Mercurial > repos > rliterman > csp2
comparison CSP2/bin/screenSNPDiffs.py @ 39:93393808f415
"planemo upload"
author | rliterman |
---|---|
date | Thu, 12 Dec 2024 13:53:15 -0500 |
parents | 893a6993efe3 |
children |
comparison
equal
deleted
inserted
replaced
38:ee512a230a1e | 39:93393808f415 |
---|---|
500 else: | 500 else: |
501 filtered_snp_df = filterSNPs(snp_df,bed_df,log_file, min_len, min_iden, ref_edge, query_edge, density_windows, max_snps) | 501 filtered_snp_df = filterSNPs(snp_df,bed_df,log_file, min_len, min_iden, ref_edge, query_edge, density_windows, max_snps) |
502 | 502 |
503 # Write filtered SNP data to file | 503 # Write filtered SNP data to file |
504 snp_file = log_file.replace(".log","_SNPs.tsv") | 504 snp_file = log_file.replace(".log","_SNPs.tsv") |
505 filtered_snp_df.to_csv(snp_file, sep="\t", index=False) | 505 with open(snp_file,"w") as f: |
506 filtered_snp_df.to_csv(f, sep="\t", index=False) | |
506 | 507 |
507 csp2_screen_snps = filtered_snp_df[filtered_snp_df.Cat == "SNP"].shape[0] | 508 csp2_screen_snps = filtered_snp_df[filtered_snp_df.Cat == "SNP"].shape[0] |
508 | 509 |
509 purged_length = filtered_snp_df[filtered_snp_df.Cat == "Purged_Length"].shape[0] | 510 purged_length = filtered_snp_df[filtered_snp_df.Cat == "Purged_Length"].shape[0] |
510 purged_identity = filtered_snp_df[filtered_snp_df.Cat == "Purged_Identity"].shape[0] | 511 purged_identity = filtered_snp_df[filtered_snp_df.Cat == "Purged_Identity"].shape[0] |
628 'Filtered_Query_Edge','Filtered_Ref_Edge','Filtered_Both_Edge', | 629 'Filtered_Query_Edge','Filtered_Ref_Edge','Filtered_Both_Edge', |
629 'Kmer_Similarity','Shared_Kmers','Query_Unique_Kmers','Reference_Unique_Kmers', | 630 'Kmer_Similarity','Shared_Kmers','Query_Unique_Kmers','Reference_Unique_Kmers', |
630 'MUMmer_gSNPs','MUMmer_gIndels'] | 631 'MUMmer_gSNPs','MUMmer_gIndels'] |
631 | 632 |
632 results_df = pd.DataFrame([item.result() for item in results], columns = output_columns) | 633 results_df = pd.DataFrame([item.result() for item in results], columns = output_columns) |
633 results_df.to_csv(output_file, sep="\t", index=False) | 634 with open(output_file,"w") as f: |
635 results_df.to_csv(f, sep="\t", index=False) | |
634 except: | 636 except: |
635 run_failed = True | 637 run_failed = True |
636 print("Exception occurred:\n", traceback.format_exc()) | 638 print("Exception occurred:\n", traceback.format_exc()) |
637 finally: | 639 finally: |
638 helpers.cleanup(verbose=False, remove_all=False) | 640 helpers.cleanup(verbose=False, remove_all=False) |