Mercurial > repos > rliterman > csp2
comparison CSP2/CSP2_env/env-d9b9114564458d9d-741b3de822f2aaca6c6caa4325c4afce/lib/python3.8/site-packages/tqdm/keras.py @ 68:5028fdace37b
planemo upload commit 2e9511a184a1ca667c7be0c6321a36dc4e3d116d
author | jpayne |
---|---|
date | Tue, 18 Mar 2025 16:23:26 -0400 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
67:0e9998148a16 | 68:5028fdace37b |
---|---|
1 from copy import copy | |
2 from functools import partial | |
3 | |
4 from .auto import tqdm as tqdm_auto | |
5 | |
6 try: | |
7 import keras | |
8 except (ImportError, AttributeError) as e: | |
9 try: | |
10 from tensorflow import keras | |
11 except ImportError: | |
12 raise e | |
13 __author__ = {"github.com/": ["casperdcl"]} | |
14 __all__ = ['TqdmCallback'] | |
15 | |
16 | |
17 class TqdmCallback(keras.callbacks.Callback): | |
18 """Keras callback for epoch and batch progress.""" | |
19 @staticmethod | |
20 def bar2callback(bar, pop=None, delta=(lambda logs: 1)): | |
21 def callback(_, logs=None): | |
22 n = delta(logs) | |
23 if logs: | |
24 if pop: | |
25 logs = copy(logs) | |
26 [logs.pop(i, 0) for i in pop] | |
27 bar.set_postfix(logs, refresh=False) | |
28 bar.update(n) | |
29 | |
30 return callback | |
31 | |
32 def __init__(self, epochs=None, data_size=None, batch_size=None, verbose=1, | |
33 tqdm_class=tqdm_auto, **tqdm_kwargs): | |
34 """ | |
35 Parameters | |
36 ---------- | |
37 epochs : int, optional | |
38 data_size : int, optional | |
39 Number of training pairs. | |
40 batch_size : int, optional | |
41 Number of training pairs per batch. | |
42 verbose : int | |
43 0: epoch, 1: batch (transient), 2: batch. [default: 1]. | |
44 Will be set to `0` unless both `data_size` and `batch_size` | |
45 are given. | |
46 tqdm_class : optional | |
47 `tqdm` class to use for bars [default: `tqdm.auto.tqdm`]. | |
48 tqdm_kwargs : optional | |
49 Any other arguments used for all bars. | |
50 """ | |
51 if tqdm_kwargs: | |
52 tqdm_class = partial(tqdm_class, **tqdm_kwargs) | |
53 self.tqdm_class = tqdm_class | |
54 self.epoch_bar = tqdm_class(total=epochs, unit='epoch') | |
55 self.on_epoch_end = self.bar2callback(self.epoch_bar) | |
56 if data_size and batch_size: | |
57 self.batches = batches = (data_size + batch_size - 1) // batch_size | |
58 else: | |
59 self.batches = batches = None | |
60 self.verbose = verbose | |
61 if verbose == 1: | |
62 self.batch_bar = tqdm_class(total=batches, unit='batch', leave=False) | |
63 self.on_batch_end = self.bar2callback( | |
64 self.batch_bar, pop=['batch', 'size'], | |
65 delta=lambda logs: logs.get('size', 1)) | |
66 | |
67 def on_train_begin(self, *_, **__): | |
68 params = self.params.get | |
69 auto_total = params('epochs', params('nb_epoch', None)) | |
70 if auto_total is not None and auto_total != self.epoch_bar.total: | |
71 self.epoch_bar.reset(total=auto_total) | |
72 | |
73 def on_epoch_begin(self, epoch, *_, **__): | |
74 if self.epoch_bar.n < epoch: | |
75 ebar = self.epoch_bar | |
76 ebar.n = ebar.last_print_n = ebar.initial = epoch | |
77 if self.verbose: | |
78 params = self.params.get | |
79 total = params('samples', params( | |
80 'nb_sample', params('steps', None))) or self.batches | |
81 if self.verbose == 2: | |
82 if hasattr(self, 'batch_bar'): | |
83 self.batch_bar.close() | |
84 self.batch_bar = self.tqdm_class( | |
85 total=total, unit='batch', leave=True, | |
86 unit_scale=1 / (params('batch_size', 1) or 1)) | |
87 self.on_batch_end = self.bar2callback( | |
88 self.batch_bar, pop=['batch', 'size'], | |
89 delta=lambda logs: logs.get('size', 1)) | |
90 elif self.verbose == 1: | |
91 self.batch_bar.unit_scale = 1 / (params('batch_size', 1) or 1) | |
92 self.batch_bar.reset(total=total) | |
93 else: | |
94 raise KeyError('Unknown verbosity') | |
95 | |
96 def on_train_end(self, *_, **__): | |
97 if hasattr(self, 'batch_bar'): | |
98 self.batch_bar.close() | |
99 self.epoch_bar.close() | |
100 | |
101 def display(self): | |
102 """Displays in the current cell in Notebooks.""" | |
103 container = getattr(self.epoch_bar, 'container', None) | |
104 if container is None: | |
105 return | |
106 from .notebook import display | |
107 display(container) | |
108 batch_bar = getattr(self, 'batch_bar', None) | |
109 if batch_bar is not None: | |
110 display(batch_bar.container) | |
111 | |
112 @staticmethod | |
113 def _implements_train_batch_hooks(): | |
114 return True | |
115 | |
116 @staticmethod | |
117 def _implements_test_batch_hooks(): | |
118 return True | |
119 | |
120 @staticmethod | |
121 def _implements_predict_batch_hooks(): | |
122 return True |