2,
jpayne@69 352 const BIGNUM *Xp, const BIGNUM *Xp1,
jpayne@69 353 const BIGNUM *Xp2, const BIGNUM *e, BN_CTX *ctx,
jpayne@69 354 BN_GENCB *cb);
jpayne@69 355 int BN_X931_generate_prime_ex(BIGNUM *p, BIGNUM *p1, BIGNUM *p2, BIGNUM *Xp1,
jpayne@69 356 BIGNUM *Xp2, const BIGNUM *Xp, const BIGNUM *e,
jpayne@69 357 BN_CTX *ctx, BN_GENCB *cb);
jpayne@69 358
jpayne@69 359 BN_MONT_CTX *BN_MONT_CTX_new(void);
jpayne@69 360 int BN_mod_mul_montgomery(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
jpayne@69 361 BN_MONT_CTX *mont, BN_CTX *ctx);
jpayne@69 362 int BN_to_montgomery(BIGNUM *r, const BIGNUM *a, BN_MONT_CTX *mont,
jpayne@69 363 BN_CTX *ctx);
jpayne@69 364 int BN_from_montgomery(BIGNUM *r, const BIGNUM *a, BN_MONT_CTX *mont,
jpayne@69 365 BN_CTX *ctx);
jpayne@69 366 void BN_MONT_CTX_free(BN_MONT_CTX *mont);
jpayne@69 367 int BN_MONT_CTX_set(BN_MONT_CTX *mont, const BIGNUM *mod, BN_CTX *ctx);
jpayne@69 368 BN_MONT_CTX *BN_MONT_CTX_copy(BN_MONT_CTX *to, BN_MONT_CTX *from);
jpayne@69 369 BN_MONT_CTX *BN_MONT_CTX_set_locked(BN_MONT_CTX **pmont, CRYPTO_RWLOCK *lock,
jpayne@69 370 const BIGNUM *mod, BN_CTX *ctx);
jpayne@69 371
jpayne@69 372 /* BN_BLINDING flags */
jpayne@69 373 # define BN_BLINDING_NO_UPDATE 0x00000001
jpayne@69 374 # define BN_BLINDING_NO_RECREATE 0x00000002
jpayne@69 375
jpayne@69 376 BN_BLINDING *BN_BLINDING_new(const BIGNUM *A, const BIGNUM *Ai, BIGNUM *mod);
jpayne@69 377 void BN_BLINDING_free(BN_BLINDING *b);
jpayne@69 378 int BN_BLINDING_update(BN_BLINDING *b, BN_CTX *ctx);
jpayne@69 379 int BN_BLINDING_convert(BIGNUM *n, BN_BLINDING *b, BN_CTX *ctx);
jpayne@69 380 int BN_BLINDING_invert(BIGNUM *n, BN_BLINDING *b, BN_CTX *ctx);
jpayne@69 381 int BN_BLINDING_convert_ex(BIGNUM *n, BIGNUM *r, BN_BLINDING *b, BN_CTX *);
jpayne@69 382 int BN_BLINDING_invert_ex(BIGNUM *n, const BIGNUM *r, BN_BLINDING *b,
jpayne@69 383 BN_CTX *);
jpayne@69 384
jpayne@69 385 int BN_BLINDING_is_current_thread(BN_BLINDING *b);
jpayne@69 386 void BN_BLINDING_set_current_thread(BN_BLINDING *b);
jpayne@69 387 int BN_BLINDING_lock(BN_BLINDING *b);
jpayne@69 388 int BN_BLINDING_unlock(BN_BLINDING *b);
jpayne@69 389
jpayne@69 390 unsigned long BN_BLINDING_get_flags(const BN_BLINDING *);
jpayne@69 391 void BN_BLINDING_set_flags(BN_BLINDING *, unsigned long);
jpayne@69 392 BN_BLINDING *BN_BLINDING_create_param(BN_BLINDING *b,
jpayne@69 393 const BIGNUM *e, BIGNUM *m, BN_CTX *ctx,
jpayne@69 394 int (*bn_mod_exp) (BIGNUM *r,
jpayne@69 395 const BIGNUM *a,
jpayne@69 396 const BIGNUM *p,
jpayne@69 397 const BIGNUM *m,
jpayne@69 398 BN_CTX *ctx,
jpayne@69 399 BN_MONT_CTX *m_ctx),
jpayne@69 400 BN_MONT_CTX *m_ctx);
jpayne@69 401
jpayne@69 402 DEPRECATEDIN_0_9_8(void BN_set_params(int mul, int high, int low, int mont))
jpayne@69 403 DEPRECATEDIN_0_9_8(int BN_get_params(int which)) /* 0, mul, 1 high, 2 low, 3
jpayne@69 404 * mont */
jpayne@69 405
jpayne@69 406 BN_RECP_CTX *BN_RECP_CTX_new(void);
jpayne@69 407 void BN_RECP_CTX_free(BN_RECP_CTX *recp);
jpayne@69 408 int BN_RECP_CTX_set(BN_RECP_CTX *recp, const BIGNUM *rdiv, BN_CTX *ctx);
jpayne@69 409 int BN_mod_mul_reciprocal(BIGNUM *r, const BIGNUM *x, const BIGNUM *y,
jpayne@69 410 BN_RECP_CTX *recp, BN_CTX *ctx);
jpayne@69 411 int BN_mod_exp_recp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
jpayne@69 412 const BIGNUM *m, BN_CTX *ctx);
jpayne@69 413 int BN_div_recp(BIGNUM *dv, BIGNUM *rem, const BIGNUM *m,
jpayne@69 414 BN_RECP_CTX *recp, BN_CTX *ctx);
jpayne@69 415
jpayne@69 416 # ifndef OPENSSL_NO_EC2M
jpayne@69 417
jpayne@69 418 /*
jpayne@69 419 * Functions for arithmetic over binary polynomials represented by BIGNUMs.
jpayne@69 420 * The BIGNUM::neg property of BIGNUMs representing binary polynomials is
jpayne@69 421 * ignored. Note that input arguments are not const so that their bit arrays
jpayne@69 422 * can be expanded to the appropriate size if needed.
jpayne@69 423 */
jpayne@69 424
jpayne@69 425 /*
jpayne@69 426 * r = a + b
jpayne@69 427 */
jpayne@69 428 int BN_GF2m_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
jpayne@69 429 # define BN_GF2m_sub(r, a, b) BN_GF2m_add(r, a, b)
jpayne@69 430 /*
jpayne@69 431 * r=a mod p
jpayne@69 432 */
jpayne@69 433 int BN_GF2m_mod(BIGNUM *r, const BIGNUM *a, const BIGNUM *p);
jpayne@69 434 /* r = (a * b) mod p */
jpayne@69 435 int BN_GF2m_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
jpayne@69 436 const BIGNUM *p, BN_CTX *ctx);
jpayne@69 437 /* r = (a * a) mod p */
jpayne@69 438 int BN_GF2m_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx);
jpayne@69 439 /* r = (1 / b) mod p */
jpayne@69 440 int BN_GF2m_mod_inv(BIGNUM *r, const BIGNUM *b, const BIGNUM *p, BN_CTX *ctx);
jpayne@69 441 /* r = (a / b) mod p */
jpayne@69 442 int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
jpayne@69 443 const BIGNUM *p, BN_CTX *ctx);
jpayne@69 444 /* r = (a ^ b) mod p */
jpayne@69 445 int BN_GF2m_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
jpayne@69 446 const BIGNUM *p, BN_CTX *ctx);
jpayne@69 447 /* r = sqrt(a) mod p */
jpayne@69 448 int BN_GF2m_mod_sqrt(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
jpayne@69 449 BN_CTX *ctx);
jpayne@69 450 /* r^2 + r = a mod p */
jpayne@69 451 int BN_GF2m_mod_solve_quad(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
jpayne@69 452 BN_CTX *ctx);
jpayne@69 453 # define BN_GF2m_cmp(a, b) BN_ucmp((a), (b))
jpayne@69 454 /*-
jpayne@69 455 * Some functions allow for representation of the irreducible polynomials
jpayne@69 456 * as an unsigned int[], say p. The irreducible f(t) is then of the form:
jpayne@69 457 * t^p[0] + t^p[1] + ... + t^p[k]
jpayne@69 458 * where m = p[0] > p[1] > ... > p[k] = 0.
jpayne@69 459 */
jpayne@69 460 /* r = a mod p */
jpayne@69 461 int BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const int p[]);
jpayne@69 462 /* r = (a * b) mod p */
jpayne@69 463 int BN_GF2m_mod_mul_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
jpayne@69 464 const int p[], BN_CTX *ctx);
jpayne@69 465 /* r = (a * a) mod p */
jpayne@69 466 int BN_GF2m_mod_sqr_arr(BIGNUM *r, const BIGNUM *a, const int p[],
jpayne@69 467 BN_CTX *ctx);
jpayne@69 468 /* r = (1 / b) mod p */
jpayne@69 469 int BN_GF2m_mod_inv_arr(BIGNUM *r, const BIGNUM *b, const int p[],
jpayne@69 470 BN_CTX *ctx);
jpayne@69 471 /* r = (a / b) mod p */
jpayne@69 472 int BN_GF2m_mod_div_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
jpayne@69 473 const int p[], BN_CTX *ctx);
jpayne@69 474 /* r = (a ^ b) mod p */
jpayne@69 475 int BN_GF2m_mod_exp_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
jpayne@69 476 const int p[], BN_CTX *ctx);
jpayne@69 477 /* r = sqrt(a) mod p */
jpayne@69 478 int BN_GF2m_mod_sqrt_arr(BIGNUM *r, const BIGNUM *a,
jpayne@69 479 const int p[], BN_CTX *ctx);
jpayne@69 480 /* r^2 + r = a mod p */
jpayne@69 481 int BN_GF2m_mod_solve_quad_arr(BIGNUM *r, const BIGNUM *a,
jpayne@69 482 const int p[], BN_CTX *ctx);
jpayne@69 483 int BN_GF2m_poly2arr(const BIGNUM *a, int p[], int max);
jpayne@69 484 int BN_GF2m_arr2poly(const int p[], BIGNUM *a);
jpayne@69 485
jpayne@69 486 # endif
jpayne@69 487
jpayne@69 488 /*
jpayne@69 489 * faster mod functions for the 'NIST primes' 0 <= a < p^2
jpayne@69 490 */
jpayne@69 491 int BN_nist_mod_192(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx);
jpayne@69 492 int BN_nist_mod_224(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx);
jpayne@69 493 int BN_nist_mod_256(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx);
jpayne@69 494 int BN_nist_mod_384(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx);
jpayne@69 495 int BN_nist_mod_521(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx);
jpayne@69 496
jpayne@69 497 const BIGNUM *BN_get0_nist_prime_192(void);
jpayne@69 498 const BIGNUM *BN_get0_nist_prime_224(void);
jpayne@69 499 const BIGNUM *BN_get0_nist_prime_256(void);
jpayne@69 500 const BIGNUM *BN_get0_nist_prime_384(void);
jpayne@69 501 const BIGNUM *BN_get0_nist_prime_521(void);
jpayne@69 502
jpayne@69 503 int (*BN_nist_mod_func(const BIGNUM *p)) (BIGNUM *r, const BIGNUM *a,
jpayne@69 504 const BIGNUM *field, BN_CTX *ctx);
jpayne@69 505
jpayne@69 506 int BN_generate_dsa_nonce(BIGNUM *out, const BIGNUM *range,
jpayne@69 507 const BIGNUM *priv, const unsigned char *message,
jpayne@69 508 size_t message_len, BN_CTX *ctx);
jpayne@69 509
jpayne@69 510 /* Primes from RFC 2409 */
jpayne@69 511 BIGNUM *BN_get_rfc2409_prime_768(BIGNUM *bn);
jpayne@69 512 BIGNUM *BN_get_rfc2409_prime_1024(BIGNUM *bn);
jpayne@69 513
jpayne@69 514 /* Primes from RFC 3526 */
jpayne@69 515 BIGNUM *BN_get_rfc3526_prime_1536(BIGNUM *bn);
jpayne@69 516 BIGNUM *BN_get_rfc3526_prime_2048(BIGNUM *bn);
jpayne@69 517 BIGNUM *BN_get_rfc3526_prime_3072(BIGNUM *bn);
jpayne@69 518 BIGNUM *BN_get_rfc3526_prime_4096(BIGNUM *bn);
jpayne@69 519 BIGNUM *BN_get_rfc3526_prime_6144(BIGNUM *bn);
jpayne@69 520 BIGNUM *BN_get_rfc3526_prime_8192(BIGNUM *bn);
jpayne@69 521
jpayne@69 522 # if OPENSSL_API_COMPAT < 0x10100000L
jpayne@69 523 # define get_rfc2409_prime_768 BN_get_rfc2409_prime_768
jpayne@69 524 # define get_rfc2409_prime_1024 BN_get_rfc2409_prime_1024
jpayne@69 525 # define get_rfc3526_prime_1536 BN_get_rfc3526_prime_1536
jpayne@69 526 # define get_rfc3526_prime_2048 BN_get_rfc3526_prime_2048
jpayne@69 527 # define get_rfc3526_prime_3072 BN_get_rfc3526_prime_3072
jpayne@69 528 # define get_rfc3526_prime_4096 BN_get_rfc3526_prime_4096
jpayne@69 529 # define get_rfc3526_prime_6144 BN_get_rfc3526_prime_6144
jpayne@69 530 # define get_rfc3526_prime_8192 BN_get_rfc3526_prime_8192
jpayne@69 531 # endif
jpayne@69 532
jpayne@69 533 int BN_bntest_rand(BIGNUM *rnd, int bits, int top, int bottom);
jpayne@69 534
jpayne@69 535
jpayne@69 536 # ifdef __cplusplus
jpayne@69 537 }
jpayne@69 538 # endif
jpayne@69 539 #endif