Mercurial > repos > rliterman > csp2
diff CSP2/CSP2_env/env-d9b9114564458d9d-741b3de822f2aaca6c6caa4325c4afce/lib/python3.8/site-packages/tqdm/keras.py @ 68:5028fdace37b
planemo upload commit 2e9511a184a1ca667c7be0c6321a36dc4e3d116d
author | jpayne |
---|---|
date | Tue, 18 Mar 2025 16:23:26 -0400 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/CSP2/CSP2_env/env-d9b9114564458d9d-741b3de822f2aaca6c6caa4325c4afce/lib/python3.8/site-packages/tqdm/keras.py Tue Mar 18 16:23:26 2025 -0400 @@ -0,0 +1,122 @@ +from copy import copy +from functools import partial + +from .auto import tqdm as tqdm_auto + +try: + import keras +except (ImportError, AttributeError) as e: + try: + from tensorflow import keras + except ImportError: + raise e +__author__ = {"github.com/": ["casperdcl"]} +__all__ = ['TqdmCallback'] + + +class TqdmCallback(keras.callbacks.Callback): + """Keras callback for epoch and batch progress.""" + @staticmethod + def bar2callback(bar, pop=None, delta=(lambda logs: 1)): + def callback(_, logs=None): + n = delta(logs) + if logs: + if pop: + logs = copy(logs) + [logs.pop(i, 0) for i in pop] + bar.set_postfix(logs, refresh=False) + bar.update(n) + + return callback + + def __init__(self, epochs=None, data_size=None, batch_size=None, verbose=1, + tqdm_class=tqdm_auto, **tqdm_kwargs): + """ + Parameters + ---------- + epochs : int, optional + data_size : int, optional + Number of training pairs. + batch_size : int, optional + Number of training pairs per batch. + verbose : int + 0: epoch, 1: batch (transient), 2: batch. [default: 1]. + Will be set to `0` unless both `data_size` and `batch_size` + are given. + tqdm_class : optional + `tqdm` class to use for bars [default: `tqdm.auto.tqdm`]. + tqdm_kwargs : optional + Any other arguments used for all bars. + """ + if tqdm_kwargs: + tqdm_class = partial(tqdm_class, **tqdm_kwargs) + self.tqdm_class = tqdm_class + self.epoch_bar = tqdm_class(total=epochs, unit='epoch') + self.on_epoch_end = self.bar2callback(self.epoch_bar) + if data_size and batch_size: + self.batches = batches = (data_size + batch_size - 1) // batch_size + else: + self.batches = batches = None + self.verbose = verbose + if verbose == 1: + self.batch_bar = tqdm_class(total=batches, unit='batch', leave=False) + self.on_batch_end = self.bar2callback( + self.batch_bar, pop=['batch', 'size'], + delta=lambda logs: logs.get('size', 1)) + + def on_train_begin(self, *_, **__): + params = self.params.get + auto_total = params('epochs', params('nb_epoch', None)) + if auto_total is not None and auto_total != self.epoch_bar.total: + self.epoch_bar.reset(total=auto_total) + + def on_epoch_begin(self, epoch, *_, **__): + if self.epoch_bar.n < epoch: + ebar = self.epoch_bar + ebar.n = ebar.last_print_n = ebar.initial = epoch + if self.verbose: + params = self.params.get + total = params('samples', params( + 'nb_sample', params('steps', None))) or self.batches + if self.verbose == 2: + if hasattr(self, 'batch_bar'): + self.batch_bar.close() + self.batch_bar = self.tqdm_class( + total=total, unit='batch', leave=True, + unit_scale=1 / (params('batch_size', 1) or 1)) + self.on_batch_end = self.bar2callback( + self.batch_bar, pop=['batch', 'size'], + delta=lambda logs: logs.get('size', 1)) + elif self.verbose == 1: + self.batch_bar.unit_scale = 1 / (params('batch_size', 1) or 1) + self.batch_bar.reset(total=total) + else: + raise KeyError('Unknown verbosity') + + def on_train_end(self, *_, **__): + if hasattr(self, 'batch_bar'): + self.batch_bar.close() + self.epoch_bar.close() + + def display(self): + """Displays in the current cell in Notebooks.""" + container = getattr(self.epoch_bar, 'container', None) + if container is None: + return + from .notebook import display + display(container) + batch_bar = getattr(self, 'batch_bar', None) + if batch_bar is not None: + display(batch_bar.container) + + @staticmethod + def _implements_train_batch_hooks(): + return True + + @staticmethod + def _implements_test_batch_hooks(): + return True + + @staticmethod + def _implements_predict_batch_hooks(): + return True