jpayne@69
|
1 /*
|
jpayne@69
|
2 * Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved.
|
jpayne@69
|
3 * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
|
jpayne@69
|
4 *
|
jpayne@69
|
5 * Licensed under the OpenSSL license (the "License"). You may not use
|
jpayne@69
|
6 * this file except in compliance with the License. You can obtain a copy
|
jpayne@69
|
7 * in the file LICENSE in the source distribution or at
|
jpayne@69
|
8 * https://www.openssl.org/source/license.html
|
jpayne@69
|
9 */
|
jpayne@69
|
10
|
jpayne@69
|
11 #ifndef HEADER_BN_H
|
jpayne@69
|
12 # define HEADER_BN_H
|
jpayne@69
|
13
|
jpayne@69
|
14 # include <openssl/e_os2.h>
|
jpayne@69
|
15 # ifndef OPENSSL_NO_STDIO
|
jpayne@69
|
16 # include <stdio.h>
|
jpayne@69
|
17 # endif
|
jpayne@69
|
18 # include <openssl/opensslconf.h>
|
jpayne@69
|
19 # include <openssl/ossl_typ.h>
|
jpayne@69
|
20 # include <openssl/crypto.h>
|
jpayne@69
|
21 # include <openssl/bnerr.h>
|
jpayne@69
|
22
|
jpayne@69
|
23 #ifdef __cplusplus
|
jpayne@69
|
24 extern "C" {
|
jpayne@69
|
25 #endif
|
jpayne@69
|
26
|
jpayne@69
|
27 /*
|
jpayne@69
|
28 * 64-bit processor with LP64 ABI
|
jpayne@69
|
29 */
|
jpayne@69
|
30 # ifdef SIXTY_FOUR_BIT_LONG
|
jpayne@69
|
31 # define BN_ULONG unsigned long
|
jpayne@69
|
32 # define BN_BYTES 8
|
jpayne@69
|
33 # endif
|
jpayne@69
|
34
|
jpayne@69
|
35 /*
|
jpayne@69
|
36 * 64-bit processor other than LP64 ABI
|
jpayne@69
|
37 */
|
jpayne@69
|
38 # ifdef SIXTY_FOUR_BIT
|
jpayne@69
|
39 # define BN_ULONG unsigned long long
|
jpayne@69
|
40 # define BN_BYTES 8
|
jpayne@69
|
41 # endif
|
jpayne@69
|
42
|
jpayne@69
|
43 # ifdef THIRTY_TWO_BIT
|
jpayne@69
|
44 # define BN_ULONG unsigned int
|
jpayne@69
|
45 # define BN_BYTES 4
|
jpayne@69
|
46 # endif
|
jpayne@69
|
47
|
jpayne@69
|
48 # define BN_BITS2 (BN_BYTES * 8)
|
jpayne@69
|
49 # define BN_BITS (BN_BITS2 * 2)
|
jpayne@69
|
50 # define BN_TBIT ((BN_ULONG)1 << (BN_BITS2 - 1))
|
jpayne@69
|
51
|
jpayne@69
|
52 # define BN_FLG_MALLOCED 0x01
|
jpayne@69
|
53 # define BN_FLG_STATIC_DATA 0x02
|
jpayne@69
|
54
|
jpayne@69
|
55 /*
|
jpayne@69
|
56 * avoid leaking exponent information through timing,
|
jpayne@69
|
57 * BN_mod_exp_mont() will call BN_mod_exp_mont_consttime,
|
jpayne@69
|
58 * BN_div() will call BN_div_no_branch,
|
jpayne@69
|
59 * BN_mod_inverse() will call bn_mod_inverse_no_branch.
|
jpayne@69
|
60 */
|
jpayne@69
|
61 # define BN_FLG_CONSTTIME 0x04
|
jpayne@69
|
62 # define BN_FLG_SECURE 0x08
|
jpayne@69
|
63
|
jpayne@69
|
64 # if OPENSSL_API_COMPAT < 0x00908000L
|
jpayne@69
|
65 /* deprecated name for the flag */
|
jpayne@69
|
66 # define BN_FLG_EXP_CONSTTIME BN_FLG_CONSTTIME
|
jpayne@69
|
67 # define BN_FLG_FREE 0x8000 /* used for debugging */
|
jpayne@69
|
68 # endif
|
jpayne@69
|
69
|
jpayne@69
|
70 void BN_set_flags(BIGNUM *b, int n);
|
jpayne@69
|
71 int BN_get_flags(const BIGNUM *b, int n);
|
jpayne@69
|
72
|
jpayne@69
|
73 /* Values for |top| in BN_rand() */
|
jpayne@69
|
74 #define BN_RAND_TOP_ANY -1
|
jpayne@69
|
75 #define BN_RAND_TOP_ONE 0
|
jpayne@69
|
76 #define BN_RAND_TOP_TWO 1
|
jpayne@69
|
77
|
jpayne@69
|
78 /* Values for |bottom| in BN_rand() */
|
jpayne@69
|
79 #define BN_RAND_BOTTOM_ANY 0
|
jpayne@69
|
80 #define BN_RAND_BOTTOM_ODD 1
|
jpayne@69
|
81
|
jpayne@69
|
82 /*
|
jpayne@69
|
83 * get a clone of a BIGNUM with changed flags, for *temporary* use only (the
|
jpayne@69
|
84 * two BIGNUMs cannot be used in parallel!). Also only for *read only* use. The
|
jpayne@69
|
85 * value |dest| should be a newly allocated BIGNUM obtained via BN_new() that
|
jpayne@69
|
86 * has not been otherwise initialised or used.
|
jpayne@69
|
87 */
|
jpayne@69
|
88 void BN_with_flags(BIGNUM *dest, const BIGNUM *b, int flags);
|
jpayne@69
|
89
|
jpayne@69
|
90 /* Wrapper function to make using BN_GENCB easier */
|
jpayne@69
|
91 int BN_GENCB_call(BN_GENCB *cb, int a, int b);
|
jpayne@69
|
92
|
jpayne@69
|
93 BN_GENCB *BN_GENCB_new(void);
|
jpayne@69
|
94 void BN_GENCB_free(BN_GENCB *cb);
|
jpayne@69
|
95
|
jpayne@69
|
96 /* Populate a BN_GENCB structure with an "old"-style callback */
|
jpayne@69
|
97 void BN_GENCB_set_old(BN_GENCB *gencb, void (*callback) (int, int, void *),
|
jpayne@69
|
98 void *cb_arg);
|
jpayne@69
|
99
|
jpayne@69
|
100 /* Populate a BN_GENCB structure with a "new"-style callback */
|
jpayne@69
|
101 void BN_GENCB_set(BN_GENCB *gencb, int (*callback) (int, int, BN_GENCB *),
|
jpayne@69
|
102 void *cb_arg);
|
jpayne@69
|
103
|
jpayne@69
|
104 void *BN_GENCB_get_arg(BN_GENCB *cb);
|
jpayne@69
|
105
|
jpayne@69
|
106 # define BN_prime_checks 0 /* default: select number of iterations based
|
jpayne@69
|
107 * on the size of the number */
|
jpayne@69
|
108
|
jpayne@69
|
109 /*
|
jpayne@69
|
110 * BN_prime_checks_for_size() returns the number of Miller-Rabin iterations
|
jpayne@69
|
111 * that will be done for checking that a random number is probably prime. The
|
jpayne@69
|
112 * error rate for accepting a composite number as prime depends on the size of
|
jpayne@69
|
113 * the prime |b|. The error rates used are for calculating an RSA key with 2 primes,
|
jpayne@69
|
114 * and so the level is what you would expect for a key of double the size of the
|
jpayne@69
|
115 * prime.
|
jpayne@69
|
116 *
|
jpayne@69
|
117 * This table is generated using the algorithm of FIPS PUB 186-4
|
jpayne@69
|
118 * Digital Signature Standard (DSS), section F.1, page 117.
|
jpayne@69
|
119 * (https://dx.doi.org/10.6028/NIST.FIPS.186-4)
|
jpayne@69
|
120 *
|
jpayne@69
|
121 * The following magma script was used to generate the output:
|
jpayne@69
|
122 * securitybits:=125;
|
jpayne@69
|
123 * k:=1024;
|
jpayne@69
|
124 * for t:=1 to 65 do
|
jpayne@69
|
125 * for M:=3 to Floor(2*Sqrt(k-1)-1) do
|
jpayne@69
|
126 * S:=0;
|
jpayne@69
|
127 * // Sum over m
|
jpayne@69
|
128 * for m:=3 to M do
|
jpayne@69
|
129 * s:=0;
|
jpayne@69
|
130 * // Sum over j
|
jpayne@69
|
131 * for j:=2 to m do
|
jpayne@69
|
132 * s+:=(RealField(32)!2)^-(j+(k-1)/j);
|
jpayne@69
|
133 * end for;
|
jpayne@69
|
134 * S+:=2^(m-(m-1)*t)*s;
|
jpayne@69
|
135 * end for;
|
jpayne@69
|
136 * A:=2^(k-2-M*t);
|
jpayne@69
|
137 * B:=8*(Pi(RealField(32))^2-6)/3*2^(k-2)*S;
|
jpayne@69
|
138 * pkt:=2.00743*Log(2)*k*2^-k*(A+B);
|
jpayne@69
|
139 * seclevel:=Floor(-Log(2,pkt));
|
jpayne@69
|
140 * if seclevel ge securitybits then
|
jpayne@69
|
141 * printf "k: %5o, security: %o bits (t: %o, M: %o)\n",k,seclevel,t,M;
|
jpayne@69
|
142 * break;
|
jpayne@69
|
143 * end if;
|
jpayne@69
|
144 * end for;
|
jpayne@69
|
145 * if seclevel ge securitybits then break; end if;
|
jpayne@69
|
146 * end for;
|
jpayne@69
|
147 *
|
jpayne@69
|
148 * It can be run online at:
|
jpayne@69
|
149 * http://magma.maths.usyd.edu.au/calc
|
jpayne@69
|
150 *
|
jpayne@69
|
151 * And will output:
|
jpayne@69
|
152 * k: 1024, security: 129 bits (t: 6, M: 23)
|
jpayne@69
|
153 *
|
jpayne@69
|
154 * k is the number of bits of the prime, securitybits is the level we want to
|
jpayne@69
|
155 * reach.
|
jpayne@69
|
156 *
|
jpayne@69
|
157 * prime length | RSA key size | # MR tests | security level
|
jpayne@69
|
158 * -------------+--------------|------------+---------------
|
jpayne@69
|
159 * (b) >= 6394 | >= 12788 | 3 | 256 bit
|
jpayne@69
|
160 * (b) >= 3747 | >= 7494 | 3 | 192 bit
|
jpayne@69
|
161 * (b) >= 1345 | >= 2690 | 4 | 128 bit
|
jpayne@69
|
162 * (b) >= 1080 | >= 2160 | 5 | 128 bit
|
jpayne@69
|
163 * (b) >= 852 | >= 1704 | 5 | 112 bit
|
jpayne@69
|
164 * (b) >= 476 | >= 952 | 5 | 80 bit
|
jpayne@69
|
165 * (b) >= 400 | >= 800 | 6 | 80 bit
|
jpayne@69
|
166 * (b) >= 347 | >= 694 | 7 | 80 bit
|
jpayne@69
|
167 * (b) >= 308 | >= 616 | 8 | 80 bit
|
jpayne@69
|
168 * (b) >= 55 | >= 110 | 27 | 64 bit
|
jpayne@69
|
169 * (b) >= 6 | >= 12 | 34 | 64 bit
|
jpayne@69
|
170 */
|
jpayne@69
|
171
|
jpayne@69
|
172 # define BN_prime_checks_for_size(b) ((b) >= 3747 ? 3 : \
|
jpayne@69
|
173 (b) >= 1345 ? 4 : \
|
jpayne@69
|
174 (b) >= 476 ? 5 : \
|
jpayne@69
|
175 (b) >= 400 ? 6 : \
|
jpayne@69
|
176 (b) >= 347 ? 7 : \
|
jpayne@69
|
177 (b) >= 308 ? 8 : \
|
jpayne@69
|
178 (b) >= 55 ? 27 : \
|
jpayne@69
|
179 /* b >= 6 */ 34)
|
jpayne@69
|
180
|
jpayne@69
|
181 # define BN_num_bytes(a) ((BN_num_bits(a)+7)/8)
|
jpayne@69
|
182
|
jpayne@69
|
183 int BN_abs_is_word(const BIGNUM *a, const BN_ULONG w);
|
jpayne@69
|
184 int BN_is_zero(const BIGNUM *a);
|
jpayne@69
|
185 int BN_is_one(const BIGNUM *a);
|
jpayne@69
|
186 int BN_is_word(const BIGNUM *a, const BN_ULONG w);
|
jpayne@69
|
187 int BN_is_odd(const BIGNUM *a);
|
jpayne@69
|
188
|
jpayne@69
|
189 # define BN_one(a) (BN_set_word((a),1))
|
jpayne@69
|
190
|
jpayne@69
|
191 void BN_zero_ex(BIGNUM *a);
|
jpayne@69
|
192
|
jpayne@69
|
193 # if OPENSSL_API_COMPAT >= 0x00908000L
|
jpayne@69
|
194 # define BN_zero(a) BN_zero_ex(a)
|
jpayne@69
|
195 # else
|
jpayne@69
|
196 # define BN_zero(a) (BN_set_word((a),0))
|
jpayne@69
|
197 # endif
|
jpayne@69
|
198
|
jpayne@69
|
199 const BIGNUM *BN_value_one(void);
|
jpayne@69
|
200 char *BN_options(void);
|
jpayne@69
|
201 BN_CTX *BN_CTX_new(void);
|
jpayne@69
|
202 BN_CTX *BN_CTX_secure_new(void);
|
jpayne@69
|
203 void BN_CTX_free(BN_CTX *c);
|
jpayne@69
|
204 void BN_CTX_start(BN_CTX *ctx);
|
jpayne@69
|
205 BIGNUM *BN_CTX_get(BN_CTX *ctx);
|
jpayne@69
|
206 void BN_CTX_end(BN_CTX *ctx);
|
jpayne@69
|
207 int BN_rand(BIGNUM *rnd, int bits, int top, int bottom);
|
jpayne@69
|
208 int BN_priv_rand(BIGNUM *rnd, int bits, int top, int bottom);
|
jpayne@69
|
209 int BN_rand_range(BIGNUM *rnd, const BIGNUM *range);
|
jpayne@69
|
210 int BN_priv_rand_range(BIGNUM *rnd, const BIGNUM *range);
|
jpayne@69
|
211 int BN_pseudo_rand(BIGNUM *rnd, int bits, int top, int bottom);
|
jpayne@69
|
212 int BN_pseudo_rand_range(BIGNUM *rnd, const BIGNUM *range);
|
jpayne@69
|
213 int BN_num_bits(const BIGNUM *a);
|
jpayne@69
|
214 int BN_num_bits_word(BN_ULONG l);
|
jpayne@69
|
215 int BN_security_bits(int L, int N);
|
jpayne@69
|
216 BIGNUM *BN_new(void);
|
jpayne@69
|
217 BIGNUM *BN_secure_new(void);
|
jpayne@69
|
218 void BN_clear_free(BIGNUM *a);
|
jpayne@69
|
219 BIGNUM *BN_copy(BIGNUM *a, const BIGNUM *b);
|
jpayne@69
|
220 void BN_swap(BIGNUM *a, BIGNUM *b);
|
jpayne@69
|
221 BIGNUM *BN_bin2bn(const unsigned char *s, int len, BIGNUM *ret);
|
jpayne@69
|
222 int BN_bn2bin(const BIGNUM *a, unsigned char *to);
|
jpayne@69
|
223 int BN_bn2binpad(const BIGNUM *a, unsigned char *to, int tolen);
|
jpayne@69
|
224 BIGNUM *BN_lebin2bn(const unsigned char *s, int len, BIGNUM *ret);
|
jpayne@69
|
225 int BN_bn2lebinpad(const BIGNUM *a, unsigned char *to, int tolen);
|
jpayne@69
|
226 BIGNUM *BN_mpi2bn(const unsigned char *s, int len, BIGNUM *ret);
|
jpayne@69
|
227 int BN_bn2mpi(const BIGNUM *a, unsigned char *to);
|
jpayne@69
|
228 int BN_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
|
jpayne@69
|
229 int BN_usub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
|
jpayne@69
|
230 int BN_uadd(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
|
jpayne@69
|
231 int BN_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
|
jpayne@69
|
232 int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx);
|
jpayne@69
|
233 int BN_sqr(BIGNUM *r, const BIGNUM *a, BN_CTX *ctx);
|
jpayne@69
|
234 /** BN_set_negative sets sign of a BIGNUM
|
jpayne@69
|
235 * \param b pointer to the BIGNUM object
|
jpayne@69
|
236 * \param n 0 if the BIGNUM b should be positive and a value != 0 otherwise
|
jpayne@69
|
237 */
|
jpayne@69
|
238 void BN_set_negative(BIGNUM *b, int n);
|
jpayne@69
|
239 /** BN_is_negative returns 1 if the BIGNUM is negative
|
jpayne@69
|
240 * \param b pointer to the BIGNUM object
|
jpayne@69
|
241 * \return 1 if a < 0 and 0 otherwise
|
jpayne@69
|
242 */
|
jpayne@69
|
243 int BN_is_negative(const BIGNUM *b);
|
jpayne@69
|
244
|
jpayne@69
|
245 int BN_div(BIGNUM *dv, BIGNUM *rem, const BIGNUM *m, const BIGNUM *d,
|
jpayne@69
|
246 BN_CTX *ctx);
|
jpayne@69
|
247 # define BN_mod(rem,m,d,ctx) BN_div(NULL,(rem),(m),(d),(ctx))
|
jpayne@69
|
248 int BN_nnmod(BIGNUM *r, const BIGNUM *m, const BIGNUM *d, BN_CTX *ctx);
|
jpayne@69
|
249 int BN_mod_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m,
|
jpayne@69
|
250 BN_CTX *ctx);
|
jpayne@69
|
251 int BN_mod_add_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
|
jpayne@69
|
252 const BIGNUM *m);
|
jpayne@69
|
253 int BN_mod_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m,
|
jpayne@69
|
254 BN_CTX *ctx);
|
jpayne@69
|
255 int BN_mod_sub_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
|
jpayne@69
|
256 const BIGNUM *m);
|
jpayne@69
|
257 int BN_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m,
|
jpayne@69
|
258 BN_CTX *ctx);
|
jpayne@69
|
259 int BN_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);
|
jpayne@69
|
260 int BN_mod_lshift1(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);
|
jpayne@69
|
261 int BN_mod_lshift1_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *m);
|
jpayne@69
|
262 int BN_mod_lshift(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m,
|
jpayne@69
|
263 BN_CTX *ctx);
|
jpayne@69
|
264 int BN_mod_lshift_quick(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m);
|
jpayne@69
|
265
|
jpayne@69
|
266 BN_ULONG BN_mod_word(const BIGNUM *a, BN_ULONG w);
|
jpayne@69
|
267 BN_ULONG BN_div_word(BIGNUM *a, BN_ULONG w);
|
jpayne@69
|
268 int BN_mul_word(BIGNUM *a, BN_ULONG w);
|
jpayne@69
|
269 int BN_add_word(BIGNUM *a, BN_ULONG w);
|
jpayne@69
|
270 int BN_sub_word(BIGNUM *a, BN_ULONG w);
|
jpayne@69
|
271 int BN_set_word(BIGNUM *a, BN_ULONG w);
|
jpayne@69
|
272 BN_ULONG BN_get_word(const BIGNUM *a);
|
jpayne@69
|
273
|
jpayne@69
|
274 int BN_cmp(const BIGNUM *a, const BIGNUM *b);
|
jpayne@69
|
275 void BN_free(BIGNUM *a);
|
jpayne@69
|
276 int BN_is_bit_set(const BIGNUM *a, int n);
|
jpayne@69
|
277 int BN_lshift(BIGNUM *r, const BIGNUM *a, int n);
|
jpayne@69
|
278 int BN_lshift1(BIGNUM *r, const BIGNUM *a);
|
jpayne@69
|
279 int BN_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx);
|
jpayne@69
|
280
|
jpayne@69
|
281 int BN_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
|
jpayne@69
|
282 const BIGNUM *m, BN_CTX *ctx);
|
jpayne@69
|
283 int BN_mod_exp_mont(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
|
jpayne@69
|
284 const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx);
|
jpayne@69
|
285 int BN_mod_exp_mont_consttime(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p,
|
jpayne@69
|
286 const BIGNUM *m, BN_CTX *ctx,
|
jpayne@69
|
287 BN_MONT_CTX *in_mont);
|
jpayne@69
|
288 int BN_mod_exp_mont_word(BIGNUM *r, BN_ULONG a, const BIGNUM *p,
|
jpayne@69
|
289 const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx);
|
jpayne@69
|
290 int BN_mod_exp2_mont(BIGNUM *r, const BIGNUM *a1, const BIGNUM *p1,
|
jpayne@69
|
291 const BIGNUM *a2, const BIGNUM *p2, const BIGNUM *m,
|
jpayne@69
|
292 BN_CTX *ctx, BN_MONT_CTX *m_ctx);
|
jpayne@69
|
293 int BN_mod_exp_simple(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
|
jpayne@69
|
294 const BIGNUM *m, BN_CTX *ctx);
|
jpayne@69
|
295
|
jpayne@69
|
296 int BN_mask_bits(BIGNUM *a, int n);
|
jpayne@69
|
297 # ifndef OPENSSL_NO_STDIO
|
jpayne@69
|
298 int BN_print_fp(FILE *fp, const BIGNUM *a);
|
jpayne@69
|
299 # endif
|
jpayne@69
|
300 int BN_print(BIO *bio, const BIGNUM *a);
|
jpayne@69
|
301 int BN_reciprocal(BIGNUM *r, const BIGNUM *m, int len, BN_CTX *ctx);
|
jpayne@69
|
302 int BN_rshift(BIGNUM *r, const BIGNUM *a, int n);
|
jpayne@69
|
303 int BN_rshift1(BIGNUM *r, const BIGNUM *a);
|
jpayne@69
|
304 void BN_clear(BIGNUM *a);
|
jpayne@69
|
305 BIGNUM *BN_dup(const BIGNUM *a);
|
jpayne@69
|
306 int BN_ucmp(const BIGNUM *a, const BIGNUM *b);
|
jpayne@69
|
307 int BN_set_bit(BIGNUM *a, int n);
|
jpayne@69
|
308 int BN_clear_bit(BIGNUM *a, int n);
|
jpayne@69
|
309 char *BN_bn2hex(const BIGNUM *a);
|
jpayne@69
|
310 char *BN_bn2dec(const BIGNUM *a);
|
jpayne@69
|
311 int BN_hex2bn(BIGNUM **a, const char *str);
|
jpayne@69
|
312 int BN_dec2bn(BIGNUM **a, const char *str);
|
jpayne@69
|
313 int BN_asc2bn(BIGNUM **a, const char *str);
|
jpayne@69
|
314 int BN_gcd(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx);
|
jpayne@69
|
315 int BN_kronecker(const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx); /* returns
|
jpayne@69
|
316 * -2 for
|
jpayne@69
|
317 * error */
|
jpayne@69
|
318 BIGNUM *BN_mod_inverse(BIGNUM *ret,
|
jpayne@69
|
319 const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx);
|
jpayne@69
|
320 BIGNUM *BN_mod_sqrt(BIGNUM *ret,
|
jpayne@69
|
321 const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx);
|
jpayne@69
|
322
|
jpayne@69
|
323 void BN_consttime_swap(BN_ULONG swap, BIGNUM *a, BIGNUM *b, int nwords);
|
jpayne@69
|
324
|
jpayne@69
|
325 /* Deprecated versions */
|
jpayne@69
|
326 DEPRECATEDIN_0_9_8(BIGNUM *BN_generate_prime(BIGNUM *ret, int bits, int safe,
|
jpayne@69
|
327 const BIGNUM *add,
|
jpayne@69
|
328 const BIGNUM *rem,
|
jpayne@69
|
329 void (*callback) (int, int,
|
jpayne@69
|
330 void *),
|
jpayne@69
|
331 void *cb_arg))
|
jpayne@69
|
332 DEPRECATEDIN_0_9_8(int
|
jpayne@69
|
333 BN_is_prime(const BIGNUM *p, int nchecks,
|
jpayne@69
|
334 void (*callback) (int, int, void *),
|
jpayne@69
|
335 BN_CTX *ctx, void *cb_arg))
|
jpayne@69
|
336 DEPRECATEDIN_0_9_8(int
|
jpayne@69
|
337 BN_is_prime_fasttest(const BIGNUM *p, int nchecks,
|
jpayne@69
|
338 void (*callback) (int, int, void *),
|
jpayne@69
|
339 BN_CTX *ctx, void *cb_arg,
|
jpayne@69
|
340 int do_trial_division))
|
jpayne@69
|
341
|
jpayne@69
|
342 /* Newer versions */
|
jpayne@69
|
343 int BN_generate_prime_ex(BIGNUM *ret, int bits, int safe, const BIGNUM *add,
|
jpayne@69
|
344 const BIGNUM *rem, BN_GENCB *cb);
|
jpayne@69
|
345 int BN_is_prime_ex(const BIGNUM *p, int nchecks, BN_CTX *ctx, BN_GENCB *cb);
|
jpayne@69
|
346 int BN_is_prime_fasttest_ex(const BIGNUM *p, int nchecks, BN_CTX *ctx,
|
jpayne@69
|
347 int do_trial_division, BN_GENCB *cb);
|
jpayne@69
|
348
|
jpayne@69
|
349 int BN_X931_generate_Xpq(BIGNUM *Xp, BIGNUM *Xq, int nbits, BN_CTX *ctx);
|
jpayne@69
|
350
|
jpayne@69
|
351 int BN_X931_derive_prime_ex(BIGNUM *p, BIGNUM *p1, BIGNUM *p2,
|
jpayne@69
|
352 const BIGNUM *Xp, const BIGNUM *Xp1,
|
jpayne@69
|
353 const BIGNUM *Xp2, const BIGNUM *e, BN_CTX *ctx,
|
jpayne@69
|
354 BN_GENCB *cb);
|
jpayne@69
|
355 int BN_X931_generate_prime_ex(BIGNUM *p, BIGNUM *p1, BIGNUM *p2, BIGNUM *Xp1,
|
jpayne@69
|
356 BIGNUM *Xp2, const BIGNUM *Xp, const BIGNUM *e,
|
jpayne@69
|
357 BN_CTX *ctx, BN_GENCB *cb);
|
jpayne@69
|
358
|
jpayne@69
|
359 BN_MONT_CTX *BN_MONT_CTX_new(void);
|
jpayne@69
|
360 int BN_mod_mul_montgomery(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
|
jpayne@69
|
361 BN_MONT_CTX *mont, BN_CTX *ctx);
|
jpayne@69
|
362 int BN_to_montgomery(BIGNUM *r, const BIGNUM *a, BN_MONT_CTX *mont,
|
jpayne@69
|
363 BN_CTX *ctx);
|
jpayne@69
|
364 int BN_from_montgomery(BIGNUM *r, const BIGNUM *a, BN_MONT_CTX *mont,
|
jpayne@69
|
365 BN_CTX *ctx);
|
jpayne@69
|
366 void BN_MONT_CTX_free(BN_MONT_CTX *mont);
|
jpayne@69
|
367 int BN_MONT_CTX_set(BN_MONT_CTX *mont, const BIGNUM *mod, BN_CTX *ctx);
|
jpayne@69
|
368 BN_MONT_CTX *BN_MONT_CTX_copy(BN_MONT_CTX *to, BN_MONT_CTX *from);
|
jpayne@69
|
369 BN_MONT_CTX *BN_MONT_CTX_set_locked(BN_MONT_CTX **pmont, CRYPTO_RWLOCK *lock,
|
jpayne@69
|
370 const BIGNUM *mod, BN_CTX *ctx);
|
jpayne@69
|
371
|
jpayne@69
|
372 /* BN_BLINDING flags */
|
jpayne@69
|
373 # define BN_BLINDING_NO_UPDATE 0x00000001
|
jpayne@69
|
374 # define BN_BLINDING_NO_RECREATE 0x00000002
|
jpayne@69
|
375
|
jpayne@69
|
376 BN_BLINDING *BN_BLINDING_new(const BIGNUM *A, const BIGNUM *Ai, BIGNUM *mod);
|
jpayne@69
|
377 void BN_BLINDING_free(BN_BLINDING *b);
|
jpayne@69
|
378 int BN_BLINDING_update(BN_BLINDING *b, BN_CTX *ctx);
|
jpayne@69
|
379 int BN_BLINDING_convert(BIGNUM *n, BN_BLINDING *b, BN_CTX *ctx);
|
jpayne@69
|
380 int BN_BLINDING_invert(BIGNUM *n, BN_BLINDING *b, BN_CTX *ctx);
|
jpayne@69
|
381 int BN_BLINDING_convert_ex(BIGNUM *n, BIGNUM *r, BN_BLINDING *b, BN_CTX *);
|
jpayne@69
|
382 int BN_BLINDING_invert_ex(BIGNUM *n, const BIGNUM *r, BN_BLINDING *b,
|
jpayne@69
|
383 BN_CTX *);
|
jpayne@69
|
384
|
jpayne@69
|
385 int BN_BLINDING_is_current_thread(BN_BLINDING *b);
|
jpayne@69
|
386 void BN_BLINDING_set_current_thread(BN_BLINDING *b);
|
jpayne@69
|
387 int BN_BLINDING_lock(BN_BLINDING *b);
|
jpayne@69
|
388 int BN_BLINDING_unlock(BN_BLINDING *b);
|
jpayne@69
|
389
|
jpayne@69
|
390 unsigned long BN_BLINDING_get_flags(const BN_BLINDING *);
|
jpayne@69
|
391 void BN_BLINDING_set_flags(BN_BLINDING *, unsigned long);
|
jpayne@69
|
392 BN_BLINDING *BN_BLINDING_create_param(BN_BLINDING *b,
|
jpayne@69
|
393 const BIGNUM *e, BIGNUM *m, BN_CTX *ctx,
|
jpayne@69
|
394 int (*bn_mod_exp) (BIGNUM *r,
|
jpayne@69
|
395 const BIGNUM *a,
|
jpayne@69
|
396 const BIGNUM *p,
|
jpayne@69
|
397 const BIGNUM *m,
|
jpayne@69
|
398 BN_CTX *ctx,
|
jpayne@69
|
399 BN_MONT_CTX *m_ctx),
|
jpayne@69
|
400 BN_MONT_CTX *m_ctx);
|
jpayne@69
|
401
|
jpayne@69
|
402 DEPRECATEDIN_0_9_8(void BN_set_params(int mul, int high, int low, int mont))
|
jpayne@69
|
403 DEPRECATEDIN_0_9_8(int BN_get_params(int which)) /* 0, mul, 1 high, 2 low, 3
|
jpayne@69
|
404 * mont */
|
jpayne@69
|
405
|
jpayne@69
|
406 BN_RECP_CTX *BN_RECP_CTX_new(void);
|
jpayne@69
|
407 void BN_RECP_CTX_free(BN_RECP_CTX *recp);
|
jpayne@69
|
408 int BN_RECP_CTX_set(BN_RECP_CTX *recp, const BIGNUM *rdiv, BN_CTX *ctx);
|
jpayne@69
|
409 int BN_mod_mul_reciprocal(BIGNUM *r, const BIGNUM *x, const BIGNUM *y,
|
jpayne@69
|
410 BN_RECP_CTX *recp, BN_CTX *ctx);
|
jpayne@69
|
411 int BN_mod_exp_recp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
|
jpayne@69
|
412 const BIGNUM *m, BN_CTX *ctx);
|
jpayne@69
|
413 int BN_div_recp(BIGNUM *dv, BIGNUM *rem, const BIGNUM *m,
|
jpayne@69
|
414 BN_RECP_CTX *recp, BN_CTX *ctx);
|
jpayne@69
|
415
|
jpayne@69
|
416 # ifndef OPENSSL_NO_EC2M
|
jpayne@69
|
417
|
jpayne@69
|
418 /*
|
jpayne@69
|
419 * Functions for arithmetic over binary polynomials represented by BIGNUMs.
|
jpayne@69
|
420 * The BIGNUM::neg property of BIGNUMs representing binary polynomials is
|
jpayne@69
|
421 * ignored. Note that input arguments are not const so that their bit arrays
|
jpayne@69
|
422 * can be expanded to the appropriate size if needed.
|
jpayne@69
|
423 */
|
jpayne@69
|
424
|
jpayne@69
|
425 /*
|
jpayne@69
|
426 * r = a + b
|
jpayne@69
|
427 */
|
jpayne@69
|
428 int BN_GF2m_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
|
jpayne@69
|
429 # define BN_GF2m_sub(r, a, b) BN_GF2m_add(r, a, b)
|
jpayne@69
|
430 /*
|
jpayne@69
|
431 * r=a mod p
|
jpayne@69
|
432 */
|
jpayne@69
|
433 int BN_GF2m_mod(BIGNUM *r, const BIGNUM *a, const BIGNUM *p);
|
jpayne@69
|
434 /* r = (a * b) mod p */
|
jpayne@69
|
435 int BN_GF2m_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
|
jpayne@69
|
436 const BIGNUM *p, BN_CTX *ctx);
|
jpayne@69
|
437 /* r = (a * a) mod p */
|
jpayne@69
|
438 int BN_GF2m_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx);
|
jpayne@69
|
439 /* r = (1 / b) mod p */
|
jpayne@69
|
440 int BN_GF2m_mod_inv(BIGNUM *r, const BIGNUM *b, const BIGNUM *p, BN_CTX *ctx);
|
jpayne@69
|
441 /* r = (a / b) mod p */
|
jpayne@69
|
442 int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
|
jpayne@69
|
443 const BIGNUM *p, BN_CTX *ctx);
|
jpayne@69
|
444 /* r = (a ^ b) mod p */
|
jpayne@69
|
445 int BN_GF2m_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
|
jpayne@69
|
446 const BIGNUM *p, BN_CTX *ctx);
|
jpayne@69
|
447 /* r = sqrt(a) mod p */
|
jpayne@69
|
448 int BN_GF2m_mod_sqrt(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
|
jpayne@69
|
449 BN_CTX *ctx);
|
jpayne@69
|
450 /* r^2 + r = a mod p */
|
jpayne@69
|
451 int BN_GF2m_mod_solve_quad(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
|
jpayne@69
|
452 BN_CTX *ctx);
|
jpayne@69
|
453 # define BN_GF2m_cmp(a, b) BN_ucmp((a), (b))
|
jpayne@69
|
454 /*-
|
jpayne@69
|
455 * Some functions allow for representation of the irreducible polynomials
|
jpayne@69
|
456 * as an unsigned int[], say p. The irreducible f(t) is then of the form:
|
jpayne@69
|
457 * t^p[0] + t^p[1] + ... + t^p[k]
|
jpayne@69
|
458 * where m = p[0] > p[1] > ... > p[k] = 0.
|
jpayne@69
|
459 */
|
jpayne@69
|
460 /* r = a mod p */
|
jpayne@69
|
461 int BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const int p[]);
|
jpayne@69
|
462 /* r = (a * b) mod p */
|
jpayne@69
|
463 int BN_GF2m_mod_mul_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
|
jpayne@69
|
464 const int p[], BN_CTX *ctx);
|
jpayne@69
|
465 /* r = (a * a) mod p */
|
jpayne@69
|
466 int BN_GF2m_mod_sqr_arr(BIGNUM *r, const BIGNUM *a, const int p[],
|
jpayne@69
|
467 BN_CTX *ctx);
|
jpayne@69
|
468 /* r = (1 / b) mod p */
|
jpayne@69
|
469 int BN_GF2m_mod_inv_arr(BIGNUM *r, const BIGNUM *b, const int p[],
|
jpayne@69
|
470 BN_CTX *ctx);
|
jpayne@69
|
471 /* r = (a / b) mod p */
|
jpayne@69
|
472 int BN_GF2m_mod_div_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
|
jpayne@69
|
473 const int p[], BN_CTX *ctx);
|
jpayne@69
|
474 /* r = (a ^ b) mod p */
|
jpayne@69
|
475 int BN_GF2m_mod_exp_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
|
jpayne@69
|
476 const int p[], BN_CTX *ctx);
|
jpayne@69
|
477 /* r = sqrt(a) mod p */
|
jpayne@69
|
478 int BN_GF2m_mod_sqrt_arr(BIGNUM *r, const BIGNUM *a,
|
jpayne@69
|
479 const int p[], BN_CTX *ctx);
|
jpayne@69
|
480 /* r^2 + r = a mod p */
|
jpayne@69
|
481 int BN_GF2m_mod_solve_quad_arr(BIGNUM *r, const BIGNUM *a,
|
jpayne@69
|
482 const int p[], BN_CTX *ctx);
|
jpayne@69
|
483 int BN_GF2m_poly2arr(const BIGNUM *a, int p[], int max);
|
jpayne@69
|
484 int BN_GF2m_arr2poly(const int p[], BIGNUM *a);
|
jpayne@69
|
485
|
jpayne@69
|
486 # endif
|
jpayne@69
|
487
|
jpayne@69
|
488 /*
|
jpayne@69
|
489 * faster mod functions for the 'NIST primes' 0 <= a < p^2
|
jpayne@69
|
490 */
|
jpayne@69
|
491 int BN_nist_mod_192(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx);
|
jpayne@69
|
492 int BN_nist_mod_224(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx);
|
jpayne@69
|
493 int BN_nist_mod_256(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx);
|
jpayne@69
|
494 int BN_nist_mod_384(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx);
|
jpayne@69
|
495 int BN_nist_mod_521(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx);
|
jpayne@69
|
496
|
jpayne@69
|
497 const BIGNUM *BN_get0_nist_prime_192(void);
|
jpayne@69
|
498 const BIGNUM *BN_get0_nist_prime_224(void);
|
jpayne@69
|
499 const BIGNUM *BN_get0_nist_prime_256(void);
|
jpayne@69
|
500 const BIGNUM *BN_get0_nist_prime_384(void);
|
jpayne@69
|
501 const BIGNUM *BN_get0_nist_prime_521(void);
|
jpayne@69
|
502
|
jpayne@69
|
503 int (*BN_nist_mod_func(const BIGNUM *p)) (BIGNUM *r, const BIGNUM *a,
|
jpayne@69
|
504 const BIGNUM *field, BN_CTX *ctx);
|
jpayne@69
|
505
|
jpayne@69
|
506 int BN_generate_dsa_nonce(BIGNUM *out, const BIGNUM *range,
|
jpayne@69
|
507 const BIGNUM *priv, const unsigned char *message,
|
jpayne@69
|
508 size_t message_len, BN_CTX *ctx);
|
jpayne@69
|
509
|
jpayne@69
|
510 /* Primes from RFC 2409 */
|
jpayne@69
|
511 BIGNUM *BN_get_rfc2409_prime_768(BIGNUM *bn);
|
jpayne@69
|
512 BIGNUM *BN_get_rfc2409_prime_1024(BIGNUM *bn);
|
jpayne@69
|
513
|
jpayne@69
|
514 /* Primes from RFC 3526 */
|
jpayne@69
|
515 BIGNUM *BN_get_rfc3526_prime_1536(BIGNUM *bn);
|
jpayne@69
|
516 BIGNUM *BN_get_rfc3526_prime_2048(BIGNUM *bn);
|
jpayne@69
|
517 BIGNUM *BN_get_rfc3526_prime_3072(BIGNUM *bn);
|
jpayne@69
|
518 BIGNUM *BN_get_rfc3526_prime_4096(BIGNUM *bn);
|
jpayne@69
|
519 BIGNUM *BN_get_rfc3526_prime_6144(BIGNUM *bn);
|
jpayne@69
|
520 BIGNUM *BN_get_rfc3526_prime_8192(BIGNUM *bn);
|
jpayne@69
|
521
|
jpayne@69
|
522 # if OPENSSL_API_COMPAT < 0x10100000L
|
jpayne@69
|
523 # define get_rfc2409_prime_768 BN_get_rfc2409_prime_768
|
jpayne@69
|
524 # define get_rfc2409_prime_1024 BN_get_rfc2409_prime_1024
|
jpayne@69
|
525 # define get_rfc3526_prime_1536 BN_get_rfc3526_prime_1536
|
jpayne@69
|
526 # define get_rfc3526_prime_2048 BN_get_rfc3526_prime_2048
|
jpayne@69
|
527 # define get_rfc3526_prime_3072 BN_get_rfc3526_prime_3072
|
jpayne@69
|
528 # define get_rfc3526_prime_4096 BN_get_rfc3526_prime_4096
|
jpayne@69
|
529 # define get_rfc3526_prime_6144 BN_get_rfc3526_prime_6144
|
jpayne@69
|
530 # define get_rfc3526_prime_8192 BN_get_rfc3526_prime_8192
|
jpayne@69
|
531 # endif
|
jpayne@69
|
532
|
jpayne@69
|
533 int BN_bntest_rand(BIGNUM *rnd, int bits, int top, int bottom);
|
jpayne@69
|
534
|
jpayne@69
|
535
|
jpayne@69
|
536 # ifdef __cplusplus
|
jpayne@69
|
537 }
|
jpayne@69
|
538 # endif
|
jpayne@69
|
539 #endif
|