jpayne@68
|
1 from copy import copy
|
jpayne@68
|
2 from functools import partial
|
jpayne@68
|
3
|
jpayne@68
|
4 from .auto import tqdm as tqdm_auto
|
jpayne@68
|
5
|
jpayne@68
|
6 try:
|
jpayne@68
|
7 import keras
|
jpayne@68
|
8 except (ImportError, AttributeError) as e:
|
jpayne@68
|
9 try:
|
jpayne@68
|
10 from tensorflow import keras
|
jpayne@68
|
11 except ImportError:
|
jpayne@68
|
12 raise e
|
jpayne@68
|
13 __author__ = {"github.com/": ["casperdcl"]}
|
jpayne@68
|
14 __all__ = ['TqdmCallback']
|
jpayne@68
|
15
|
jpayne@68
|
16
|
jpayne@68
|
17 class TqdmCallback(keras.callbacks.Callback):
|
jpayne@68
|
18 """Keras callback for epoch and batch progress."""
|
jpayne@68
|
19 @staticmethod
|
jpayne@68
|
20 def bar2callback(bar, pop=None, delta=(lambda logs: 1)):
|
jpayne@68
|
21 def callback(_, logs=None):
|
jpayne@68
|
22 n = delta(logs)
|
jpayne@68
|
23 if logs:
|
jpayne@68
|
24 if pop:
|
jpayne@68
|
25 logs = copy(logs)
|
jpayne@68
|
26 [logs.pop(i, 0) for i in pop]
|
jpayne@68
|
27 bar.set_postfix(logs, refresh=False)
|
jpayne@68
|
28 bar.update(n)
|
jpayne@68
|
29
|
jpayne@68
|
30 return callback
|
jpayne@68
|
31
|
jpayne@68
|
32 def __init__(self, epochs=None, data_size=None, batch_size=None, verbose=1,
|
jpayne@68
|
33 tqdm_class=tqdm_auto, **tqdm_kwargs):
|
jpayne@68
|
34 """
|
jpayne@68
|
35 Parameters
|
jpayne@68
|
36 ----------
|
jpayne@68
|
37 epochs : int, optional
|
jpayne@68
|
38 data_size : int, optional
|
jpayne@68
|
39 Number of training pairs.
|
jpayne@68
|
40 batch_size : int, optional
|
jpayne@68
|
41 Number of training pairs per batch.
|
jpayne@68
|
42 verbose : int
|
jpayne@68
|
43 0: epoch, 1: batch (transient), 2: batch. [default: 1].
|
jpayne@68
|
44 Will be set to `0` unless both `data_size` and `batch_size`
|
jpayne@68
|
45 are given.
|
jpayne@68
|
46 tqdm_class : optional
|
jpayne@68
|
47 `tqdm` class to use for bars [default: `tqdm.auto.tqdm`].
|
jpayne@68
|
48 tqdm_kwargs : optional
|
jpayne@68
|
49 Any other arguments used for all bars.
|
jpayne@68
|
50 """
|
jpayne@68
|
51 if tqdm_kwargs:
|
jpayne@68
|
52 tqdm_class = partial(tqdm_class, **tqdm_kwargs)
|
jpayne@68
|
53 self.tqdm_class = tqdm_class
|
jpayne@68
|
54 self.epoch_bar = tqdm_class(total=epochs, unit='epoch')
|
jpayne@68
|
55 self.on_epoch_end = self.bar2callback(self.epoch_bar)
|
jpayne@68
|
56 if data_size and batch_size:
|
jpayne@68
|
57 self.batches = batches = (data_size + batch_size - 1) // batch_size
|
jpayne@68
|
58 else:
|
jpayne@68
|
59 self.batches = batches = None
|
jpayne@68
|
60 self.verbose = verbose
|
jpayne@68
|
61 if verbose == 1:
|
jpayne@68
|
62 self.batch_bar = tqdm_class(total=batches, unit='batch', leave=False)
|
jpayne@68
|
63 self.on_batch_end = self.bar2callback(
|
jpayne@68
|
64 self.batch_bar, pop=['batch', 'size'],
|
jpayne@68
|
65 delta=lambda logs: logs.get('size', 1))
|
jpayne@68
|
66
|
jpayne@68
|
67 def on_train_begin(self, *_, **__):
|
jpayne@68
|
68 params = self.params.get
|
jpayne@68
|
69 auto_total = params('epochs', params('nb_epoch', None))
|
jpayne@68
|
70 if auto_total is not None and auto_total != self.epoch_bar.total:
|
jpayne@68
|
71 self.epoch_bar.reset(total=auto_total)
|
jpayne@68
|
72
|
jpayne@68
|
73 def on_epoch_begin(self, epoch, *_, **__):
|
jpayne@68
|
74 if self.epoch_bar.n < epoch:
|
jpayne@68
|
75 ebar = self.epoch_bar
|
jpayne@68
|
76 ebar.n = ebar.last_print_n = ebar.initial = epoch
|
jpayne@68
|
77 if self.verbose:
|
jpayne@68
|
78 params = self.params.get
|
jpayne@68
|
79 total = params('samples', params(
|
jpayne@68
|
80 'nb_sample', params('steps', None))) or self.batches
|
jpayne@68
|
81 if self.verbose == 2:
|
jpayne@68
|
82 if hasattr(self, 'batch_bar'):
|
jpayne@68
|
83 self.batch_bar.close()
|
jpayne@68
|
84 self.batch_bar = self.tqdm_class(
|
jpayne@68
|
85 total=total, unit='batch', leave=True,
|
jpayne@68
|
86 unit_scale=1 / (params('batch_size', 1) or 1))
|
jpayne@68
|
87 self.on_batch_end = self.bar2callback(
|
jpayne@68
|
88 self.batch_bar, pop=['batch', 'size'],
|
jpayne@68
|
89 delta=lambda logs: logs.get('size', 1))
|
jpayne@68
|
90 elif self.verbose == 1:
|
jpayne@68
|
91 self.batch_bar.unit_scale = 1 / (params('batch_size', 1) or 1)
|
jpayne@68
|
92 self.batch_bar.reset(total=total)
|
jpayne@68
|
93 else:
|
jpayne@68
|
94 raise KeyError('Unknown verbosity')
|
jpayne@68
|
95
|
jpayne@68
|
96 def on_train_end(self, *_, **__):
|
jpayne@68
|
97 if hasattr(self, 'batch_bar'):
|
jpayne@68
|
98 self.batch_bar.close()
|
jpayne@68
|
99 self.epoch_bar.close()
|
jpayne@68
|
100
|
jpayne@68
|
101 def display(self):
|
jpayne@68
|
102 """Displays in the current cell in Notebooks."""
|
jpayne@68
|
103 container = getattr(self.epoch_bar, 'container', None)
|
jpayne@68
|
104 if container is None:
|
jpayne@68
|
105 return
|
jpayne@68
|
106 from .notebook import display
|
jpayne@68
|
107 display(container)
|
jpayne@68
|
108 batch_bar = getattr(self, 'batch_bar', None)
|
jpayne@68
|
109 if batch_bar is not None:
|
jpayne@68
|
110 display(batch_bar.container)
|
jpayne@68
|
111
|
jpayne@68
|
112 @staticmethod
|
jpayne@68
|
113 def _implements_train_batch_hooks():
|
jpayne@68
|
114 return True
|
jpayne@68
|
115
|
jpayne@68
|
116 @staticmethod
|
jpayne@68
|
117 def _implements_test_batch_hooks():
|
jpayne@68
|
118 return True
|
jpayne@68
|
119
|
jpayne@68
|
120 @staticmethod
|
jpayne@68
|
121 def _implements_predict_batch_hooks():
|
jpayne@68
|
122 return True
|