Mercurial > repos > rliterman > csp2
changeset 39:93393808f415
"planemo upload"
author | rliterman |
---|---|
date | Thu, 12 Dec 2024 13:53:15 -0500 |
parents | ee512a230a1e |
children | 4656cc17b03c |
files | CSP2/bin/chooseRefs.py CSP2/bin/compileSNPResults.py CSP2/bin/runSNPPipeline.py CSP2/bin/saveSNPDiffs.py CSP2/bin/screenSNPDiffs.py CSP2/docker/Dockerfile CSP2/docker/Makefile CSP2/img/SNP.jpg CSP2/img/Screen_Run.jpg CSP2/img/Temp_Logo.jpg CSP2/nextflow.config csp2_screen.xml |
diffstat | 12 files changed, 445 insertions(+), 30 deletions(-) [+] |
line wrap: on
line diff
--- a/CSP2/bin/chooseRefs.py Wed Dec 11 12:04:20 2024 -0500 +++ b/CSP2/bin/chooseRefs.py Thu Dec 12 13:53:15 2024 -0500 @@ -186,6 +186,8 @@ non_ref_df = cluster_df.loc[~cluster_df['Isolate_ID'].isin(refs_chosen)].sort_values('Base_Score', ascending=False) non_ref_df['Is_Ref'] = False final_ref_df['Is_Ref'] = True -pd.concat([final_ref_df, non_ref_df]).reset_index(drop=True).to_csv(ref_file, index=False, sep="\t") + +with open(ref_file, 'w') as f: + pd.concat([final_ref_df, non_ref_df]).reset_index(drop=True).to_csv(f, index=False, sep="\t") print(",".join(final_ref_df['Path'].tolist())) \ No newline at end of file
--- a/CSP2/bin/compileSNPResults.py Wed Dec 11 12:04:20 2024 -0500 +++ b/CSP2/bin/compileSNPResults.py Thu Dec 12 13:53:15 2024 -0500 @@ -467,17 +467,20 @@ # Output data # Mean assembly stats -isolate_mean_df.reset_index().to_csv(mean_isolate_file,sep='\t',index=False) +with open(mean_isolate_file, 'w') as f: + isolate_mean_df.reset_index().to_csv(f,sep='\t',index=False) # Isolate assembly stats isolate_assembly_stats = isolate_stats.loc[isolate_stats['Measure'].isin(['Contig_Count','Assembly_Bases','L50','L90','N50','N90'])].drop(['Min','Max','StdDev','Count'],axis=1).rename(columns = {'Mean':'Value'}) -isolate_assembly_stats.to_csv(isolate_assembly_stats_file,sep='\t',index=False) +with open(isolate_assembly_stats_file,'w') as f: + isolate_assembly_stats.to_csv(f,sep='\t',index=False) # Isolate alignment stats isolate_align_stats = pd.concat([align_stats,isolate_cocalled_stats,isolate_snp_stats,isolate_stdev_stats]).reset_index(drop=True) for col in ['Min', 'Mean', 'Max', 'StdDev', 'Zscore']: isolate_align_stats[col] = isolate_align_stats[col].astype("float").round(3) -isolate_align_stats.to_csv(align_stats_file,sep='\t',index=False) +with open(align_stats_file,'w') as f: + isolate_align_stats.to_csv(f,sep='\t',index=False) # Reference Assembly Stats ref_align_summary_df = ref_summary_df.loc[(~ref_summary_df['Measure'].isin(['Contig_Count','Assembly_Bases','L50','L90','N50','N90'])) & (~pd.isna(ref_summary_df['Zscore']))] @@ -492,7 +495,9 @@ ref_isolate_align_stats = align_stats.loc[(align_stats['Isolate_Type'] == "Reference") & (align_stats['Measure'].isin(['Self_Aligned','Compare_Aligned']))].drop(['Isolate_Type'],axis=1).rename(columns = {'Isolate_ID':'Reference_ID'})[['Reference_ID','Measure','Mean','StdDev','Min','Max','Count','Zscore','QC']] ref_mean_summary_stats = pd.concat([ref_mean_summary_df,ref_isolate_align_stats]) -ref_mean_summary_stats.to_csv(ref_mean_summary_file,sep='\t',index=False) + +with open(ref_mean_summary_file,'w') as f: + ref_mean_summary_stats.to_csv(f,sep='\t',index=False) end_time = time.time() @@ -505,10 +510,12 @@ # Comparisons if multiple refs if len(reference_ids) > 1: - comparison_df.to_csv(snp_comparison_file,sep="\t",index = False) + with open(snp_comparison_file,"w") as f: + comparison_df.to_csv(f,sep="\t",index = False) log.write(f"\t- Saved SNP distance comparisons across references to {snp_comparison_file}\n") # Failures/warnings if warn_fail_df.shape[0] > 0: - warn_fail_df.to_csv(qc_file,sep="\t",index=False) + with open(qc_file,"w") as f: + warn_fail_df.to_csv(f,sep="\t",index=False) log.write(f"\t- Saved QC warnings/failures to {qc_file}\n") \ No newline at end of file
--- a/CSP2/bin/runSNPPipeline.py Wed Dec 11 12:04:20 2024 -0500 +++ b/CSP2/bin/runSNPPipeline.py Thu Dec 12 13:53:15 2024 -0500 @@ -507,7 +507,8 @@ # Write filtered SNP data to file snp_file = log_file.replace(".log","_SNPs.tsv") - filtered_snp_df.to_csv(snp_file, sep="\t", index=False) + with open(snp_file,"w") as f: + filtered_snp_df.to_csv(f, sep="\t", index=False) filtered_snp_df.loc[:, 'Query_ID'] = query_id @@ -750,7 +751,8 @@ # Save reference screening results_df = pd.DataFrame([item.result()[0] for item in results], columns = output_columns) - results_df.to_csv(reference_screening_file, sep="\t", index=False) + with open(reference_screening_file,"w") as f: + results_df.to_csv(f, sep="\t", index=False) # Get reference bed dfs covered_df = pd.concat([item.result()[1] for item in results]) @@ -940,7 +942,8 @@ locus_coverage_df = snp_coverage_df.merge(ref_base_coverage_df, how='outer', on='Ref_Loc').merge(uncovered_count_df, how='outer', on='Ref_Loc').merge(purged_count_df, how='outer', on='Ref_Loc').fillna(0) locus_coverage_df.loc[:, ['SNP_Count','Ref_Base_Count','Uncovered_Count','Purged_Count']] = locus_coverage_df.loc[:, ['SNP_Count','Ref_Base_Count','Uncovered_Count','Purged_Count']].astype(int) locus_coverage_df['Missing_Ratio'] = ((locus_coverage_df['Uncovered_Count'] + locus_coverage_df['Purged_Count']) / (1+len(pass_qc_isolates))) * 100 - locus_coverage_df.to_csv(locus_category_file, sep="\t", index=False) + with open(locus_category_file,"w") as f: + locus_coverage_df.to_csv(f, sep="\t", index=False) # Get isolate coverage stats min_isolate_cols = ['Query_ID','SNP','Ref_Base','Percent_Missing','Purged','Uncovered','Rescued_SNP','Purged_Ref_Edge'] @@ -964,7 +967,8 @@ isolate_coverage_df.loc[isolate_coverage_df['Query_ID'] == reference_id, 'Purged_Ref_Edge'] = ref_edge_df['Ref_Loc'].nunique() isolate_coverage_df = isolate_coverage_df[min_isolate_cols + possible_purged_cols].sort_values(by = 'Percent_Missing',ascending = False).reset_index(drop=True) - isolate_coverage_df.to_csv(query_coverage_file, sep="\t", index=False) + with open(query_coverage_file,'w') as f: + isolate_coverage_df.to_csv(f, sep="\t", index=False) with open(log_file,"a+") as log: log.write(f"\t- SNP coverage information: {locus_category_file}\n") @@ -1039,42 +1043,52 @@ pairwise_df = pd.DataFrame([(pairwise[0], pairwise[1], 0,np.nan) for pairwise in pairwise_combinations],columns = ['Query_1','Query_2','SNP_Distance','SNPs_Cocalled']) preserved_pairwise_df = pairwise_df.copy() - pairwise_df.to_csv(raw_pairwise, sep="\t", index=False) - preserved_pairwise_df.to_csv(preserved_pairwise, sep="\t", index=False) + with open(raw_pairwise,"w") as f: + pairwise_df.to_csv(f, sep="\t", index=False) + with open(preserved_pairwise,"w") as f: + preserved_pairwise_df.to_csv(f, sep="\t", index=False) # Create matrix idx = sorted(set(pairwise_df['Query_1']).union(pairwise_df['Query_2'])) mirrored_distance_df = pairwise_df.pivot(index='Query_1', columns='Query_2', values='SNP_Distance').reindex(index=idx, columns=idx).fillna(0, downcast='infer').pipe(lambda x: x+x.values.T).applymap(lambda x: format(x, '.0f')) mirrored_distance_df.index.name = '' - mirrored_distance_df.to_csv(raw_matrix,sep="\t") - mirrored_distance_df.to_csv(preserved_matrix,sep="\t") + with open(raw_matrix,"w") as f: + mirrored_distance_df.to_csv(f,sep="\t") + with open(preserved_matrix,"w") as f: + mirrored_distance_df.to_csv(f,sep="\t") else: raw_distance_results = parallelAlignment(alignment) raw_pairwise_df = pd.DataFrame(raw_distance_results, columns=['Query_1', 'Query_2', 'SNP_Distance', 'SNPs_Cocalled']) - raw_pairwise_df.to_csv(raw_pairwise, sep="\t", index=False) + with open(raw_pairwise,"w") as f: + raw_pairwise_df.to_csv(f, sep="\t", index=False) if len(locs_pass_missing) == snp_count: preserved_pairwise_df = raw_pairwise_df.copy() - preserved_pairwise_df.to_csv(preserved_pairwise, sep="\t", index=False) + with open(preserved_pairwise,"w") as f: + preserved_pairwise_df.to_csv(f, sep="\t", index=False) elif len(locs_pass_missing) == 0: preserved_pairwise_df = pd.DataFrame([(pairwise[0], pairwise[1], 0,np.nan) for pairwise in pairwise_combinations],columns = ['Query_1','Query_2','SNP_Distance','SNPs_Cocalled']) - preserved_pairwise_df.to_csv(preserved_pairwise, sep="\t", index=False) + with open(preserved_pairwise,"w") as f: + preserved_pairwise_df.to_csv(f, sep="\t", index=False) else: preserved_distance_results = parallelAlignment(preserved_alignment) preserved_pairwise_df = pd.DataFrame(preserved_distance_results, columns=['Query_1', 'Query_2', 'SNP_Distance', 'SNPs_Cocalled']) - preserved_pairwise_df.to_csv(preserved_pairwise, sep="\t", index=False) - + with open(preserved_pairwise,"w") as f: + preserved_pairwise_df.to_csv(f, sep="\t", index=False) + # Create matrix idx = sorted(set(raw_pairwise_df['Query_1']).union(raw_pairwise_df['Query_2'])) mirrored_distance_df = raw_pairwise_df.pivot(index='Query_1', columns='Query_2', values='SNP_Distance').reindex(index=idx, columns=idx).fillna(0, downcast='infer').pipe(lambda x: x+x.values.T).applymap(lambda x: format(x, '.0f')) mirrored_distance_df.index.name = '' - mirrored_distance_df.to_csv(raw_matrix,sep="\t") + with open(raw_matrix,"w") as f: + mirrored_distance_df.to_csv(f,sep="\t") idx = sorted(set(preserved_pairwise_df['Query_1']).union(preserved_pairwise_df['Query_2'])) mirrored_distance_df = preserved_pairwise_df.pivot(index='Query_1', columns='Query_2', values='SNP_Distance').reindex(index=idx, columns=idx).fillna(0, downcast='infer').pipe(lambda x: x+x.values.T).applymap(lambda x: format(x, '.0f')) mirrored_distance_df.index.name = '' - mirrored_distance_df.to_csv(preserved_matrix,sep="\t") + with open(preserved_matrix,"w") as f: + mirrored_distance_df.to_csv(f,sep="\t") # Clean up pybedtools temp helpers.cleanup(verbose=False,remove_all = False)
--- a/CSP2/bin/saveSNPDiffs.py Wed Dec 11 12:04:20 2024 -0500 +++ b/CSP2/bin/saveSNPDiffs.py Thu Dec 12 13:53:15 2024 -0500 @@ -58,7 +58,8 @@ header_rows.append(processHeader(top_line,snpdiffs_file,trim_name)) output_data = pd.concat(header_rows, ignore_index=True) -output_data.to_csv(summary_file, sep='\t', index=False) +with open(summary_file,"w") as f: + output_data.to_csv(f, sep='\t', index=False) # If ref_ids is empty, save isolate data ref_header = ['Reference_ID','Reference_Assembly','Reference_Contig_Count','Reference_Assembly_Bases','Reference_N50','Reference_N90','Reference_L50','Reference_L90','Reference_SHA256'] @@ -79,5 +80,6 @@ cols = combined_df.columns.tolist() cols = cols[:1] + cols[-1:] + cols[1:-1] combined_df = combined_df[cols] -combined_df.to_csv(isolate_data_file, sep='\t', index=False) +with open(isolate_data_file,"w") as f: + combined_df.to_csv(f, sep='\t', index=False)
--- a/CSP2/bin/screenSNPDiffs.py Wed Dec 11 12:04:20 2024 -0500 +++ b/CSP2/bin/screenSNPDiffs.py Thu Dec 12 13:53:15 2024 -0500 @@ -502,7 +502,8 @@ # Write filtered SNP data to file snp_file = log_file.replace(".log","_SNPs.tsv") - filtered_snp_df.to_csv(snp_file, sep="\t", index=False) + with open(snp_file,"w") as f: + filtered_snp_df.to_csv(f, sep="\t", index=False) csp2_screen_snps = filtered_snp_df[filtered_snp_df.Cat == "SNP"].shape[0] @@ -630,7 +631,8 @@ 'MUMmer_gSNPs','MUMmer_gIndels'] results_df = pd.DataFrame([item.result() for item in results], columns = output_columns) - results_df.to_csv(output_file, sep="\t", index=False) + with open(output_file,"w") as f: + results_df.to_csv(f, sep="\t", index=False) except: run_failed = True print("Exception occurred:\n", traceback.format_exc())
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/CSP2/docker/Dockerfile Thu Dec 12 13:53:15 2024 -0500 @@ -0,0 +1,246 @@ +# CSP2 Dockerfile +# Based on StaPH-B's Dockerfile for BEDTools, MUmmer, and Skesa +# Thanks to Erin Young, Curtis Kapsak, John Arnn, and the StaPH-B team +# https://github.com/StaPH-B/docker-builds/blob/master/bedtools/2.31.1/Dockerfile +# https://github.com/StaPH-B/docker-builds/blob/master/mummer/4.0.0/Dockerfile +# https://github.com/StaPH-B/docker-builds/blob/master/skesa/2.4.0/Dockerfile + +ARG CSP2_VER="0.9.0" +ARG BEDTOOLS_VER="2.31.1" +ARG MUMMER_VER="4.0.0" +ARG SKESA_VER="2.4.0" +ARG MASH_VER="2.3" +ARG BBMAP_VER="38.90" +ARG PYTHON_VER="3.8" + +FROM ubuntu:focal AS build + +ARG BEDTOOLS_VER +ARG MUMMER_VER +ARG SKESA_VER +ARG MASH_VER +ARG BBMAP_VER +ARG PYTHON_VER + +WORKDIR /build + +# to prevent tzdata from asking for a region during apt updates; ARG so that variable only +# persists at buildtime +# from https://github.com/StaPH-B/docker-builds/blob/master/mummer/4.0.0/Dockerfile +ARG DEBIAN_FRONTEND=noninteractive + +# Install build dependencies +RUN apt-get update && apt-get install -y --no-install-recommends \ + tzdata \ + gpg-agent \ + software-properties-common \ + build-essential \ + zlib1g-dev \ + libghc-bzlib-dev \ + liblzma-dev \ + wget \ + ca-certificates + +RUN add-apt-repository 'ppa:deadsnakes/ppa' && apt-get update && apt-get install -y --no-install-recommends \ + python${PYTHON_VER} \ +# python${PYTHON_VER}-pip \ +# python${PYTHON_VER}-full \ + python${PYTHON_VER}-dev \ + python${PYTHON_VER}-venv && \ + python${PYTHON_VER} -m venv --copies /opt/venv + + +ENV PATH="/opt/venv/bin:$PATH" + +RUN pip install --no-cache-dir -U pandas~=1.2.0 pybedtools refchooser scikit-learn + +ADD https://github.com/arq5x/bedtools2/archive/refs/tags/v${BEDTOOLS_VER}.tar.gz . +ADD https://github.com/mummer4/mummer/releases/download/v${MUMMER_VER}rc1/mummer-${MUMMER_VER}rc1.tar.gz . +ADD https://github.com/ncbi/SKESA/releases/download/${SKESA_VER}/skesa.centos.7.7 . +ADD https://github.com/ncbi/SKESA/releases/download/${SKESA_VER}/gfa_connector.centos7.7 . +ADD https://github.com/ncbi/SKESA/releases/download/${SKESA_VER}/kmercounter.centos7.7 . +ADD https://github.com/marbl/Mash/releases/download/v${MASH_VER}/mash-Linux64-v${MASH_VER}.tar . + +# Install BEDTools +# per https://github.com/StaPH-B/docker-builds/blob/master/bedtools/2.31.1/Dockerfile +# python3 required when compiling via `make` command for creating old CLI executables +# dependencies listed here (albeit for v2.30.0, still should be identical): https://packages.ubuntu.com/jammy/bedtools +# requires libghc-bzlib-dev, build-essential, zlib1g-dev, and a few others +# 'make install' should place binary executable files in /usr/local/bin +RUN tar -xzf v${BEDTOOLS_VER}.tar.gz && \ + rm v${BEDTOOLS_VER}.tar.gz && \ + cd bedtools2-${BEDTOOLS_VER} && \ + make && \ + make install + + # Install mummer + # per https://github.com/StaPH-B/docker-builds/blob/master/mummer/4.0.0/Dockerfile +RUN tar -xvf mummer-${MUMMER_VER}rc1.tar.gz && \ + rm mummer-${MUMMER_VER}rc1.tar.gz && \ + cd mummer-${MUMMER_VER}rc1 && \ + ./configure --prefix=/usr/local && \ + make && \ + make install && \ + ldconfig + +# # Install Skesa +# # per https://github.com/StaPH-B/docker-builds/blob/master/skesa/2.4.0/Dockerfile +# # get skesa, gfa_connector, and kmercounter binaries, rename them +RUN mkdir skesa && \ + cd skesa && \ + mv /build/skesa.centos.7.7 skesa && \ + mv /build/gfa_connector.centos7.7 gfa_connector && \ + mv /build/kmercounter.centos7.7 kmercounter && \ + chmod +x skesa gfa_connector kmercounter && \ + mv skesa gfa_connector kmercounter /usr/local/bin + +# Install Mash +RUN tar -xvf mash-Linux64-v${MASH_VER}.tar && \ + mv mash-Linux64-v${MASH_VER}/mash /usr/local/bin + +# Install BBMap +RUN wget -O BBMap_${BBMAP_VER}.tar.gz https://sourceforge.net/projects/bbmap/files/BBMap_${BBMAP_VER}.tar.gz/download && \ + tar -xvf BBMap_${BBMAP_VER}.tar.gz && \ + mv bbmap/* /usr/local/bin + + +FROM ubuntu:focal AS app + +ARG CSP2_VER +ARG CSP2_BRANCH="main" +ARG PYTHON_VER + +LABEL base.image="ubuntu:focal" +LABEL version=${CSP2_VER} +LABEL software="CSP2" +LABEL software.version=${CSP2_VER} +LABEL description="a Nextflow pipeline for rapid, accurate SNP distance estimation from assembly data" +LABEL website="https://github.com/CFSAN-Biostatistics/CSP2" +LABEL licence="https://github.com/CFSAN-Biostatistics/CSP2/blob/main/LICENSE" +LABEL maintainer="Robert Literman" +LABEL maintainer.email="Robert.Literman@fda.hhs.gov" +LABEL maintainer.organization="FDA/CFSAN/Biostatistics" +LABEL maintainer2="Justin Payne" +LABEL maintainer2.email="Justin.Payne@fda.hhs.gov" +LABEL maintainer2.organization="FDA/CFSAN/Biostatistics" + +WORKDIR /root/.nextflow +WORKDIR /app + +# copy in all executable files from builder stage to final app stage +COPY --from=build /usr/local/bin /usr/local/bin + +# Lots of perl nonsense +COPY --from=build /usr/local/lib /usr/local/lib +COPY --from=build /usr/local/libexec/mummer /usr/local/libexec/mummer +COPY --from=build /usr/lib/x86_64-linux-gnu/perl /usr/lib/x86_64-linux-gnu/perl +COPY --from=build /usr/local/share /usr/local/share +COPY --from=build /usr/share /usr/share +COPY --from=build /opt/venv /opt/venv +COPY --from=build /usr/bin/make /usr/local/bin/make + + +# Python stuff +COPY --from=build /usr/lib/python${PYTHON_VER} /usr/lib/python${PYTHON_VER} + + +#Install JRE +RUN apt-get update && apt-get install -y --no-install-recommends \ + ca-certificates \ + openjdk-17-jre-headless \ + curl + +# Install Nextflow +# per https://www.nextflow.io/docs/latest/getstarted.html +RUN export CAPSULE_LOG=debug && curl -s https://get.nextflow.io | bash && \ + chmod +x nextflow && \ + mv nextflow /usr/local/bin && \ + nextflow run hello + +ADD docker/Makefile . + +# set PATH, set perl locale settings for singularity compatibility +ENV PATH="/opt/venv/bin:/usr/local/bin:/skesa:$PATH" \ + LC_ALL=C \ + NXF_OFFLINE='true' + +ADD bin ./bin +ADD conf ./conf +ADD subworkflows ./subworkflows +ADD CSP2.nf ./CSP2.nf +ADD nextflow.config ./nextflow.config + + +FROM app AS pretest + +# set PATH, set perl locale settings for singularity compatibility +ENV PATH="/opt/venv/bin:/usr/local/bin:/skesa:$PATH" \ + LC_ALL=C \ + NXF_OFFLINE='true' + +#Alternate test data directory +ADD https://github.com/CFSAN-Biostatistics/CSP2_TestData#main:assets assets/ + + +# Test MUmmer installation +# per https://github.com/StaPH-B/docker-builds/blob/master/mummer/4.0.0/Dockerfile + +ADD https://mummer4.github.io/tutorial/exampleFiles/2.1/in/H_pylori26695_Eslice.fasta . +ADD https://mummer4.github.io/tutorial/exampleFiles/2.1/in/H_pyloriJ99_Eslice.fasta . +ADD https://mummer4.github.io/tutorial/exampleFiles/2.2/in/B_anthracis_Mslice.fasta . +ADD https://mummer4.github.io/tutorial/exampleFiles/2.2/in/B_anthracis_contigs.fasta . +ADD http://mummer.sourceforge.net/examples/data/H_pylori26695_Eslice.fasta . +ADD http://mummer.sourceforge.net/examples/data/H_pyloriJ99_Eslice.fasta . +ADD https://raw.githubusercontent.com/artic-network/artic-ncov2019/master/primer_schemes/nCoV-2019/V5.3.2/SARS-CoV-2.primer.bed ./V5.3.2.artic.bed +ADD https://raw.githubusercontent.com/artic-network/artic-ncov2019/master/primer_schemes/nCoV-2019/V4.1/SARS-CoV-2.primer.bed ./V4.1.artic.bed + +FROM pretest AS test + +# Test MASH + +RUN nucmer -h && \ + promer -h && \ + mummer -mum -b -c H_pylori26695_Eslice.fasta H_pyloriJ99_Eslice.fasta > mummer.mums && \ + nucmer -c 100 -p nucmer B_anthracis_Mslice.fasta B_anthracis_contigs.fasta && \ + show-snps -C nucmer.delta > nucmer.snps && \ + promer -p promer_100 -c 100 H_pylori26695_Eslice.fasta H_pyloriJ99_Eslice.fasta + +# Test bedtools installation +# check help options and version +RUN bedtools --help && \ + bedtools --version + +# downloads two bedfiles for ARTIC SARS-CoV-2 artic schemes, fixes their formatting, uses bedtools sort, intersect, and merge +# per https://github.com/StaPH-B/docker-builds/blob/master/bedtools/2.31.1/Dockerfile +RUN awk '{print $1 "\t" $2 "\t" $3 "\t" $4 "\t" $5 "\t" $6}' V5.3.2.artic.bed > V5.3.2.unsorted.bed && \ + bedtools sort -i V5.3.2.unsorted.bed > V5.3.2.bed && \ + awk '{print $1 "\t" $2 "\t" $3 "\t" $4 "\t" $5 "\t" $6}' V4.1.artic.bed > V4.1.bed && \ + bedtools intersect -a V5.3.2.bed -b V4.1.bed > intersect_test.bed && \ + mergeBed -i V5.3.2.bed > merged_test.bed && \ + head intersect_test.bed merged_test.bed + +RUN /bin/bash -c 'make test' + +FROM app AS release + +ARG CSP2_VER +ARG BEDTOOLS_VER +ARG MUMMER_VER +ARG SKESA_VER +ARG MASH_VER +ARG BBMAP_VER +ARG PYTHON_VER +ENV CSP2_VER=${CSP2_VER} +ENV BEDTOOLS_VER=${BEDTOOLS_VER} +ENV MUMMER_VER=${MUMMER_VER} +ENV SKESA_VER=${SKESA_VER} +ENV MASH_VER=${MASH_VER} +ENV BBMAP_VER=${BBMAP_VER} +ENV PYTHON_VER=${PYTHON_VER} + +# set PATH, set perl locale settings for singularity compatibility +ENV PATH="/opt/venv/bin:/usr/local/bin:/skesa:$PATH" \ + LC_ALL=C \ + NXF_OFFLINE='true' + +ENTRYPOINT ["make", "--makefile=/app/Makefile"] \ No newline at end of file
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/CSP2/docker/Makefile Thu Dec 12 13:53:15 2024 -0500 @@ -0,0 +1,143 @@ +.PHONY: + +.ONESHELL: + + + +usage: ## Show this menu + @grep -E '^[a-zA-Z_-]+:.*?##.*$$' $(MAKEFILE_LIST) | awk 'BEGIN {FS = ":.*?##"}; {printf "\033[36m%-30s\033[0m %s\n", $$1, $$2}' + +version: ## Show version and branch + @echo "CSP2 v$${CSP2_VER}/$${CSP2_BRANCH}" + +# ENV CSP2_VER=${CSP2_VER} +# ENV BEDTOOLS_VER=${BEDTOOLS_VER} +# ENV MIUMMER_VER=${MUMMER_VER} +# ENV SKESA_VER=${SKESA_VER} +# ENV MASH_VER=${MASH_VER} +# ENV BBMAP_VER=${BBMAP_VER} +# ENV PYTHON_VER=${PYTHON_VER} + +versions: version ## Show versions of key installed depedencies + @echo `nextflow -v` + @echo `python3 --version` " (container says ${PYTHON_VER})" + @echo `bedtools --version` " (container says ${BEDTOOLS_VER})" + @echo "mummer " `mummer --version` " (container says ${MUMMER_VER})" + @echo `skesa --version 2>&1` " (container says ${SKESA_VER})" + @echo "mash " `mash --version` " (container says ${MASH_VER})" + @echo `bbmap.sh --version 2>&1` " (container says ${BBMAP_VER})" + +help: ## Show help + @echo "Citation: CFSAN SNP Pipeline 2, v$${CSP2_VER}, Literman et al. 2024" + @echo + @echo "CSP2 is a Nextflow pipeline for rapid, accurate SNP distance estimation" + @echo "from assembly data." + @echo + @echo "Please see: https://github.com/CFSAN-Biostatistics/CSP2" + @echo + @echo "CSP2 runs are managed via Nextflow, providing the user with an array of" + @echo "customizations while also facilitating module development and additions in" + @echo "future releases." + @echo + @echo "Important Note: The software continues to be focused on the analysis of" + @echo "groups of bacterial genomes with limited evolutionary differences (<1000" + @echo "SNPs). Testing is underway to determine how the underlying cluster" + @echo "diversity impacts distances estimates." + @echo + @echo "CSP2 has two main run modes:" + @echo "1) "Screening Mode" (screen): Used to determine whether query isolates are" + @echo "close to a set of reference isolates (e.g., lab control strains, strains" + @echo "related to an outbreak, etc.) Given one or more user-provided reference" + @echo "isolates (--ref_reads; --ref_fasta), get alignment statistics and SNP" + @echo "distances between all reference and query isolates (--reads; --fasta)" + @echo + @echo "2) "SNP Pipeline Mode" (snp): Used to generate pairwise distances and" + @echo "alignments for a set of query isolates Generate pairwise SNP distances and" + @echo "alignments for 2+ isolates (--reads; --fasta) based on comparisons to:" + @echo + @echo "One or more user-provided references (--ref_reads; --ref_fasta), or One or" + @echo "more reference isolates selected by RefChooser (--n_ref)" + @echo + @echo "Usage: screen [options] {--fasta PATH {--reads=PATH | --forward=STR --reverse=STR} --out=PATH}" + @echo " or snp [options] {--fasta {--reads=PATH | --forward=STR --reverse=STR} --out=PATH}" + @echo + @echo "Options:" + @echo " --outroot=PATH\tBase directory to create output folder [default=$CWD] " + @echo " --out=PATH\t\tName of the output folder to create (must not exist)" + @echo "\t\t\t [default=CSP2_<current_datetime>]" + @echo " --forward=STR\t\tFull file extension for forward/left reads of query" + @echo "\t\t\t [default='_1.fastq.gz']" + @echo " --reverse=STR\t\tFull file extension for reverse/right reads of reference" + @echo "\t\t\t [default='_2.fastq.gz']" + @echo " --ref_forward=STR\tFull file extension for forward/left reads of reference" + @echo "\t\t\t [default='_1.fastq.gz']" + @echo " --ref_reverse=STR\tFull file extension for reverse/right reads of reference" + @echo "\t\t\t [default='_2.fastq.gz']" + @echo " --readext=STR\t\tExtension for single-end reads for query [default='fastq.gz']" + @echo " --ref_readext=STR\tExtension for single-end reads for reference" + @echo "\t\t\t [default='fastq.gz']" + @echo " --min_cov=NUM\t\tDo not analyze queries that cover less than <min_cov>% of the" + @echo "\t\t\treference assembly [default=85]" + @echo " --min_iden=NUM\tOnly consider alignments where the percent identity is at least" + @echo "\t\t\t <min_iden> [default=99]" + @echo " --min_len=NUM\t\tOnly consider alignments that span at least <min_len> in bp" + @echo "\t\t\t [default=500]" + @echo " --dwin=LIST\t\tA comma-separated list of windows to check SNP densities" + @echo "\t\t\t [default=1000,125,15]" + @echo " --wsnps=LIST\t\tThe maximum number of SNPs allowed in the corresponding window from" + @echo "\t\t\t --dwin [default=3,2,1]" + @echo " --query_edge=NUM\tOnly consider SNPs that occur within <query_edge>bp of the end" + @echo "\t\t\t of a query contig [default=250]" + @echo " --ref_edge=NUM\tOnly consider SNPs that occur within <query_edge>bp of the end" + @echo "\t\t\t of a reference contig [default=250]" + @echo " --n_ref=NUM\t\tThe number of RefChooser reference isolates to consider (only" + @echo "\t\t\t applied if using RefChooser) [default=3]" + @echo " --reads=PATH\t\tLocation of query read data (Path to directory, or path to file with" + @echo "\t\t\t multiple directories)" + @echo " --fasta=PATH\t\tLocation of query assembly data (Path to directory containing" + @echo "\t\t\t FASTAs, path to FASTA, path to multiple FASTAs)" + @echo " --ref_reads=PATH\tLocation of reference read data (Path to directory, or path to" + @echo "\t\t\t file with multiple directories)" + @echo " --ref_fasta=PATH\tLocation of reference assembly data (Path to directory" + @echo "\t\t\t containing FASTAs, path to FASTA, path to multiple FASTAs)" + @echo " --trim_name=STR\tA string in assembly file names that you want to remove from" + @echo "\t\t\t sample IDs (e.g., _contigs_skesa)" + +config: + @cat <<- EOF + profiles { + standard { + process.executor = 'local' + params.cores = `nproc --all` + } + } + EOF > ~/.nextflow/config + + +ifeq (screen, $(firstword $(MAKECMDGOALS))) + runargs := $(wordlist 2, $(words $(MAKECMDGOALS)), $(MAKECMDGOALS)) + $(eval $(runargs):;@true) +endif + +ifeq (snp, $(firstword $(MAKECMDGOALS))) + runargs := $(wordlist 2, $(words $(MAKECMDGOALS)), $(MAKECMDGOALS)) + $(eval $(runargs):;@true) +endif + +screen: config ## determine whether query isolates are close to a reference + nextflow run CSP2.nf -profile standard --runmode screen $(runargs) + +snp: config ## generate pairwise distances for a set of query isolates + nextflow run CSP2.nf -profile standard --runmode snp $(runargs) + +snpdiffs: config + +test_screen: + nextflow run CSP2.nf -profile standard --runmode screen --fasta assets/Screen/Assembly/Week_42_Assembly.fasta --reads assets/Screen/Reads/ --ref_fasta assets/Screen/Assembly/Lab_Control.fasta --out ./CSP2_Test_Screen --readext fq.gz --forward _1.fq.gz --reverse _2.fq.gz + +test_snp: + nextflow run CSP2.nf -profile standard --runmode snp --fasta assets/SNP/ --n_ref 3 --out ./CSP2_Test_SNP --max_missing 50 + +test: config test_screen test_snp + ls -lah assets/Screen/Output/Contamination_Screen/ + diff -bur ./CSP2_Test_SNP/snpdiffs assets/SNP/Output/Soil_Analysis/snpdiffs \ No newline at end of file
--- a/CSP2/nextflow.config Wed Dec 11 12:04:20 2024 -0500 +++ b/CSP2/nextflow.config Thu Dec 12 13:53:15 2024 -0500 @@ -17,11 +17,11 @@ withLabel: 'mummerMem' { task_name = 'CSP2-MUMmer' cpus = 1 - //memory = '4 GB' + # memory = '4 GB' } withLabel: 'skesaMem' { task_name = 'CSP2-SKESA' - //memory = '12 GB' + # memory = '12 GB' } }
--- a/csp2_screen.xml Wed Dec 11 12:04:20 2024 -0500 +++ b/csp2_screen.xml Thu Dec 12 13:53:15 2024 -0500 @@ -58,7 +58,7 @@ fi; nextflow run ${__tool_directory__}/CSP2/CSP2.nf -profile csp2_galaxy --runmode screen \$QUERY_FASTA_ARG \$REF_FASTA_ARG \$QUERY_READS_ARG \$REF_READS_ARG \$REF_ID_ARG \$TRIM_ARG --readext $readext --forward $forward --reverse $reverse --ref_readext $readext --ref_forward $forward --ref_reverse $reverse --min_cov $min_cov --min_iden $min_iden --min_len $min_len --ref_edge $ref_edge --query_edge $query_edge --dwin $dwin --wsnps $wsnps --out \$CSP2_DIR/CSP2_Screen_Output > Nextflow_Log.txt 2>&1; -sleep 15; +cat Nextflow_Log.txt; ]]> </command> <inputs> @@ -83,7 +83,6 @@ <data name="raw_mummer" format="tabular" label="Raw MUMmer Output" from_work_dir="CSP2_Screen_Output/Raw_MUMmer_Summary.tsv" /> <data name="isolate_data" format="tabular" label="Isolate Data" from_work_dir="CSP2_Screen_Output/Isolate_Data.tsv" /> <data name="screening_results" format="tabular" label="Screening Results" from_work_dir="CSP2_Screen_Output/Screening_Results.tsv" /> - <data name="nextflow_log" format="txt" label="Nextflow Log" from_work_dir="Nextflow_Log.txt" /> </outputs> <tests> <test>