Mercurial > repos > rliterman > csp2
view CSP2/bin/chooseRefs.py @ 64:6f3b67127e44
"planemo upload"
author | rliterman |
---|---|
date | Thu, 19 Dec 2024 14:35:57 -0500 |
parents | 93393808f415 |
children |
line wrap: on
line source
#!/usr/bin/env python3 import numpy as np import os import pandas as pd import sys from sklearn.cluster import KMeans from sklearn.metrics import silhouette_score import scipy.stats from itertools import combinations from Bio import SeqIO import argparse def getOptimalK(data, ref_count): silhouette_scores = [] kmeans_1 = KMeans(n_clusters=1, random_state=0, n_init='auto').fit(data) kmeans_2 = KMeans(n_clusters=2, random_state=0, n_init='auto').fit(data) # Compare 1 vs. 2 inertia_1 = kmeans_1.inertia_ inertia_2 = kmeans_2.inertia_ if inertia_1 > inertia_2: negative_movements = 1 else: negative_movements = 0 # Add k2 data labels = kmeans_2.labels_ score = silhouette_score(data, labels) silhouette_scores.append(score) prev_score = score for k in range(3, ref_count + 3): kmeans = KMeans(n_clusters=k, random_state=0, n_init='auto').fit(data) labels = kmeans.labels_ score = silhouette_score(data, labels) if score < prev_score: negative_movements += 1 else: negative_movements = 0 silhouette_scores.append(score) # Stop if two consecutive negative movements occur if negative_movements == 2: break prev_score = score if (inertia_1 < inertia_2) & (silhouette_scores[0] > silhouette_scores[1]): optimal_k = 1 else: optimal_k = np.argmax(silhouette_scores) + 2 return optimal_k def fasta_info(file_path): records = list(SeqIO.parse(file_path, 'fasta')) contig_count = int(len(records)) lengths = sorted([len(record) for record in records], reverse=True) assembly_bases = sum(lengths) cumulative_length = 0 n50 = None n90 = None l50 = None l90 = None for i, length in enumerate(lengths, start=1): cumulative_length += length if cumulative_length >= assembly_bases * 0.5 and n50 is None: n50 = length l50 = i if cumulative_length >= assembly_bases * 0.9 and n90 is None: n90 = length l90 = i if n50 is not None and n90 is not None: break return [file_path,contig_count,assembly_bases,n50,n90,l50,l90] parser = argparse.ArgumentParser(description='Choose reference isolates based on FASTA metrics and mean distances.') parser.add_argument('--ref_count', type=int, default=1, help='Number of reference isolates to select') parser.add_argument('--mash_triangle_file', type=str, help='Path to the mash triangle file') parser.add_argument('--trim_name', nargs='?', const="", default="", type=str, help='Trim name') args = parser.parse_args() ref_count = args.ref_count mash_triangle_file = os.path.abspath(args.mash_triangle_file) trim_name = args.trim_name ref_file = os.path.join(os.path.dirname(mash_triangle_file), 'CSP2_Ref_Selection.tsv') # Get Sample IDs sample_df = pd.read_csv(mash_triangle_file, sep='\t', usecols=[0], skip_blank_lines=True).dropna() sample_df = sample_df[sample_df[sample_df.columns[0]].str.strip() != ''] sample_df.columns = ['Path'] sample_df['Isolate_ID'] = [os.path.splitext(os.path.basename(file))[0].replace(trim_name, '') for file in sample_df[sample_df.columns[0]].tolist()] assembly_names = [os.path.splitext(os.path.basename(file))[0].replace(trim_name, '') for file in sample_df[sample_df.columns[0]].tolist()] num_isolates = sample_df.shape[0] # Get FASTA metrics metrics_df = pd.DataFrame(sample_df['Path'].apply(fasta_info).tolist(), columns=['Path', 'Contigs', 'Length', 'N50','N90','L50','L90']) metrics_df['Assembly_Bases_Zscore'] = metrics_df['Length'].transform(scipy.stats.zscore).astype('float').round(3).fillna(0) metrics_df['Contig_Count_Zscore'] = metrics_df['Contigs'].transform(scipy.stats.zscore).astype('float').round(3).fillna(0) metrics_df['N50_Zscore'] = metrics_df['N50'].transform(scipy.stats.zscore).astype('float').round(3).fillna(0) # Find outliers inlier_df = metrics_df.loc[(metrics_df['N50_Zscore'] > -3) & (metrics_df['Assembly_Bases_Zscore'] < 3) & (metrics_df['Assembly_Bases_Zscore'] > -3) & (metrics_df['Contig_Count_Zscore'] < 3)] inlier_count = inlier_df.shape[0] inlier_isolates = [os.path.splitext(os.path.basename(file))[0].replace(trim_name, '') for file in inlier_df[inlier_df.columns[0]].tolist()] # If not enough or just enough inliers, script is done if ref_count > inlier_count: sys.exit("Error: Fewer inliers than requested references?") elif ref_count == inlier_count: print(",".join(inlier_df['Path'].tolist())) sys.exit(0) # Left join metrics_df and inlier_df sample_df = inlier_df.merge(sample_df, on = "Path", how='left')[['Isolate_ID','Path','Contigs','Length','N50','N90','L50','L90','N50_Zscore']] # Create distance matrix with open(mash_triangle_file) as mash_triangle: a = np.zeros((num_isolates, num_isolates)) mash_triangle.readline() mash_triangle.readline() idx = 1 for line in mash_triangle: tokens = line.split() distances = [float(token) for token in tokens[1:]] a[idx, 0: len(distances)] = distances a[0: len(distances), idx] = distances idx += 1 dist_df = pd.DataFrame(a, index=assembly_names, columns=assembly_names).loc[inlier_isolates,inlier_isolates] # Get mean distances after masking diagonal mask = ~np.eye(dist_df.shape[0], dtype=bool) mean_distances = dist_df.where(mask).mean().reset_index() mean_distances.columns = ['Isolate_ID', 'Mean_Distance'] sample_df = sample_df.merge(mean_distances, on='Isolate_ID', how='left') sample_df['Mean_Distance_Zscore'] = sample_df['Mean_Distance'].transform(scipy.stats.zscore).astype('float').round(3) sample_df['Base_Score'] = sample_df['N50_Zscore'] - sample_df['Mean_Distance_Zscore'].fillna(0) if ref_count == 1: print(",".join(sample_df.nlargest(1, 'Base_Score')['Path'].tolist())) sys.exit(0) optimal_k = getOptimalK(dist_df, ref_count) if optimal_k == 1: print(",".join(sample_df.nlargest(ref_count, 'Base_Score')['Path'].tolist())) sys.exit(0) kmeans = KMeans(n_clusters=optimal_k, random_state=0,n_init='auto').fit(dist_df) clusters = kmeans.labels_ cluster_df = pd.DataFrame({'Isolate_ID': dist_df.index, 'Cluster': clusters}).merge(sample_df, on='Isolate_ID',how='left') cluster_counts = cluster_df['Cluster'].value_counts().reset_index() cluster_counts.columns = ['Cluster', 'count'] cluster_counts['Prop'] = cluster_counts['count'] / cluster_counts['count'].sum() cluster_df = cluster_df.merge(cluster_counts[['Cluster', 'Prop']], on='Cluster') # Grab top ref final_ref_df = cluster_df.nlargest(1, 'Base_Score') refs_chosen = final_ref_df['Isolate_ID'].tolist() possible_refs = cluster_df.loc[~cluster_df['Isolate_ID'].isin(refs_chosen)].copy() while len(refs_chosen) < ref_count: possible_refs['Mean_Ref_Distance'] = possible_refs['Isolate_ID'].apply(lambda isolate_id: np.mean(dist_df.loc[isolate_id, refs_chosen].values)) possible_refs['Mean_Ref_Distance_Zscore'] = possible_refs['Mean_Ref_Distance'].transform(scipy.stats.zscore).astype('float').round(3) possible_refs['Sort_Score'] = possible_refs.apply(lambda row: (row['Base_Score'] + row['Mean_Ref_Distance_Zscore']) if row['Mean_Ref_Distance_Zscore'] <= 0 else (row['Base_Score'] + (row['Mean_Ref_Distance_Zscore']*row['Prop'])), axis=1) final_ref_df = pd.concat([final_ref_df, possible_refs.nlargest(1, 'Sort_Score').drop(['Sort_Score','Mean_Ref_Distance','Mean_Ref_Distance_Zscore'],axis=1)]) refs_chosen = final_ref_df['Isolate_ID'].tolist() possible_refs = possible_refs.loc[~possible_refs['Isolate_ID'].isin(refs_chosen)].copy() non_ref_df = cluster_df.loc[~cluster_df['Isolate_ID'].isin(refs_chosen)].sort_values('Base_Score', ascending=False) non_ref_df['Is_Ref'] = False final_ref_df['Is_Ref'] = True with open(ref_file, 'w') as f: pd.concat([final_ref_df, non_ref_df]).reset_index(drop=True).to_csv(f, index=False, sep="\t") print(",".join(final_ref_df['Path'].tolist()))